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The shape of memory in temporal networks
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How to best define, detect and characterize network memory, i.e. the dependence of a
network’s structure on its past, is currently a matter of debate. Here we show that the
memory of a temporal network is inherently multidimensional, and we introduce a mathe-
matical framework for defining and efficiently estimating the microscopic shape of memory,
which characterises how the activity of each link intertwines with the activities of all other
links. We validate our methodology on a range of synthetic models, and we then study the
memory shape of real-world temporal networks spanning social, technological and biological
systems, finding that these networks display heterogeneous memory shapes. In particular,
online and offline social networks are markedly different, with the latter showing richer
memory and memory scales. Our theory also elucidates the phenomenon of emergent virtual
loops and provides a novel methodology for exploring the dynamically rich structure
of complex systems.
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emporal networks!~* are widely used models for describing

the architecture of complex systems®>~14. A temporal network

is a network whose structure changes over time. From a
mathematical viewpoint, a temporal network G with N nodes can be
formalised as a set of L discrete-time stochastic processes
G ={&4°71% L where L < N(N—1)/2 is the number of dif-
ferent pairs of nodes that can be connected by links over time. Each
& = {Ef}=y,,. Is the stochastic process governing the dynamics
of link «, with the random variable E{ taking the value e} =1 if
link « is present at time ¢, and 0 otherwise. One salient and well-
studied property of a system that evolves in time is that of memory,
i.e. the extent to which the evolution of the system is dependent on
its history. An approach based on information theory to define and
estimate memory in the case of time series can be found in Section I
of the SI. In the context of temporal networks, note that, in general,
the stochastic processes £ might not only be dependent on their
individual histories, but they can also depend on each other. Indeed,
the properties of a temporal network not only depend on the pat-
terns of activities of each of its links, but also on the ways in which
these activities influence each other across the network. This
observation gives rise to the notion of network memory, that is, the
dependence of a temporal network’s structure on its past. Recent
works have shown that network memory—whatever this is—play a
prominent role in diffusion!>18, epidemics!®->* and other
processes?>2® occurring over the temporal network, and even alters
the network’s community structure?”-28,

While recent works have proposed estimating the length of
memory in a temporal network by using higher order Markov
models!82%30, the problem of how to define network memory is
highly nontrivial and still a matter of intense debate. Note for
instance that, since the set of every possible graph with N nodes is
finite, it is in principle possible to enumerate all the configura-
tions of a temporal network, build an alphabet accordingly, and
transform the temporal network G into a time series of symbols
from this alphabet. Making use of concepts from information
theory, and by direct analogy to the definition of memory Q(7")
for a scalar time series 7 (see SI Section IB), it is then possible to
straightforwardly define the scalar memory Q(G) of G as the order
p of the lowest order Markov chain that is able to reproduce the
statistics of the sequence of symbols generated by G (see SI Sec-
tion ITA for details). Intuitively, this approach incorporates the
interdependence among the links of the network all at once.
Theoretically, this “symbolisation” process could also be trun-
cated by only including pairs of links, or triplets of links, etc in
our alphabet (for instance, truncating to pairs of links would
mean building an alphabet of four symbols that describe all
possible four combinations of two links being present or absent at
a given time). In this way, we see that (G) would provide the
asymptotic limit of a spectrum of memories associated to finite
truncations of order m, where for any finite truncation Q,,(G)
would be the resulting memory associated to the time series of
groups of m links (see SI Section IID for an in-depth analysis of
the case m =2). All in all this approach, without further con-
straints and limitations on the set of possible graphs, can only
work for very small numbers of nodes N and small m, as the size
of the alphabet grows extremely rapidly (~ 2:N"~N)) and very
long time series would be required for an accurate estimate.

There is, however, a more fundamental problem with this
approach. Not only is the scalar memory Q(G) (or any Q,,(G))
hard to estimate, but it also fails to capture fundamental micro-
scopic memory differences between temporal networks. Indeed,
as we will show below, each temporal network is characterised by
a precise pattern of memories at a microscopic scale, that we
name the shape of the memory. This shape is lost when using a
scalar projection like Q(G), and different memory shapes with the

same ((G) can yield different impacts on a dynamical process
running on top of the network. Moreover, links can hetero-
geneously influence the activity of other links, and the entangled
temporal dependencies among these can even bring about some
virtual memory resonances in the activity of each link which, as
we will show, cannot be detected by measures like (G) (or any
Q,,(G)), yet have real and measurable physical effects on network
processes such as diffusion or spreading. Overall, memory has
indeed a heterogeneous, multidimensional fingerprint which is
not reducible to a scalar quantity.

