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Next Generation Sequencing studies generate a large quantity of genetic data in a
relatively cost and time efficient manner and provide an unprecedented opportunity to
identify candidate causative variants that lead to disease phenotypes. A challenge to these
studies is the generation of sequencing artifacts by current technologies. To identify and
characterize the properties that distinguish false positive variants from true variants, we
sequenced a child and both parents (one trio) using DNA isolated from three sources
(blood, buccal cells, and saliva). The trio strategy allowed us to identify variants in the
proband that could not have been inherited from the parents (Mendelian errors) and would
most likely indicate sequencing artifacts. Quality control measurements were examined
and three measurements were found to identify the greatest number of Mendelian errors.
These included read depth, genotype quality score, and alternate allele ratio. Filtering the
variants on these measurements removed ∼95% of the Mendelian errors while retaining
80% of the called variants. These filters were applied independently. After filtering, the
concordance between identical samples isolated from different sources was 99.99% as
compared to 87% before filtering. This high concordance suggests that different sources
of DNA can be used in trio studies without affecting the ability to identify causative
polymorphisms. To facilitate analysis of next generation sequencing data, we developed
the Cincinnati Analytical Suite for Sequencing Informatics (CASSI) to store sequencing files,
metadata (eg. relatedness information), file versioning, data filtering, variant annotation,
and identify candidate causative polymorphisms that follow either de novo, rare recessive
homozygous or compound heterozygous inheritance models. We conclude the data
cleaning process improves the signal to noise ratio in terms of variants and facilitates
the identification of candidate disease causative polymorphisms.

Keywords: whole exome sequencing, variant filtering, next-generation sequencing, disease causative

polymorphisms, Mendelian errors, Mendel errors, CASSI

INTRODUCTION
Next-generation sequencing (NGS) has emerged as a powerful tool
to investigate the genetic etiology of diseases. The use of NGS data
has revolutionized clinical treatment and bench research. In gen-
eral, the data generated in a NGS study are massive by comparison
to that generated by a genome-wide genotyping array. In NGS,
a fastq file of millions of short DNA sequences is generated for
each sample. These fastq files are aligned to the reference genome
using one of many different alignment tools. The alignment pro-
grams create a sequence alignment/map (SAM file) or a binary
alignment/map (BAM file; Yu and Sun, 2013). It is widely appreci-
ated that NGS generates a large number of sequencing errors. The
extraordinary quantity of data generated even with a low error rate

generates a large number of sequencing artifacts which will likely
be called variants. This gives the appearance that NGS does not
compare well with Sanger sequencing or genotyping arrays (4), but
we show herein that the error rate of NGS of the called variants
can be substantially reduced with the relative preservation of the
vast majority of the data. To address the limitations imposed upon
NGS studies by sequencing artifacts, we find refuge in redundancy.
Typically, researchers obtain 40–200 reads of each base. Therefore,
SAM and BAM files are large files and contain hundreds of millions
of short sequences aligned to the reference genome. Variant callers
such as the Genome Analysis Tool Kit (GATK) are used to gener-
ate a list of the variants in the variant call format (VCF; McKenna
et al., 2010). VCF files contain meta-information for each variant
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relative to a known reference genome sequence, as well as qual-
ity measurements for each subject’s individual genotypes. These
individual quality metrics include the overall number of reads at
each position as well as the number and depth of alleles detected.
In addition to predicting the nucleotide base or generating a base
call calculated from a statistical algorithm, GATK also calculates a
confidence score for the predicted nucleotide, the genotype quality
score (Nielsen et al., 2011).

A multi-sample VCF file includes all of the genotypes for which
at least one subject has a variant. Due to the flexibility of the
format, the information contained in these files can vary widely.
Furthermore, different variant callers are known to produce dif-
ferent calls (Rosenfeld et al., 2012; Liu et al., 2013). To further
complicate matters, there is no currently agreed upon consensus
to guide the analytical choices that are made when deciding which
variant calls to include in a VCF file [as reviewed in Nekrutenko
and Taylor (2012)]. One approach is to exclude (or filter) variants
from a VCF file based on various criteria. These filters are based on
a meta- or individual-sequencing parameter used to remove a par-
ticular variant. For example, variants can be filtered based upon
the read depth (the number of the times the variant was detected),
ratio of reads that contained the reference and alternate genotype
calls (alt read), or by genotype quality scores. A recent comparison
of the most common next-generation sequencing platforms and
methodologies demonstrated that only 57% of the variants are
common amongst five different pipelines using the same initial
data (O’Rawe et al., 2013).

Typically a whole exome NGS experiment will generate ∼50–70
million bases of sequence. Greater than 99.99% of the bases match
the reference genome. The remaining 0.01% of bases that differ
from the reference genome is identified as variants. Importantly,
most sequencing artifacts do not match the reference genome
and are mis-identified as variants. Thus, identifying variants also
has the effect of concentrating the sequencing artifacts. These
sequence artifacts can be detected by identifying non-concordance
of sequence from multiple assays of the same samples or as
Mendelian errors if family data are available. Mendelian errors
are genotypes that are found in the child that could not have been
inherited from either parent.

