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ABSTRACT

RNA-protein interactions play vital roles in driving the cellular machineries. Despite significant involve-
ment in several biological processes, the underlying molecular mechanism of RNA-protein interactions is
still elusive. This may be due to the experimental difficulties in solving co-crystallized RNA-protein com-
plexes. Inherent flexibility of RNA molecules to adopt different conformations makes them functionally
diverse. Their interactions with protein have implications in RNA disease biology. Thus, study of binding
interfaces can provide a mechanistic insight of the molecular functioning and aberrations caused due to
altered interactions. Moreover, high-throughput sequencing technologies have generated huge sequence
data compared to available structural data of RNA-protein complexes. In such a scenario, efficient com-
putational algorithms are required for identification of protein-binding interfaces of RNA in the absence
of known structures. We have investigated several machine learning classifiers and various features
derived from nucleotide sequences to identify protein-binding nucleotides in RNA. We achieve best per-
formance with nucleotide-triplet and nucleotide-quartet feature-based random forest models. An overall
accuracy of 84.8%, sensitivity of 83.2%, specificity of 86.1%, MCC of 0.70 and AUC of 0.93 is achieved. We
have further implemented the developed models in a user-friendly webserver “Nucpred”, which is freely
accessible at “http://www.csb.iitkgp.ac.in/applications/Nucpred/index”.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

RNA-protein interaction is one of the most diverse cellular phe-
nomena involved in several gene regulatory pathways and RNA
metabolism, which eventually drives the cellular machineries
[1-4]. Interactions of RNAs with partner proteins often guide the
overall folding of biomolecular assemblies [5-7]. The complex net-
work of interactions between RNA-binding proteins (RBPs) and
their target RNA is highly specific and intricate [8,9]. Any misregu-
lated interaction may lead to either gain-of-function or loss-of-
function, thereby causing molecular and cellular defects. This in
turn can result into various pathological conditions [10-13]. For
example, RBP-RNA interactions are frequently involved in viral
recognition and replication [14,15]. Defects in RNA-protein inter-
actions are also annotated with several neurological disorders
[16-18], genetic disorders [19] and various types of cancers [20-
23]. Considering the diverse roles of RNA in RBP-RNA interactions
[24], identification of nucleotides interacting with RBP becomes
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crucial to understand the functional implications of their
recognition.

Experimental techniques including X-ray crystallography, NMR
spectroscopy and Electron Microscopy have solved several struc-
tures of RBPs and their complexes. However, a huge gap exists
between experimentally determined structures of RNA-protein
complexes and those persist in nature. This gap is probably due
to high cost and time associated with the experimental techniques
along with their own limitations. In such a scenario, efficient com-
putational methods can complement to overcome the inherent
limitations of the experimental techniques. Combining known bio-
logical data with computer-aided algorithms can be an alternative
technique to determine the binding interface from sequence infor-
mation. Advancements in speed and efficiency in computational
handling of big data led to the increasing use of Machine Learning
(ML) techniques in various fields of physics, biology and medicine
[25-28]. Several ML approaches have been used to solve many
bioinformatics problem [29,30] including prediction of protein sec-
ondary structures [31], prediction of protein functional sites [32],
modeling of gene regulatory networks [33], prediction of nucleic-
acid binding proteins and residues from structure and sequence
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information [34-37] and ATP-binding sites in proteins [38]. All
these methods utilize features derived from known data to provide
probable solution for unknown data based on the models trained in
ML algorithms. Predicting protein interacting sites in a given RNA
sequence using ML is challenging due to the inherent complexity
of RNA structures and their less diverse sequence pattern as com-
pared to proteins. However, certain molecular properties of RNA
sequence differ considerably between binding and non-binding
regions in RNA-protein complexes. These distinctive molecular
descriptors can be efficiently used in computational predictions
of binding sites with feature selection, input data refinement and
parameter optimization techniques of ML algorithms.