Recently proposed alternatives to QA(G) have already focused on
the microscopic effects of memory, modelling the pathways of
varying length present in a temporal network by means of higher
order graphs!41829-31 However, the definitions of memory
proposed therein are associated with events in the network, rather
than with the physical timescales over which the network evolves.
In addition to this, such definitions only consider pairs of tem-
poral links having one node in common, and are therefore more
suited to capture correlations in the dynamics of links due to
flows over the temporal network.

Results
The co-memory matrix. In order to fully characterise the shape
of the memory of a temporal network, we propose to define the

memory co-order Q(EYIEP) of a pair of links a and f§ as the
earliest time in the history of the stochastic process governing the

value of e/: which has influence on the current evolution of the
process governing e

Q(E(1EF) = min[p :P(e¥|{eF)

’ (1)

G [CI

(see SI section IIB for details). Notice that for « =3 we have
QEY|EP) = Q(EY|1EY) = Q(E®). The evaluation of the whole
Lx L co-memory matrix M, whose elements Mg = QEY|EP)

are equal to the memory co-order of the pair of links « and f,
allows us then to describe, at a microscopic level, the type of
memory of a temporal network. The memory co-orders identify
the lowest order Markov chains with the same information
content as the edge time series being modelled, and indeed we
show that for any temporal network the memory shape maintains
a key feature of the scalar memory Q(G): it has the same infor-
mation theoretic grounding (see SI sections I and II). Moreover, it
represents an improvement over the state-of-the-art approaches
based on pathways, which consider only pairs of links having one
node in common and can only model the propagation of a
message or the flow of some quantity over the temporal
network!82%, Our framework aims to capture how the activity of
a link « is influenced by the activity of another link 8, no matter if
the two links have a node in common or not. This can be very
important in real systems, as two links « and 8 of a network can
be active at the same time or their temporal activity correlated,
even if they do not have a node in common (for instance, the
activity of a given link could be causally related to the activity of
another, apparently distant link, and such dependence could be
mediated by a latent, non-observable link). Thus our formalism is
more general than previous ones and include them as sub-
products. For a detailed account on the specific implementation
of this approach as well as its scaling behaviour with network size,
see SI sections II and IV.

For illustration purposes, Fig. la, b displays the co-memory
matrices M, estimated in the case of a synthetic (fully connected)
temporal network with N =10 nodes and L =45 links with two
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Fig. 1 Shape of memory and emergence of virtual loops in temporal networks with correlated link dynamics. A temporal fully connected network G with
N =10 nodes and L = 45 links whose dynamics are both autocorrelated and heterogeneously cross-correlated, generated from an eCDARN(p) model with
parameters g=0.9, y=0.5, c= 0.7 and a set of memory lengths p randomly sampled with uniform (panel (a)) or a bimodal (panel (b)) probability from
{0,1, ..., 63 (see Sl section IVA for details). a The 45 x 45 entries of the co-memory matrix IM (shown with a colour code) display the shape of the network
memory at the microscopic scale of pairs of links. In this specific case the eCDARN(p) model is chosen such that the causal structure of link dependencies
is restricted in a Bayesian ring topology of L = 45 nodes, so that when link @ samples its activity from the past history of other links, it randomly samples
from a £1. The scalar memory of the network is Q(G) = 6. Pairs of neighbouring or close links in the Bayesian ring exhibit high memory co-order, often
above Q(G), due to the onset of virtual loops (see the text), whereas distant links are seldom cross-correlated and thus display low co-order memory.

b Similar to (a), but where the link's causal structure is given by a different Bayesian graph (see Sl section IVA for full details). A notably different memory

shape emerges, however the scalar memory of the network is still Q(G) = 6. ¢ Distribution of memory co-orders in both examples, showing different
heterogeneous profiles which in both cases are not well characterised by Q(G).

different types of correlated dynamics. To estimate the values of
mep here (and throughout this work) we have used a modified
version of the Efficient Determination Criterion (EDC)32:33 as
this performs well as an estimator, is strongly consistent, and
allows for optimised implementations (other approaches are of
course possible, for details on our choice of estimators, see SI
sections IC and IIC).