After obtaining the data from a whole exome NGS experiment,
analytical strategies range from identifying novel variants, to per-
forming genetic association studies, to identifying variants that are
candidates for potentially causing disease. Within the last 5 years,
exome sequencing methods have been employed to successfully
identify mutations in novel genes for a number of genetic con-
ditions, including Sensenbrenner syndrome, Kabuki syndrome,
and Miller syndrome (Gilissen et al., 2010; Ng et al., 2010a,b). One
highly successful strategy uses the healthy parents of a patient with
a severe disease to identify genetic variants in the patient that were
not inherited, termed de novo variants. In fact, disruptive de novo
variants appear to cause a substantial proportion of intellectual
disability and many rare genetic disorders (Hoischen et al., 2010,
2011; Vissers et al., 2010; Bartnik et al., 2011; Filges et al., 2011;
Gilman et al., 2011; Girard et al., 2011; Gonzalez-del Pozo et al.,
2011; Paulussen et al., 2011; Xu et al., 2011; Bujakowska et al.,
2012; Dauber et al., 2012; Harakalova et al., 2012; Iossifov et al.,
2012; Lederer et al., 2012; Lin et al., 2012; Neale et al., 2012; Need

et al., 2012; Neveling et al., 2012; O’Roak et al., 2012b; Riviere et al.,
2012; Sanders et al., 2012; Santen et al., 2012; Schrier et al., 2012;
Tsurusaki et al., 2012; Van Houdt et al., 2012; Whalen et al., 2012).

Using a trio study design (father, mother, and child) we can
identify non-inherited variants in a child. These variants are
sequencing errors, somatic mutations, or de novo mutations. We
have used this analysis of trios as an opportunity to identify
methodologies to filter the data to remove sequencing artifacts
while retaining true mutations. In this study, we systematically
assessed quality metrics to minimize Mendelian errors and iden-
tified a set of filters that remove these erroneous variants. These
critical metrics are the depth of read (DP), the genotype quality
score (GQ), and the alternate allele ratio. Filters based on these
metrics were applied to a trio in which each family member was
sequenced using three different sources of DNA (blood, saliva,
and buccal cells). We tested the efficiency and specificity of our
filters to remove sequencing artifacts by measuring the number of
Mendelian errors and total variants removed by each filter singly
and in combination. After testing the efficiency of our variant call-
ing filters, we evaluated the filters on the concordance rate between
identical samples from different DNA tissue sources. In order to
make these analyses accessible to clinician researchers with limited
command line programming experience, we have developed the
Cincinnati Analytical Suite for Sequencing Informatics (CASSI)
to seamlessly integrate the data storage, versioning, filtering, and
annotation of NGS data through a web-based interface.

METHODS
DATA DESCRIPTION
We performed whole exome sequencing on a family trio. For this
trio, three sources of DNA were obtained: blood, buccal, and
saliva. Blood samples were collected from the three individuals
using EDTA VacutainerTM Tubes (BD Franklin Lakes, New Jer-
sey, USA). The buccal cells were collected by taking a cheek swab
of each individual using the OGR-575 tubes from DNA-Genotek
(Kanata, ON, Canada) and the saliva samples were collected by
having each individual directly spit into the OGR-500 tube from
DNA-Genotek. DNA was extracted using the DNeasy Blood and
Tissue kit from Qiagen (Valencia, CA, USA). Each subject gave
informed consent or assent approved by the institutional review
board at Cincinnati Children’s Hospital Medical Center. We stud-
ied all samples by exome capture using the Illumina HiSeq 2000
100-base pair-end platform with the IlluminaTruSeq kit. (San
Diego, CA, USA; In our experience, exome data generated with the
AgilentSureSelect capture kit behaves similar to the data presented
in this paper). Samples were sequenced at Perkin Elmer (Branford,
CT, USA). These filters have been applied to data generated with
IlluminaTrueSeq and AgilentSureSelect capture technologies.

Reads were aligned to the UCSC reference human genome
assembly 37.681 using BWA with the following commands: aln-o
1-e 10-i 5-k 2-l 32-t 4 (Li and Durbin, 2010). The mapping files
in SAM format were converted to the BAM format using SAM
tools version 0.1.19 (Li et al., 2009). The variants were called with
the Broad Institute’s Genome Analysis Tool Kit (McKenna et al.,

1http://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/
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2010; DePristo et al., 2011) using the following commands: -T Uni-
fied Genotyper-dcov 1000-stand_call_conf 30.0-stand_emit_conf
30.0 – min_base_quality_score 20 -A Depth Of Coverage -A Indel-
Type -A QualByDepth -A ReadPosRankSumTest -A FisherStrand
-A MappingQualityRankSumTest -l INFO -glm.

We obtained an average of 94.5 million reads (range 80–115
million reads per subject, with 106-fold mean depth in the tar-
get regions). On average, approximately 98% of these reads were
mapped to the human reference genome.

DATA ANALYSIS
The VCF file generated by GATK was analyzed using Golden
Helix Software (ver. 7.7.8) (Bozeman, MT, USA) and the newly
developed CASSI. Variants located on the X and Y chromo-
somes were excluded from this analysis due to limitations in the
Golden helix software. Only informative genotypes for each family
were considered (genotypes where all three members of the trio
were homozygous and identical to the reference sequence were
removed). When sequencing data from multiple DNA sources
were compared, only informative SNPs within the trio from one
particular DNA source were included in the analysis. Variants
were only removed based on individual quality measurements.
When assessing the number of variants present in the child, all
variants that remained in the child’s dataset after the filters were
applied were counted (i.e., if the genotypes for both parents were
removed with a filter, but the child’s genotype remained, this
variant was still counted for the child), Mendelian errors were
calculated for each variant by determining genotypes in the child
which could not be inherited from the parents based on the par-
ent genotypes. Mendelian errors were inferred for variants with a
missing parental genotype if one parent and the child had opposite
homozygous genotypes. The Mendelian error calculation did not
include cases in which the child was heterozygous and only one
parent was called. People interested in using CASSI should contact
the corresponding author.