In this study, we have designed sequence-based features to
train them in various ML classifiers to predict protein-binding
nucleotides in a given RNA sequence. Efficiency of several algo-
rithms including Random Forest (RF), XGBoost (XGB), Gradient-
boosted trees (GBT), AdaBoost (ADB), Support Vector Machine
(SVM), Naive Bayes (NB), K-nearest neighbors (KNN) and Multi-
layer Perceptron (MLP) are also compared [39-42]. Several physic-
ochemical features of RNA sequence including molecular mass, pKa
and binary encoding along with nucleotide compositions including
singlet, doublet, triplet and quartet are calculated. For each nucleo-
tide (nt), feature vectors are generated using sliding window strat-
egy. Performance of all the models are evaluated on a non-
redundant dataset with various window size. We find,
nucleotide-triplet composition (NC-triplet) based RF model per-
formed best compared to all other classifiers with an optimized
window-size of 23 nt. We have obtained 83.2% sensitivity, 86.1%
specificity, 84.8% accuracy, 82.8% PPV, 0.7 MCC and 0.93 AUC using
RF model with 10-fold repeated stratified cross validation.

2. Materials and methods
2.1. Training dataset preparation

A dataset of 180 protein-RNA complexes was curated for this
study [43]. All the complexes with resolution better than 3 A were
obtained from the Protein Data Bank (PDB) [44]. We kept all the
protein-RNA complexes with protein chains of at least 30 amino
acids and RNA chains of at least 5 nt. To remove redundancy
between the sequences, pairwise sequence alignment was per-
formed for all the entries in the dataset using BLAST [45]. When
protein or RNA component in any two complexes had more than
35% sequence identity, the one with better resolution was retained.
Further, complexes with missing or non-standard nucleotides (N,
T, X) were removed. The pipeline followed for dataset curation is
schematically represented in supplementary Fig. S1. A few PDB
structures contain multiple RNA chains that interact with protein.
Considering all possible binary interactions, the final non-
redundant training dataset — ‘PB-RNA194’ was curated to develop
the training model. PB-RNA194 contains 194 RNA sequences
including 33 tRNA, 70 ssRNA, 77 dsRNA and 14 ribosomal RNA
(Table 1).

2.2. Classification of dataset into protein binding and non-binding
nucleotides

To identify protein binding sites in RNA or RNA binding sites in
proteins, distance-based methods have been used with cut-offs in
the range between 3.0 A and 6.0 A in various prediction methods
[46,47]. Prediction algorithms based on distance are highly depen-
dent on the selected cut-off. Solvent accessible surface area (SASA)
based criteria have also been used to determine the residues and
nucleotides at protein-RNA interfaces [48]. In this study, we used
SASA-based calculations to identify the nucleotides as binding or
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Table 1
Non-redundant training dataset of protein-binding RNAs.

RNA-type No. of RNA PDB IDs

chains

70

ssRNA 1AV6_B, 1C9S_W, 1CV]_M, 1G2E_B, 1JBS_C,
1JID_B, 1K8W_B, 1KNZ_W, 1KQ2_R, 1LNG_B,
1M50_E, 1IM8V_0, 1M8W_C, IM8W_E, IWPU_C,
1WSU_E, 1ZBH_E, 1ZH5_D, 2A8V_E, 2ANR_B,
2ASB_B, 2B3]_E, 2BX2_R, 2DB3_E, 2G4B_B,
2GIC_R, 2IX1_B, 2J0S_E, 2JEA_C, 2JLU_C, 2PY9_E,
2Q66_X, 2R7R_X, 2VNU_B, 2XG]J_C, 2XNR_C,
2XS2_B, 2XZ0_D, 3AEV_C, 3BX2_C, 3D2S_E,
315X_B, 3IEV_D, 3K5Q_B, 3MDG_C, 3NMR_B,
308C_C, 3PF4_R, 3QJJ_Q., 3R2C_R, 3RC8_E,
3T5N_C, 4H5P_E, 4]1G_E, 4]7M_B, 4M59_C,
4M59_D, 4MDX_C, 4N2Q B, 5AOR_C, 5DET_Q,
5EIM_C, 5ELH_R, 5ELK_R, 5ELR_B, 5ELS_I, 5EX7_B,
5GXH_B, 514A_D, 5LTA_E