By construction, both models have the same scalar memory
Q(G) = 6. However, they show very peculiar and distinct
memory shapes (panels (a) and (b)), induced by both the specific
inter-link dependencies that we have used and the pre-specified
set of memory length parameters. This is further highlighted in
the heterogeneous distribution of memory co-orders reported in
panel (c) of the same figure, where it is clear that memory cannot

indeed be characterised by the value of the scalar memory
Q(G) alone.

Emergence of virtual loops. Observe in Fig. 1 that we unex-
pectedly find some very long-memory contributions (indeed,
above order 6). These are memory orders which have not been
specifically pre-defined in the generative models we have used,
and are a manifestation of what we name virtual loops (VLs). As
we will show (full details can be found in SI Sections III and IV),
VLs emerge e.g. when link a depends on the past of link 8, and
link $ in turn depends on the past of link «, inducing a long-
memory loop in the activities of each link, when they are con-
sidered separately. While being virtual in the sense that they are
not pre-specified by the model nor captured by Q(G) or any
Q,,(G), they do indeed play an important and measurable role in
the dynamics of a temporal network and affect processes occur-
ring on it. Mathematically, these virtual loops emerge when the
Bayesian network describing the causal dependencies of link
activities—the network which explicitly states which links influ-
ence which other links—is a cyclic graph, and are indeed remi-
niscent of other forms of causal loops appearing in other physical
systems (see SI section IIIB and C for a discussion).

To better illustrate the onset and role of VLs, Fig. 2(a) and (b)
show an example of a toy model of a temporal network with only

three nodes and two links. The model allows us to tune the shape
of the memory, while the scalar memory (G) of the network is
kept fixed. The adopted causal dependencies between the two
links (each link can copy from the past of the other link) induce
virtual loops. These govern the two diagonal terms of the co-
order matrix M and have measurable and important effects on
dynamical processes—e.g., the spread of an epidemic—taking
place over the network. Figure 2¢, d shows that the time taken for
an infection to spread over the entire network can indeed be very
different in networks with the same value of Q(G), but with
different memory shapes. Additional analysis of toy models with
emergent VLs are described in SI section IIIA.

Furthermore, it is easy to prove (see Theorem 1 in SI
Section II-A and B) that () < max, g{mz} := Qc(G), that is,
the scalar memory is bounded from above by the maximum co-
order over all link pairs, which we term the effective memory of
the network. Figure 2(d) shows that Q(G) accounts for the
virtual loops in the toy network model and thus captures the
measurable differences in the spreading times. Of course, Q 4(G)
is still not able to account for the rich memory heterogeneity of a
temporal network (see panel (c) of Fig. 1), but is (i) better
conceptually defined than Q(G) as it captures the effect of virtual
loops, and (ii) can be computed efficiently from M. These results
also illustrate that the microscopic memory structure—the
memory shape—has an important impact on the outcome of
epidemic processes running on top of the temporal network. We
expect a similar effect in other epidemic models and in other
models of diffusion and also in nonlinear models such as
synchronisation.