THE CINCINNATI ANALYTICAL SUITE FOR SEQUENCING INFORMATICS
Cincinnati Analytical Suite for Sequencing Informatics was
developed to address the data management requirements of
next-generation sequencing data and to facilitate access to state-
of-the-art open source analysis packages through a centralized
web-based interface. CASSI analysis pipelines are run on the
CCHMC 700 core Linux-based computational cluster and can also
run on a local Linux-based machine. It leverages existing open
source VCF file parsers and annotation tools including VCF tools,
ANNOVAR, UCSC Genome Browser, Exome Variant Server, and
dbGAP (Mailman et al., 2007; Wang et al., 2010; Danecek et al.,
2011; Meyer et al., 2013).

Cincinnati Analytical Suite for Sequencing Informatics consists
of a web-based front end driven by a MySQL backend. Users are
able to upload their NGS data in the form of VCF files along
with files that contain the family relatedness information for each
sample (fam files). CASSI performs basic quality control checks on
the uploaded files before they are accepted into the database. These
checks include looking for an abundance of Mendelian errors and
verifying the sex of the uploaded samples.

Fields that are commonly queried, such as sample name, family
ID, and variant position are parsed out of the VCF file and indexed
in the MySQL database. Storing only commonly queried fields in
the database while keeping the genotype information in the origi-
nal VCF file keeps the database size to a minimum while allowing
quick access to the original VCF file and sample information. Anal-
ysis begins by sample selection and analysis type selection from the
CASSI web interface. Using this information, CASSI then dynam-
ically generates a custom pipeline for the specific type of analysis,
which is launched using the LONI pipeline software (Rex et al.,
2003; Dinov et al., 2010). Pipeline parameters can be changed
through the LONI pipeline’s point-and-click interface. This allows
for a seamless transition between search and analysis interfaces
without requiring the user to have programmatic experience.

The LONI Pipeline simplifies computational cluster workflow
creation using a drag and drop interface. CASSI users can launch
and modify existing processing workflows directly from their web
browser by using Java Web Start technology. The selected pipeline
is preloaded into the LONI Pipeline client along with any sample
data retrieved from the web interface. This is achieved by injecting
the file locations of the sample data into a template .pipe LONI
Pipeline file. Users are then free to modify the workflow. Input
parameters are easily modified via the modules within the LONI
Pipeline. The LONI Pipeline server interfaces with existing high
performance computing environments in order to handle task
dependencies and parallelization. In our case it communicates
with the LSF job scheduler, but can also be used to communi-
cate with other scheduling systems such as Oracle Grid Engine.
Each modified LONI workflow can then be saved as XML and
versioned using existing source control solutions (Subversion, Git,
CVS, etc.). These XML files can be saved, shared, and submitted
directly to a Linux-based machine.

For trio analysis, each member of the trio is initially extracted
into a separate VCF file using VCFtools and then filtered on
parameters selected by the user. After filtering for high quality
variants, the samples are then scanned for amino acid altering
variants (non-synonymous, splicing, insertions, deletions, and
variations that alter initiation codons or stop codons) using the
UCSC genome browser build 37 human Reference Sequence Gene
table. Rare and novel variants are identified by filtering against
the 1000 genomes project phase 1 v3 database2 and the NHLBI
exome sequence project ESP6500 variant frequency data3. We also
generated and use an internal allele frequency table of 312 whole
exomes analyzed at CCHMC.

Individual and summary reports are generated for all candidate
causative variants. These variants are annotated with chromo-
some, position, minor allele frequency, Gene name (hyperlinked
to www.Genecards.org), transcript, and protein ID, amino-acid
position and functional predictions based on dbSNP functional
predictions Version 2 table.

IDENTIFICATION OF POTENTIALLY CAUSATIVE MUTATIONS
Three different models of inheritance were used to identify
candidate causative variants. We defined de novo variants as

2ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/
3http://evs.gs.washington.edu/EVS/
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non-synonymous polymorphisms in which both parents are
homozygous for the reference allele and the proband contained
a heterozygous genotype. For homozygous recessive variants we
required both parents to be heterozygous for the variant and
the proband to be homozygous for the non-synonymous rare
allele. For compound heterozygous polymorphism, we required
the proband to contain at least two heterozygous non-synonymous
polymorphisms in the same gene and neither parent could contain
both variants. One variant could have a minor allele frequency in
the general population up to 5% (based on the 1000 genome and
exome sequence project); however, the other polymorphism had
to have a minor allele frequency below 1%.

RESULTS
We collected biological samples from the blood, saliva, and buc-
cal cells of a child and the two biological parents. By extracting
DNA from these nine samples and sequencing the exome, we used
Mendelian errors to identify those variants that were most likely
to be sequencing artifacts. In developing informatics filters for the
NGS exome data, we aimed to retain the largest number of total
variants while removing the largest possible number of Mendelian
errors in the child.