1DI2_D, 1HQ1_B, IMSW_R, 1N35_B, 1N35_C,
100A_C, 1R3E_C, 1R9F_B, 1R9F_C, 1SI3_B,
1WNE_B, TWNE_C, 1YVP_E, 1YVP_F, 1YVP_H,
1ZBI_C, 2AZ0_C, 2AZ0_D, 2BGG_P, 2BGG_Q,
2EZ6_C, 2EZ6_D, 2F8S_C, 2GJW_E, 2GJW_F,
2GJW_H, 2GXB_E, 2GXB_F, 20ZB_C, 2PJP_B,
2QUX_C, 2R8S_R, 2XD0_G, 2YSW_B, 2YKG_C,
2YKG_D, 2ZI0_C, 2ZKO_C, 2ZKO_D, 3A6P_D,
3A6P_E, 3BSN_P, 3BSN_T, 3BT7_C, 3DH3_F,
3EQT_C, 3EQT_D, 3FTE_C, 3FTE_D, 3IAB_R,
3KS8_E, 3KS8_F, 3MOJ_A, 303L_A, 301]_C,
3RW6_H, 3SNP_C, 3ZCO_M, 4ATO_G, 4ERD_C,
4ERD_D, 4FVU_B, 4FVU_C, 4I1G8_B, 41G8_C, 4ILL_C,
4ILL_R, 4L8H_R, 4ZT0_B, 5A0X_C, 5ED1_B,
5ED1_C, 5F5F_B, 5F5H_C, 51D6_G, 5TF6_B,
5WTK_B

1ASY_R, 1B23_R, 1COA_B, 1FFY_T, 1GAX_C,
1H3E_B, 1H4S_T, 1J1U_B, 1N78_C, 1QF6_B,
1QTQ_B, 1SER_T, 1UOB_A, 1VFG_D, 2AZX_C,
2BTE_B, 2CSX_C, 2DLC_Y, 2DRB_B, 2DU3_D,
2FK6_R, 2FMT_C, 2ZM5_C, 2ZZM_B, 3ADB._C,
3AMT_B, 3EPH_E, 3HL2_E, 3VJR_B, 4YCP_B,
4YV]_C, 5SHR7_D, 5T8Y_X

1DFU_M, 1DFU_N, 1FEU_B, 1FEU_C, 1G1X_D,
1G1X_E, 116U_C, 1IMJI_C, IMMS_C, 1MZP_B,
1S03_A, 1SDS_D, 2HW8_B, 5WTY_C

dsRNA 77

tRNA 33

Ribosomal 14

RNA

non-binding to partner protein. RNA chains were extracted from
each protein-RNA complex in the training dataset. SASA was calcu-
lated using NACCESS [49], which implements the Lee and Richards
algorithm [50] with default water probe of radius 1.4 A. If any atom
of a nucleotide loses SASA upon complexation, the corresponding
nucleotides were marked as protein binding and the rest were
labelled as non-binding nucleotides (supplementary file S1). Out
of total 5414 nt present over all the sequences, 2411 were identi-
fied as protein binding and 3003 were identified as non-binding.
Sequence length of each type of RNA chain and total number of
interacting nucleotides in each chain are provided in supplemen-
tary Table S1.

2.3. Feature vector encoding with sliding-window strategy

For each RNA sequence in PB-RNA194 dataset, overlapping pat-
terns of different window size (WS) starting from 5 nt to 31 nt
were created. Each sliding window pattern was classified as posi-
tive if the central nucleotide of the pattern interacts with protein,
or else, the pattern was classified as negative or non-interacting. To
create a pattern for terminal nucleotides in a given sequence, “X”
dummy nucleotides were added at both the termini of RNA, where
X = (WS — 1)/2. For instance, for a window size of seven, three “X”
were added at both the termini to create L patterns from sequence
of length L. This sliding-window based strategy ensured that each
nucleotide in the dataset occupies the central position once. It also
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ensured that all the nucleotides in a given sequence and the effect
of their neighbours were considered during training.