High-order VLs and loop decoherence. The causal relationship
between the links activities can be described by a so-called
Bayesian graph, where the nodes represent the links of the tem-
poral network, and two nodes are connected by a directed edge of
there’s a causal relation between the two links in the temporal
network. When such Bayesian graph is cyclic, then virtual loops
are expected to emerge; however, this is a sufficient but not
necessary condition. Indeed, when links dynamics are also
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Fig. 2 Virtual loops and their effects on spreading processes in temporal networks. a A sketch of five steps of the temporal evolution of a network with
three nodes and two links evolving according to the displayed equation (for details see SI section IlIA). If Qf = 0 then link Z at time t is generated randomly.
Conversely, if Qf = 1link £ copies a state from the past, namely link 1 copies the value of link 2 at time t — 2, while link 2 copies the value of link 1 at time t — 3.
b Bayesian graph of the causal dependencies between the two links. Link 1 copies from the past of link 2 (p;), whereas link 2 copies from the past of link 1 (p,),
thereby inducing first-order virtual loops in the memory of links 1and 2, which virtually copy from their own past, p; + p» steps back. The co-memory matrix IM
whose entries are the co-memory order of each pair of links is also shown. The scalar memory of the process is Q(G) = max{p;, p,} (for a rigorous proof, see SI
section IlIA), whereas the effective memory Q.4(G), obtained as the largest entry of the co-memory matrix, is p; + p,, which differs from Q(G) due to the
existence of the virtual loops. € A SI (Susceptible-Infectious) epidemic spreading is defined over the temporal network. Each node can either be in the infected
(red) or susceptible (green) state. If at time t there is a link Ef = 1 between an infected node and a susceptible one, then the infection will be passed with some
probability (if random variable A;=1) and the susceptible node will become infected (see Sl section IlIE for details). d Analytical and numerical results for the
average time taken for every susceptible to become infected, as a function of the difference between the scalar memory Q(G) and the effective memory Q.4(G)
(this latter being extracted from IM). For each curve, the value of Q(G) is fixed to a constant value p;, while the value of Q.4(G) = p; + p, is varied by changing
p2 < pi. We find that the spreading times depend on the value of the effective memory Q.4(G), which is then a better descriptor of the effects of memory than
Q(G), this latter quantity being unable to detect any of these effects. Numerical results are obtained as averages over 107 realisations of the network, and are in
perfect agreement with the analytical prediction (see Sl section IlIF for the full analysis).

autocorrelated (besides link dependencies, links have also an practice, and only in certain conditions where the link dependencies
internal dynamics with memory) then VLs can emerge even for are stable over long periods of time. In real-world networks such
acyclic Bayesian graphs. This is due to the fact that the interplay  conditions might not be always satisfied and the effect of VLs might
between the auto- and cross-correlated dynamics can also induce  be reduced, a phenomenon we label virtual loop decoherence. In SI
(virtual) links in the Bayesian graph, which make a priori acyclic ~ section III we introduce another toy model, similar to the one
Bayesian graphs effectively cyclic (see SI section IIIB for details on  presented in Fig. 2, but where virtual loops are shown to dissipate

the existence conditions of VLs). (see SI section IIID for the in-depth analysis of virtual loop
At the same time, VLs can be categorised in different orders. It is  decoherence in the toy model).
easy to see that virtual loops emerging in the toy model discussed in As a summary, the memory of a temporal network, including

Fig. 2 are of “order 17, since the Bayesian graph in panel (b) only VL effects, can be fully described by the co-memory matrix M. If
consists of two vertices, i.e. there is only a pair of links causally one wants to extract a single scalar, the correct quantity to
connected in the actual temporal network. By construction, these estimate is Q.(G) (which derives from M and takes into account
VLs cannot be detected by Q(G) or any Q,,(9). VLs) and not Q(G), except for those cases where virtual loops are
Now, it is then possible to construct “higher order” virtual loops absent or they are decoherent. In such cases ((G) indeed
simply by adding longer causal cycles in the Bayesian graph approaches Q.4(G) (see SI section IV for a thorough exposition of
associated to a given temporal network model (see SI Fig S2 for virtual loop decoherence).
examples). In theory, higher order loops induce contributions to the
co-memory matrix of increasingly longer memory, yielding a
potentially unbounded effective memory (a memory blow up). In  Validation in synthetic networks. We have tested the accuracy of
practice, virtual loops with high order memory are difficult to  our memory shape estimator in four generative temporal network
observe due to extremely long series being required to capture such  models, each of varying complexity and with differing memory
effects. This is not only an issue of estimation, but has practical ~ shapes. While we lack analytical expressions for the memory shape,
consequences as well: any dynamical process (e.g, an epidemic in all these models we were able to obtain Q(G) analytically (i.e. a
process) running on top of such a network might in practice not ‘ground truth’), so our computational estimation can also examine
sense very high order VLs as the timescale in which the dynamical the measurable effect of virtual loops, as evidenced when
process takes place can be much smaller than the timescale over Q) (G) > Q(G). (i) First, we consider the so-called DARN(p) and
which high order VLs manifest. On the other hand, these VLs are  eDARN(p;) models?3, where all links have independent yet auto-
stable when the underpinning temporal dependencies are fine correlated dynamics. By design these temporal network models are
tuned, and quickly dissipate otherwise. Altogether, these arguments  free from virtual loops, thus we expect Q.4(G) ~ Q(G). (i) In a
suggest that only short virtual loops will typically be observed in  second step we introduce the CDARN(p) and eCDARN(p)
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Fig. 3 Hit rates to scalar memory Q(G) for synthetic models. In each case we compute the percentage of the times within an ensemble of 103 realisations
that the estimated effective memory Q.(G) and estimated pair memory Q,,;.(G) exactly match the scalar memory Q(G) (the memory parameter p is
randomly sampled from UNIFORM{1,...,10} for each realisation). Models depend on parameters g, y and (where applicable) c (see Sl section IV for details),
so each curve scans hit rates for the whole range of a given parameter and fix the values of the other parameters to g=10.9,y = 0.1, c= 0.1 (in every case,
time series size is T=109). In DARN(p) and eDARN(p) models (panels a and b) where virtual loops are by construction absent, Q.(G) = Q,;,(G) and
their estimation typically coincide with Q(G) for a large range of model parameters, as expected. In CDARN(p) and eCDARN(p) models (panels ¢ and d),
(probabilistic) virtual loops are expected to kick in, inducing a mismatch between Q.4(G) and Q(G) (the mismatch is notably smaller for Q_,;(G) as this