The vast majority of Mendelian errors in the unfiltered NGS
data is due to sequencing error rather than de novo mutations
based on the high fidelity of DNA replication in humans (Schmitt
et al., 2009; Korona et al., 2011) and provide a method of tracking
the effect of filters on sequencing artifacts. The initial analysis of
the VCF file from the DNA obtained from blood revealed 2519
Mendelian errors compared to 79,911 called variants (3.15%).
(These sequencing reads were mapped to 50 million bases, and for
more than 99% of these calls, each of the subjects were homozy-
gous for the reference base.) The mapped sequencing reads from
different DNA samples of the same trio showed similar sequenc-
ing quality parameters (Table 1), similar proportion of Mendelian
errors(3.05–3.15%), and total number of variants (79,234–79,911)
called. We systematically applied filters to the VCF files until
we identified the most efficient way to remove erroneous geno-
type calls while retaining the greatest number of true genotype
calls. The first filter was based on the read depth (DP-number
of sequencing reads that contain the variant) called within the

trio (Figure 1). The read depth histogram of all variants in the
proband using DNA isolated from blood shows a left-skewed dis-
tribution with two peaks located approximately at 5 reads and
at 80 reads (near the mean read depth for this sample). A his-
togram for the same sample for the Mendelian errors shows the
majority have a read depth below 12 reads and a sharp drop in the
number of Mendelian errors as the read depth increases. Based
on these results, we created filters with increasing stringency with
a goal of removing the largest portion of the Mendelian errors
while retaining the most variant calls. When applied to the unfil-
tered data a Read Depth < 10 removed 55% of the Mendelian
errors, while retaining 92% of the called variants. With a Read
Depth < 15 we were able to remove 59.2% of the Mendelian
errors while retaining 90% of the called variants. Increasing
the Read Depth filter above 15 had little effect on the number
of Mendelian Errors removed (Figure 1C). Similar results were
obtained with DNA isolated from buccal cells (61.6%) and saliva
(56.1%).

There were a number of variants called with a read
depth > 2000. It is possible that the sequences for these vari-
ants are the result of a PCR artifact during library construction
or corresponds to repetitive regions of the genome. We assessed
filters that excluded variants with Read-Depth > 800, >500, and
>300. After applying these filters, we removed 5, 8, and 12% of
Mendelian errors and 3, 6, and 15% of the total variants, respec-
tively. These data suggested that by filtering out variants with a
large relative mean number of reads we were not specifically fil-
tering out Mendelian errors, rather we were randomly removing
Mendelian errors by decreasing the number of variants. Thus, we
did not exclude variants with a relatively large read depth.

Our second filter was based on the genotype quality score (GQ)
of each of the variants called within the trio (Figure 2). The geno-
type quality score assesses the quality of sequencing information
at each of the bases and ranges from 0 to 99 (see also discussion).
A genotype quality score histogram for all variants found in the
child blood DNA showed a right-skewed distribution with nearly
all variants having GQ > 95. A similar histogram for the Mendelian
errors shows a bi-modal distribution with a large portion of the
data with a GQ < 20. Based on these results, we developed filters
using increasingly stringent criteria and determined the effects of

Table 1 | Sequencing quality parameters for all three individuals in blood, buccal, and saliva trio.

Sample Percentage of reads

with GQS > 30 (%)

Mean GQS Percentage of targeted

sequence covered (%)

Mean read depth

Blood – proband 84.19 33.46 97.07 167

Blood – father 83.58 33.25 96.46 146

Blood – mother 84.57 33.57 94.69 150

Buccal– proband 84.12 33.4 95.89 90

Buccal – father 84.82 33.63 96.73 155

Buccal – mother 85.04 33.71 97.35 136

Saliva – proband 83.38 33.17 95.95 106

Saliva – father 84.21 33.46 95.93 154

Saliva – mother 84.31 33.48 96.3 132

Frontiers in Genetics | Applied Genetic Epidemiology February 2014 | Volume 5 | Article 16 | 4

http://www.frontiersin.org/Applied_Genetic_Epidemiology/
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Patel et al. Filtering exome sequencing errors

FIGURE 1 | Depth of Coverage:The histograms depict the read depth by all
called variants (A) and for the Mendelian errors (B) in the child. Similar
histograms were obtained for the other samples regardless of the DNA
source. The arrows depict the coverage depth cutoff (Depth < 15 reads) used
to remove sequencing artifacts from the data. The bar graph depicts the

number of variants remaining after applying an increasingly stringent read
depth filter (C). The line graph (-•-) depicts the number of Mendelian errors
remaining after applying an increasingly stringent read depth filter (C). The
sequencing data of the DNA extracted from blood are shown and are
representative of the other two DNA sources.

those filters on the number of Mendelian errors and the number
of variants. The GQ < 20 filter removed 72.4% of the Mendelian
errors while retaining 94% of the variants. These data suggest that
the GQ filter is very selective and effective at removing Mendelian
errors (Figure 2). This filter removed 70.8% of the Mendelian
errors in the DNA isolated from buccal cells and 70.1% from saliva.