The overlapping window patterns, corresponding to each nt,
were encoded by features derived from RNA sequence. Sequence
length (SL) and nucleotide composition (NC) were calculated to
encode global properties of each RNA sequence in the training
set. Further, local features of the nucleotides including primary
pKa value (pKa) and molecular mass (M) of each nucleotide of a
given window was used as an attribute to represent the physico-
chemical nature of the nucleotides. Binary encoding (BE) repre-
senting the type of nucleotide at each position was used as another
attribute to train the classifier, which would generate numerical
values. Nucleotide compositions (NC-singlet, NC-doublet, NC-
triplet and NC-quartet) were generated to represent the composi-
tion profile. For each window segment, comprising of four primary
nucleotides (A, U, G and C) and one dummy nucleotide (X), NC-
singlet (A, U, G, C, X), NC-doublet (AA, AU, AG, AC, AX, ........
CC), NC-triplet (AAA, AAC, AAG, ..., CCC) and NC-quartet (AAAA,
..... , CCCC) features were represented by 5, 25, 125
and 625 numerical values, respectively. Feature vectors were gen-
erated for binary classification of the central nucleotide in each
sequence window using each of these features individually and
as an ensemble.

2.4. ML classifiers and hyperparameter tuning

ML approaches are the most cost-effective and time-efficient
methods used extensively in various fields to develop prediction
models. In this study, prediction models were trained to obtain
the best performing model using experimentally validated data
and various ML algorithms. All the algorithms discussed below
were implemented using sklearn library from Scikit-learn [51]
and python programming.

Naive Bayes (NB) classifiers are a collection of supervised clas-
sification algorithms based on Bayes’ theorem and a common prin-
ciple, where every pair of features being classified is independent
of each other. Gaussian NB (GNB) and Multinomial NB (MNB) are
two variants of NB classifier implemented in this study with
default parameters. While GNB follows Gaussian distribution and
supports continuous valued features, MNB supports discrete fea-
tures. K-Nearest Neighbors classifier (KNN) is a simple supervised
non-parametric ML algorithm. Its classification is based on cluster-
ing of similar data points (close proximity) into one class. In this
study, KNN was implemented with tuning of hyperparameter k.
Support Vector Machine (SVM) is another commonly used super-
vised algorithm. SVM uses an optimal hyperplane or decision
boundaries to classify the data points depending on the choice of
extreme vectors, called support vectors. In this study, we evaluated
the prediction performance using both linear and RBF kernels of
SVM. The other important hyperparameters, i.e., kernel coefficient
(gamma) and regularization parameter (C) were tuned through
grid-search cross-validation to get optimum performing SVM
model. Multi-layer Perceptron (MLP) classifier is an artificial neural
network (ANN) based supervised algorithm that trains by back-
propagation. It has advantages of learning non-linear models based
on optimization of the number of hidden layers between the input
and output layers. The algorithm comprises of a regularization
parameter (o) that can be varied to prevent overfitting of the data.
In this study, all the parameters of MLP were set to default and o
was optimized during training.

Random Forest (RF) is an ensemble learning method that builds
multiple decision trees through random sampling of the dataset
with replacement. Each of the individual decision trees gives a
class prediction based on the attributes. The model select the final
class based on the most voted one over all the individual trees. The
advantage of RF is that it is faster than many classification algo-
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rithms and unlikely to overfit even if the number of trees is
increased. In this study, RF was tuned by optimizing number of
estimators and maximum depth for each tree. RF was implemented
with bootstrap aggregation and the oob_score was set to true. Ada-
Boost (ADB), Gradient Boosted Trees (GBT) and Extreme Gradient
Boosting (XGBoost) are other ensemble-based learning methods
compared in this study. XGBoost is a revised version of gradient
boosting decision tree algorithm, and is being increasingly used
in ML predictions due to its higher execution speed and more accu-
rate model performance compared to traditional gradient boosting.
Several hyper-parameters of these ensemble methods were tuned
to optimize the performance such as learning rate, number of esti-
mators, maximum depth, minimum child weight, gamma, subsam-
ple, objective function and number of threads.