pair

quantity disregards diagonal entries of the co-memory matrix and thus cannot account for first-order virtual loops).

models34, where link dynamics are not only autocorrelated but also
cross-correlated, since in these models links can sample their next
state from either their own history or from the history of other
chosen links. Virtual loops are expected to emerge in these cases,
inducing Q.4(G) >Q(G) (see Fig. 1 for an illustration of the
eCDARN(p) model and SI Section IV-A for full details of all four
models, precise theorem statements and analytical derivations of the
scalar memory).

In every case we generate 103 realisations of each temporal
network model, where each networks topology consist of a fully
connected backbone of N=10 nodes and L =45 links, with
randomly chosen ground truth scalar memory and a range of
different parameter configurations). We then count the hit rate
(percentage of correct predictions) between the estimated Q,(G)
and the analytical value of ((G). For completeness, we also
computed the memory associated to the time series of pairs of
links, ie. Q,(G) with m =2, which we rename Qpair(g) (SI
Section IID for theoretical details on €,,;(G)). Results are

reported in Fig. 3 (see also SI Section IVA and IVB for full
details). For long enough temporal series the hit rate is
consistently 100% in models which are free from virtual loops,
suggesting that not only is our estimator accurate, but that in
these cases Q.(G) = Q(G). In those models where virtual loops
emerge, the hit rate decays as expected. Interestingly, in a variety
of cases a high hit rate is still maintained despite the presence of
virtual loops of high order: we are witnessing virtual loop
decoherence at play.

Moreover, another interesting phenomenon happens in some
of these models when the size of the networks grows: all virtual
loops are eventually dissipated. This result is rigorous for the

specific case of the CDARN(p) model (see Theorem 6 in SI
Section IVD). In other words, making the temporal networks
large has the effect of destroying the virtual loops. We therefore
conjecture that in real-world temporal networks, which are
typically large, we should expect that the effective and scalar
memory should be similar, and that the former, which is
computed from the co-memory matrix, is a good estimate of the
overall memory, while finer internal structure will be provided by
the shape of M.