The third filter was based upon the expected alternate allele
ratio (alt ratio) for a particular genotype (Figure 3). Variants
are determined to be homozygous reference, heterozygous, or
homozygous non-reference based upon algorithms in the caller.
The alternate allele ratio is the proportion of the number of reads
with the alternate allele at a position relative to the total number
of reads at that same position. We use this metric to identify geno-
types that are unlikely to be accurate given the available allele read
depth. The histogram for variants with a heterozygous genotype
displayed a distribution centered on 0.5. Interestingly, the het-
erozygous genotypes generated a peak in the histogram near 0.2
and often a smaller peak near 0.8. One possible explanation for
these peaks is that the misalignment of two or more regions of the

genome that are nearly identical but unevenly sequenced generate
these ratios (Figure 3). As expected, the histogram for variants
with a homozygous genotype for the reference allele showed a
left-skewed distribution and the histogram for variants with a
homozygous genotype for the alternate allele had a right-skewed
distribution (Figure 3). Unlike the previous two filters, which used
the same criteria for all the variants, the alt ratio filter has different
selection criteria based upon the genotype of the sample for each
variant. For this particular filter, all homozygous reference vari-
ants with alt ratio >0.15 were removed, all homozygous alternate
variants with alt ratio <0.85 were removed, and all heterozy-
gous variants with alt ratio <0.3 or alt ratio >0.7 were removed.
With this filter, we were able to remove 61.8% of the Mendelian
errors while retaining 88% of the total variants. In buccal cell
DNA 57.7% of the Mendelian errors were removed and 61.5% in
saliva.

Our goal was to use multiple low stringency filters to selec-
tively remove Mendelian errors while maintaining as much data
as possible. Each of our filters based on the mean number of
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FIGURE 2 | Genotype Quality Score: The histograms depict the distribution
of genotype quality scores by all called variants (A) and by all the
Mendelian errors (B) in the child. The arrows depict the genotype quality
score cutoff (GQS < 20) used to remove sequencing artifacts from the
data. The bar graph depicts the number of variants remaining after applying

an increasingly stringent genotype quality score filter (C). The line graph (-•-)
depicts the number of Mendelian errors remaining after increasingly
stringent filters are applied (C). The sequencing data of the DNA extracted
from blood are shown and are representative of the other two DNA
sources.

reads, genotype quality score, or alternate allele ratio was able
to remove over half of the Mendelian errors in all of the DNA
sources tested (Total Mendelian Errors: 2430–2519) while retain-
ing a majority of the called variants (∼90%). We determined the
cut-off for each filter based on the variant and Mendelian Error
histograms for each parameter (Figures 1–3) and a cost-benefit
analysis setting the filter at the point at which increasing the fil-
ter stringency removed the same proportion of total variants as
Mendelian errors. To improve the filtering, we sequentially applied
these filters to our trio data (Figure 4). As mentioned previously,
we were able to exclude 61.8% of the Mendelian errors while
retaining 88% of the data by excluding variants with alternate
allele ratios differing by 0.2 or greater from the expected alternate
allele ratio (Figure 3). By adding a filter that also excluded variants
with GQ < 20, we were able to exclude 92.7% of the Mendelian
errors while retaining 85% of the original sequencing data in
the blood sample (Figure 5). By excluding variants with read
depth less than 15, we were able to further remove 50 Mendelian
Errors. Although this may not seem to be a large decrease in the
number of Mendelian Errors, these 50 Mendelian Errors comprise

approximately 30% of the Mendelian Errors remaining after the
Genotype Quality Score and the Alternate Allele Ratio filter are
applied. By combining the three filters, we were able to remove
95% of the Mendelian errors, while retaining nearly 80% of the
called variants. As shown in Figure 6, nearly 60% of the excluded
variants are removed by only one filter, supporting our strat-
egy of using multiple low-stringency filters to remove sequencing
artifacts.

The Mendelian Error rate in unfiltered data is 3.7%. Based
on the observation that the true error rate is three to four times
the Mendelian Error rate detected by SNPs (Gordon et al., 1999)
we estimate the actual error rate to be 9–10% in unfiltered NGS
data. This estimate is in agreement with concordance rates seen
when DNA from three different sources: blood, buccal-cells, and
saliva for the same sample were compared. We assessed the con-
cordance rates of non-filtered variants that were found in all
of the DNA sources and found ∼96% concordance for vari-
ants which were present in all three DNA sources (Table 2).
The concordance dropped to ∼84% if we also considered geno-
types which were non-reference in one DNA source, but not

Frontiers in Genetics | Applied Genetic Epidemiology February 2014 | Volume 5 | Article 16 | 6

http://www.frontiersin.org/Applied_Genetic_Epidemiology/
http://www.frontiersin.org/Applied_Genetic_Epidemiology/archive


Patel et al. Filtering exome sequencing errors

FIGURE 3 | Alternate Allele Ratio: The histograms depict the distribution
of Alternate Allele Ratio by all called variants with a heterozygous
genotype (A), by all the Mendelian errors with a heterozygous genotype
(B), by all the called variants with a homozygous reference genotype
(C), and by all the called variants with a homozygous alternate
genotype (D). The arrows depict the alternate allele ratios used to

remove sequencing artifacts for heterozygous genotype calls (Alt-Allele
Ratio > 0.7 or Alt-Allele Ratio < 0.3), homozygous reference genotype
calls (Alt-Allele Ratio > 0.15), and homozygous alternate genotype calls
(Alt-Allele Ratio < 0.85). The sequencing data of the DNA extracted
from blood are shown and are representative of the other two DNA
sources.

called in one of the other two as being discordant. These
unique genotypes were probably enriched for sequencing errors,
as the vast majority were removed after applying the three fil-
ters described above (Table 3). After applying the filters, we
were able to increase this concordance to greater than 99.999%
amongst the variants that were common between the DNA sources
(Table 2).

A trio study design is often used to identify candidate causative
rare variants. In order to identify those amino-acid changing
variants most likely to contribute functionally to a phenotype,
we performed analyses to identify de novo, recessive homozy-
gous (with less than 1% allele frequency in public sequencing
databases), and compound heterozygous mutations. Filtering the
sequencing data before this functional analysis reduced the appar-
ent de novo mutations from 321 to 1. Similarly, potentially causal
recessive homozygous variants were reduced from 32 to 3 and
potentially causal compound heterozygous variants were reduced
from 242 to 47. When these analyses were applied to each of the
three DNA sources, we further reduced the number of potential
causal variants to 0 apparent de novo, 3 rare homozygous, and 17

compound heterozygous variants which are identified in all three
samples from different DNA sources (Table 4).

We developed CASSI to meet the need to store, version, filter,
and annotate NGS data. CASSI is an application that seamlessly
integrates file storage, metadata storage (e.g., family structure),
and downstream processing with a web-based front-end that con-
tains a user-friendly query interface (Figure 7). The web interface
of CASSI enables biologists and clinicians without any computer
science background to launch sophisticated analytical workflows
to analyze next-generation sequencing data in an automated pro-
cedure. For example, the interface allows users to directly interface
with annotation and filtering packages (such as vcftools, variant
tools, and ANNOVAR), which are executed on a high-performance
cluster at CCHMC.

The key technical component in CASSI is the LONI pipeline
engine from UCLA, which is a graphical user interface for execut-
ing complex workflows on a cluster that can be launched directly
from a web browser. Query results obtained through the CASSI
web interface are made available as a data source in the LONI
pipeline, and users can choose from a large number of filtering and
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FIGURE 4 | Filter Schema:The bioinformatics filters are sequentially
applied. Variants that fail a filter are excluded and the next filter in the
sequence is applied to the variants that pass a filter. To be excluded a
variant has to fail only one filter. The order of filter is not important.

annotation workflows to analyze variant data. CASSI allows the
user to efficiently compare various filtering strategies; for exam-
ple, it can easily record the number of variants and Mendelian
errors remaining after individual filters are implemented. Most
importantly, CASSI can be used to assess concordance between
samples and to identify de novo, rare recessive, and compound
heterozygous variants. The flexibility of the pipeline facilitates
the implementation of new analytical strategies directly from
the interface. Other groups have independently developed a
genomic pipeline using LONI, supporting the utility of this
resource for sequencing data (Dinov et al., 2011; Torri et al., 2012;
Figure 6).

DISCUSSION
Next-generation sequencing provides investigators with the abil-
ity to quickly and economically generate human sequencing data
including the presence of SNPs and insertions/deletions (O’Rawe
et al., 2013). This ability to generate large volumes of data also
presents the challenge of determining which variants to validate

FIGURE 5 | Effect of applying multiple filters:The bar-graph depicts the
number of variants remaining after the application of filters on the data. The
line-graph depicts the number of Mendelian Errors remaining after the
application of additional filters (Top Panel). The sequencing data of the DNA
extracted from blood is shown.

FIGURE 6 | Impact of Filters upon Data Quality:The Venn diagram shows
the number of variants excluded by each of the filters. The numbers
represent a mean ± range/2 from all three DNA sources.

and study biologically (Nielsen et al., 2011). As reviewed in
Nekrutenko and Taylor, there is no generally accepted method
for filtering variants in clinical studies (Nekrutenko and Taylor,
2012). The usual approach for shortening the list of top variants
relies on filtering on two parameters, read-depth, and PHRED
quality score (Girard et al., 2011; Xu et al., 2011; O’Roak et al.,
2012a; Sanders et al., 2012). Although these particular methods
successfully remove many of the variants, due to the stringency
of filters, they are also excluding real variants present within the
sequencing data. By using a combination of three filters based
on the intrinsic characteristics of NGS, we removed a large pro-
portion of the Mendelian errors, while retaining the highest
portion reasonable of variants called. We estimate that these filters
removed 90% of the sequencing artifacts at a cost of 20% of the
data.
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Table 2 | Concordance analysis of DNA from three individuals was collected from three biological sources and sequenced.

DNA source Sample Concordance rate

no filter applied (%)

Concordance rate all filters

applied, not including

variants that are unique to

a single DNA source (%)

Concordance rate all filters

applied, including variants

that are unique to a single

DNA source (%)

Blood vs. buccal Individual 1 96.23 99.99 84.06

Individual 2 96.61 99.99 84.71

Individual 3 96.62 99.98 84.48

Blood vs. saliva Individual 1 96.30 99.99 84.22

Individual 2 96.53 99.99 84.42

Individual 3 96.50 99.99 83.79

Buccal vs. saliva Individual 1 96.27 99.99 84.14

Individual 2 96.86 99.98 85.05

Individual 3 96.73 99.99 84.22

Using variants that were common amongst all of the DNA sources, we assessed the genotype concordance.We observed a significant improvement in the concordance
after applying the three bioinformatics filters.