Analysis of real-world temporal networks. We have finally
studied the shape of memory in a large set of real-world social,
technological and biological temporal networks, including (i)
online email (EM) between the employees at a construction
company®®> and SMS (text messages) communication (CM)
between college students3®), (ii) (offline) social contacts at a US
university from the Reality Mining experiment (RM)37, (iii)
transportation systems (bus, train, and underground in different
European cities?®), (iv) proximity networks extracted from foot-
ball matches (https://github.com/metrica-sports/sample-data),
and (v) human brain functional cortical networks (HB) extracted
from EEG recordings in subjects performing a motor task?>. See
SI Section VA for details on datasets. A summary of the results
for a subset of networks is shown in Fig. 4 (see SI Sections VB,
VC, VD, VE for an in-depth analysis). Note that only the 102
most active links for each network, i.e. those with largest value of
>_.E?, have been considered when constructing the co-memory
matrix M. The coloured heat maps in the top row of Fig. 4
indicate that memory shapes vary across networks. Overall, we
found that memory is notably longer in offline networks than in
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Fig. 4 The shape of memory of real-world temporal networks. For each temporal network, we estimate the shape of the memory M restricted to the 100
most frequently active links, and plot the respective heat maps (lighter colour means higher memory). From these we extract the distribution of memory
co-orders (co-order histograms for the full set of networks studied, and the characterisation of their heterogeneities can be found in SI V-B,C). The
effective network memory Q4(9) is also highlighted by hollow circles, and the actual values are reported below the plots. Networks have been sampled at
two different temporal resolutions At, namely every 1and 10 min, or two different frequencies (gamma and theta bands) in the case of HB (heat maps only
show the At =1 min resolution and gamma band). In the two online social networks (EM and CM) the distributions of memory co-orders concentrate
around zero and decay rapidly, indicating very short memory overall, except for a few pairs of links. In the offline university social network (RM) we find
instead two clear peaks corresponding to the presence of memory at two timescales of about 5 and 40-50 min (corresponding to interactions during
lecture room changes and during the lectures) respectively. Two peaks are also observed in the three engineered networks. However, both peaks are
compatible with a timescale of 5-7 min in PT and PU, suggesting that such systems exhibit only one effective timescale, due to enforced planning and
scheduling. The bus network (PB) in addition to the 5-7 min also shows a memory timescale of about 30 min, possibly due to external phenomena such as
collective delays induced by traffic jams. In the human brain (HB), a peak emerges at memory order 1, and for the theta band only. The distribution of points

in the ((Q);,, (o) Plane (shape projection, see the text for details) allows us to distinguish networks and classify links as influencers (above the
diagonal) and followers (below diagonal) and to spot outliers (see SI V-D for statistics relating to the distribution of these points in the plane).

online ones. This can be explained by the fact that offline social
interactions are more mediated by tight schedules, which facilitate
the emergence of various orders of memory. Shown also are the
memory co-order histograms, i.e. the distributions of the entries
in M (estimation of the effective memory is robust with respect
to both finite-size and non-stationarity effects of the temporal
networks, and fine-grained fluctuations in the microscopic
memory structure due to non-stationarities in the data can be
captured by the memory shape, see SI section VE for analysis and
discussion).

In order to detect memory at different timescales, we have also
sampled social and transportation networks at two temporal
resolutions, namely At=1 and At=10 min, and considered
human brain EEG recordings at two frequencies (again, see SI
Section VA for details). The results should be interpreted
accordingly: notice for instance, that order 2 at the Ar=1
resolution is equivalent to a memory length of 2 min, whereas
order 2 at the At = 10 resolution is equivalent to a memory length
of 20 min. We have found that, while in the transportation
networks with tight scheduling only one memory scale flags up, in
the case of the bus network, whose scheduling could be more
affected by external factors such as traffic jams, and in the case of
the offline social network, at least two different memory scales
show up. The situation is particularly clear in the case of human

contacts at university, which show memory lengths of 5 and
40-50 min corresponding to different types of mechanisms of
recurrent social interactions during lectures and in between
lecture room changes. We also see evidence for different scales in
the human brain: while the gamma band links are predominantly
memoryless, for the theta band we observe a peak at memory
order 1, corresponding to 1 s.

The distribution of the entries in M tells us about the
timescales of all the interactions that are present in a temporal
network. In Section SI VC we explore the shape of these
distributions more closely by measuring their entropy and
kurtosis, providing interpretable results. We find that transporta-
tion networks tend to have large co-memory entropy, meaning
that these systems display a highly heterogeneous memory kernel:
many different microscopic memories are found. Likewise, the
fact that online social networks tend to have a strong kurtosis
speak to the fact that even if most of the links have weak memory,
there are a selected few whose co-order is very large. This suggests
that while online social networks have a large (scalar) effective
memory Q.(G), this only comes from the contribution of a
handful of links, while microscopically the system has overall
weak memory.