One limitation of using Mendelian errors to identify sequencing
artifacts is that they under represent the true sequencing error
rate as they have low power to detect errors in bi-allelic poly-
morphisms. In cases where both parents are heterozygous for a
polymorphism the child could have any one of the potential geno-
types and it would follow Mendelian inheritance. In genotyping
experiments it has been estimated that Mendelian errors only pre-
dict one-third to one-fourth the number of actual errors (Gordon
et al., 1999). Furthermore, the identification of Mendelian errors
does not indicate which sample’s genotype is erroneous. Even
with the limitations, Mendelian errors provide a useful method
to determine the quality of the data.

The number of variants with a particular depth of cover-
age demonstrated a clear peak around 120 (Figure 1), which
was close to the target coverage depth of 100 reads. On the
other hand, the histogram for the depth of coverage amongst
Mendelian errors (Figure 1) confirmed that the majority of
Mendelian errors had a low depth of coverage. This low depth

of coverage for the Mendelian errors indicated that many of
them may be occurring due to selective sequencing of one chro-
mosome rather than equal sequencing of both chromosomes.
This would be particularly relevant for heterozygous SNPs. If
only one of the chromosomes was sequenced, the individual
would be called either a homozygous reference or homozy-
gous alternate at a particular variant. As the number of reads
increases, the probability of sequencing the same chromosome
for each read decreases exponentially. By sheer chance at a read
depth of 10 with 50-million total reads, there will be 50,000
instances of only one chromosome being read. If the read-depth
is increased to 15 reads, this number decreases to approximately
1,500 instances. Based on the difference in the distribution of
Mendelian errors and total variants for depth of coverage, a
filter which excludes variants with low depth of coverage (15
reads or <20% of average reads) removed a small portion of the
total variants while removing a large portion of Mendelian errors
(Figure 2).

Table 3 | DNA from the proband (child) was collected from three biological sources and sequenced.

DNA source Unique compared to

blood

Unique compared to

buccal

Unique compared to

saliva

Unique compared to the

other two sources

Blood Unfiltered 2636 1997 1095

Filtered 10 4 2

Buccal Unfiltered 1267 1437 535

Filtered 0 2 0

Saliva Unfiltered 1268 1438 669

Filtered 1 0 0

The data set from each DNA source had unique variants that were not found in one or both of the other sources. After three bioinformatics filters were applied to the
genotyping data, the number of unique genotypes was considerably reduced. The number of variants in one DNA source that are unique compared to another DNA
source (e.g., blood compared to buccal) is different than the inverse comparison (e.g., buccal compared to blood).
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Table 4 | Candidate causative sequence variants were identified in unfiltered and filtered data from the same trio that was sequenced three

times using different DNA sources.

DNA source De novo variants Recessive homozygous variants Compound heterozygous

Called Unique to a

single DNA

source

Common to all

DNA sources

Called Unique to a

single DNA

source

Common to all

DNA Sources

Called Unique to a

single DNA

source

Common to all

DNA sources

Unfiltered

Blood 321 228 12 32 3 23 242 47 153

Buccal 306 219 12 36 12 23 285 79 153

Saliva 304 230 12 28 4 23 284 80 153

Filtered

Blood 1 0 0 3 0 3 47 21 17

Buccal 0 0 0 3 0 3 39 11 17

Saliva 1 0 0 3 0 3 45 16 17

Only novel or rare amino acid altering variants were considered. The numbers of unique variants (not found in any other DNA source) are indicated. Common variants
were found in all three DNA sources. Variants found in two of the DNA sources, but not in the third are not included in this table. Filters applied to the variants included
read depth >15, genotype quality score >20 and alternate allele ratio less than 0.15 for all homozygous reference, greater than 0.85 for homozygous alternate allele
and between 0.3 and 0.7 for heterozygous genotypes.

FIGURE 7 | Graphical Representation of the Cincinnati Analytical Suite

for Sequencing Informatics. Files with VCF and FAM are uploaded to
CASSI’s web interface. These data are parsed and stored in web accessible
data storage. The LONI based analysis allows users to analyze data through

the established pipeline for identifying de novo, rare recessive and compound
heterozygous variants. These pipe lines can also be changed to accommodate
specific analyses. After variants are annotated using many databases, the
results are versioned, saved in the database, and available for downloading.
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The GQ is computed based on the likelihood of a particular
genotype being called in comparison to the likelihood of the other
two genotypes being called: L(0/1) versus L(0,0) and L(1,1). Our
data based on the GQ demonstrated that the majority of variants
have high GQ, whereas the Mendelian errors have a much lower
score (Figure 2). The difference in the GQ represents the likeli-
hood in the variant calls. For many of the Mendelian errors, the
low GQ suggests a low confidence in those calls, which may be
due to inconsistent individual sequencing reads at that particular
location due to low coverage depth, difficult alignment, or poor
sequencing reads. This is expected for sequencing artifacts, since
it is unlikely that a sequencing artifact will consistently produce
the same sequencing read at a particular location. On the other
hand, a true Mendelian Error such as a de novo mutation would
produce a consistent sequencing read since it is a true difference in
the sequence. We exploited the differences in the genotype quality
scores by generating a filter that excludes variants with a genotype
quality score less than 20. This allowed us to exclude the Mendelian
errors present on the left peak of the histogram without excluding
a large portion of the called variants, which are located within the
peak on the right side of the GQ histogram (Figure 2).

We added an additional filter based on the alternate allele ratio
(alt ratio; DePristo et al., 2011; Girard et al., 2011; Xu et al., 2011;
O’Roak et al., 2012a; Riviere et al., 2012; Sanders et al., 2012). Due
to the high depth of coverage for most variants, we expected our
variants to have alternate allele ratios close to the theoretical values:
0, 0.5, and 1 representing homozygous reference, heterozygous,
and homozygous alternate, respectively. In effect, this filter assesses
the consistency of the variant call based on all the sequencing reads.
The majority of the variants that the alt ratio filter removes were
heterozygous Mendelian errors which were enriched in the peak at
0.2 (p-value < 10−50; Figure 3) suggesting that homozygous ref-
erence and homozygous alternate variant calls were more reliable
than heterozygous variant calls.

We combined these three individual filters and observed the
increased efficiency of the combined filters in removing the
sequencing artifacts. As is evident from the bar graph represent-
ing the total number of variants (Figure 5), and the line graph
representing the number of Mendelian errors called, there was a
93% decrease, in the number of Mendelian errors by the addition
of the GQ filter to the Alt Ratio without a large reduction in the
number of variants removed (14.9%). This trend continued as we
added the depth of read filter to the other filters. By excluding
variants that fail the depth of read filter, the Genotype Quality
Score Filter, or the Alt Ratio filter, we were able to exclude over
95% of the Mendelian errors. In our test trio, this lowered the
number of Mendelian errors called to approximately 130 variants.
We attributed the drastic decrease in the number of Mendelian
errors to the low likelihood of a sequencing artifact passing all
the filters. Approximately 80% of the variants passed all three
filters.

After identifying a combination of filters that removed the vast
majority of the Mendelian errors, while retaining a large por-
tion of the variants called, we assessed the concordance between
identical samples isolated from different DNA sources. The unfil-
tered sequencing data-set of samples from blood, buccal cells,
and saliva had a concordance of ∼84% (including unique calls

as discordant). After applying our filters the concordance rate
increased to >99.9% between all three samples from the three
different DNA sources. It is necessary for the filtering method to
generate concordant data, since clinical DNA samples can be col-
lected from any one of various different sources including blood,
saliva, and buccal cells.

Next-generation sequencing experiments are often used to find
rare or novel variants that lead to disease. Unfortunately, sequenc-
ing artifacts can often mimic and confound the identification of
these variants. Sequencing artifacts contribute to a large num-
ber of false positive disease-causing candidates. The vast majority
of apparent de novo variants identified in the unfiltered data are
sequencing artifacts (Table 2). However in previous experiments,
after filtering the data on read depth, genotype quality score and alt
ratio our confirmation rate by Sanger sequencing is greater than
95% for de novo variants.

Cincinnati Analytical Suite for Sequencing Informatics is a suite
that allows users with varying degrees of programming sophistica-
tion to perform documented, reproducible studies with NGS data
to gain insight into the etiology of disease. In the case of the current
study, CASSI allowed us to quickly and reproducibly assess differ-
ent filtering strategies through the calculation of Mendelian errors
and total variants remaining after specific filters were applied. With
the incorporation of a LONI pipeline we have created a fully auto-
mated system that can filter, annotate and apply various genetic
models to identify candidate causative variants. The LONI pipeline
provides investigators the ability to apply predefined values for fil-
tering or customize the pipeline to fit the type and quality of the
data being analyzed.

The filters and methods presented reproducibly generate robust
and accurate data sets with low levels of sequencing artifacts. Both
the genotype quality score and alt allele ratio filters can be applied
to data sets regardless of read depth. In data sets with >75× aver-
age read depth we recommend using a hard filter of 15× for read
depth. In data sets with less than 75× coverage we suggest using a
filter of 20% of the average read depth. While these data sets will
contain higher amounts of false variant calls, a hard filter would
remove too many true variants from the data set. These filters also
have the potential to have bias towards removing variants caused
by mosaicism. The alt allele ratio would be particularly sensitive
to variants if the cell population with different genotypes is not
close to 50%.

As the NGS technology progresses further and the per-base
sequencing cost decrease, researchers will be able to generate NGS
data-sets with increased depth of coverage and longer read lengths.
Both of these improvements will yield better calling of variants.
Additionally, the longer read lengths will allow researchers to more
accurately predict insertions and deletions. A recent review further
identifies ways to improve the fidelity of NGS data, including the
use of filtering strategies such as the one presented herein (Robasky
et al., 2014).

In summary, our three filters of NGS data selectively exclude the
sequencing artifacts, measured as Mendelian errors, while limiting
the removal of the true variation amongst the samples. In addi-
tion, we show that DNA isolated from different sources (blood,
buccal cells, and saliva) have greater than 99.9% concordance
and thus mixed DNA sources can be used for causative variant
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identification. Our work flow is based on obtaining the most accu-
rate data set possible and results in an extremely small number of
candidate causative variants for consideration and interpretation
(usually fewer than 10 genes per trio). These methods have been
automated through CASSI and greatly increase the ability of inves-
tigators and clinicians to understand and discover genetic causes
of disease by quickly identifying potential causative variations.
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