Information that is present in the co-order matrix can be
extracted by looking at various other projections, which distill the
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matrix into something easily interpretable. For instance, we have
considered the projections obtained when computing the average
incoming and outgoing co-order (Q)% = [L7'M1]|* and
(N = [L_IMTl]a for each link a (see SI Section VD for
details and the full analysis). These respectively characterise the
typical length of the memory that link « retains of the past
activity of the whole network (in), and the average length of the
past history of « that influences the evolution of the network
(out). The scatter plots in Fig. 4 (shape projection) allow us to
classify and partition links (see also SI Section VD for additional
plots and analysis). For instance, we can divide them into two
main categories: influencers (whose past activity has more
influence on the rest of the network than the network has on
them), and followers (which are the opposite). By construction
the influencers and followers must balance each other out since
E [(Q)"(‘mt] = E[(Q), ], however we find that in almost all of the
studied networks there are more followers than influencers,
implying that the memory of the network is disproportionately
driven by a small number of links (again, see SI VD for details).
We also notice that the scatter plots are distinct on the level of
classes; offline social networks present similar scatter plots to each
other, as do transport networks. This similarity is also maintained
at different timescales.

Discussion

The dynamical properties of a temporal network—of which
memory is a salient example—are known to have substantial
effects on the processes running over the network. In this paper
we have shown that memory is better characterised by a multi-
dimensional object—the shape, than a scalar one, and we have
proposed a mathematical and computational framework to esti-
mate the memory structure of temporal networks. By doing so,
we have then identified the emergence of certain memory reso-
nances—long-memory effects—in the microscopic memory ker-
nel of even simple temporal network models, a phenomenon we
have named virtual loops. Although virtual in the sense of not
being pre-specified in the models, virtual loops have a physical
and observable effect on processes running on top of the network,
such as spreading processes. With hindsight, these virtual loops
are indeed a particular case of ‘causal loops’, and therefore share
similarities with similar concepts arising in physics and computer
science: from inference problems at the heart of statistical physics
to the study of Feynman diagrams in quantum mechanics.

Our approach, based on the evaluation of the co-memory
matrix IV, not only provides a sound and efficient approximation
of the memory of a temporal network, but also offers a com-
prehensible description of its microscopic shape. Our analysis of
epidemic processes running on temporal networks with a fixed
scalar memory but varying memory shapes illustrate that such
microscopic memory structure has an important effect on the
outcome of the epidemic process. We hope that the community
will further use our framework to investigate the effect of the
memory shape in the outcome of other dynamical processes
running on top of the temporal network. On the other hand, our
analysis of real-world temporal networks has revealed a number
of interesting patterns, including the presence of different time-
scales of interaction in empirical data, asymmetries in the con-
tribution of links to the evolution of the network in terms of
followers/influencers, and the observation that offline networks
tend to have an overall richer memory structure than online ones.
These results unveil that memory shapes can be very hetero-
geneous in real-world systems, and indicate that fully considering
the rich microscopic structure of the temporal dependencies
among the links is key when it comes to understanding the
function of time-varying systems. We have provided an efficient

implementation of the algorithms presented in this paper in
several programming languages, which are available in a user-
friendly setup (see Code Availability Section). We hope our work
contributes to the problem of understanding the internal struc-
ture of temporal networks and will prompt further studies and
applications in areas ranging from mobility in urban systems,
containment of infectious diseases or information processing in
the human brain®’, to cite some.

Finally, our work poses a number of challenging questions
which deserve further investigation, including a deeper
understanding of how both virtual loops and in general the
internal memory structure of a temporal network can influence
the spread of a disease, or the diffusion of information over
the network. Such understanding could then be leveraged to e.g.
control the spread of an epidemic by finely controlling specific
regions of the network’s memory. Additionally, observe that by
construction the co-memory matrix M accounts for pairwise
link interactions. It is theoretically possible that large groups of
links display collective memory, e.g. the activity of a certain set
of links may depend on the orchestrated activity of other sets of
links. This would in principle be captured by the spectrum of
memories Q,(G) as discussed in the Introduction, but further
research is needed to understand how such spectrum can be
approximated, and what new information this sort of “simpli-
cial memory”#Y could provide on the behaviour and evolution
of complex systems.

Data availability

Data associated with this study can be found via the following links: e-mail communication:
www.ii.pwr.edu.pl/michalski/, text messages between college students: snap.stanford.edu/
data/CollegeMsg.html, reality mining experiment: http://realitycommons.media.mit.edu/
realitymining html, public transport data: www.nature.com/articles/sdata201889, football
data: https://github.com/metrica-sports/sample-data.

Code availability

Complete implementations of our general method and all examples are available in C++,
Python 2.7, Python 3.6, Java and Rust at github.com/oewilliams/temp-net-memory, DOI
10.5281/zenodo.5775001 (see also SI section VI).
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