2.5. Performance evaluation of the classifier

Cross-validation is a widely used method to evaluate the perfor-
mance of any prediction model. In our study, we used 10-fold
cross-validation technique to compare the performance of all the
classifiers on the benchmark dataset. In this technique, all the
nucleotides were randomly divided into ten sets. Of these sets,
nine were used for training and the remaining one was used for
testing. This process was repeated ten times such that each set
was used once for testing. The final performance was obtained
by averaging the performance of all the ten sets. Further, to keep
the positive and negative dataset balanced, we used repeated strat-
ified cross validation with number of folds and repeats set to 10
such that in each of the ten validation sets, which is repeated ten
times, the ratio of positive and negative samples in both the train
and test dataset is preserved during each fold. To assess the perfor-
mance of the classifier, we calculated commonly used metrics,
which includes overall accuracy (ACC), specificity (SPE), sensitivity
(SEN), positive predictive value (PPV), F-measure and Matthews
correlation coefficient (MCC) [52].

In the equations (Table 2), TP, TN, FP and FN are true positives,
true negatives, false positives and false negatives, respectively. ACC
determines the amount of correct prediction of a class over the
entire sample space. SEN defines the total number of correctly pre-
dicted positive instances over the total number of positive
instances, while SPE defines the total number of correctly pre-
dicted negative instances over the total number of negative
instances. PPV signifies the ratio of correctly predicted positive
instances to the total positive predictions. The parameter MCC sig-
nifies the correlation between actual and predicted classifications.
In addition to above-mentioned measures, a threshold-
independent parameter, i.e., area under the curve (AUC) of the
receiver operating characteristic (ROC) plots was computed for
each variation of the prediction model. The AUC value obtained
from ROC curves (plot of true positive rate against false positive
rate) determines whether a classification model is perfect
(AUC = 1) or random (AUC = 0.5).

Table 2
Performance Evaluation Metrics.
SL Parameter Expression
no.
1 Accuracy (ACC) ACC = PN
2 Specificity (SPE) SPE =
3 Sensitivity (SEN) SEN = B
4 Precision (PPV) PPV = ;2
5 F-measure (F-score) F — score = ZEPVSEN
6 Mathews-correlation coefficient MCC = (TP)(TN)— (FP)(FN)

(MCC) (TP-+FP)(TN-+FP)(TP-+FN) (TN+FN)
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2.6. Pipeline for model development and prediction

Given a RNA sequence in NCBI fasta format, sliding window pat-
terns were generated from the query sequence. For each pattern,
triplet nucleotide compositions were calculated and pre-
processed in numerical format to generate feature vector for each
nucleotide. The classification model was trained to give the predic-
tions based on patterns of calculated features of the query
sequence and previously trained RF structure. The final predictions
were given in binary format as ‘1’ or ‘0’ for each nucleotide classi-
fied as binding or non-binding, respectively (Fig. 1).

3. Results
3.1. Dataset analysis and development of nucleotide features

Residue-nucleotide paired compositions at the protein-RNA
interfaces are calculated to find out nucleotide preferences to any
particular amino acid (Fig. 2). We do not find any strong preference
of amino acids towards the four nucleotides. All the nucleotides
show high preference for Arg and Lys and least preference for
Cys, Tyr and Met. G and C show a slightly higher preference for
Arg and Lys than A and U. The nucleotides in RNA-protein inter-
faces generally occur in contiguous stretches. Hence, to get an idea
about the prevalence of certain stretches of nucleotides, we have
calculated the occurrence of nucleotides at the interface in our
training dataset. It is observed that almost 80% of the dataset con-
stitute of one to six nucleotide stretches at the interface. Of these,
stretches with three (13.3%), four (13.7%) and five nucleotides

RNA sequences

(from known
protein-RNA data)

preprocess

RNA sliding window sub-sequences

splitting

Training set Testing set

encoding features (NC-triplet)
+

tuning ML classifier (RF)

Model Model
Evaluation Development
’ 10-fold cross-validation l prediction
A
Performance measures RNA Sequence
Accuracy, Specificity,
Recall, Precision, F1- /(\)?)Lljlc(c)g?ijlultilfa

Score, MCC, AUC

Fig. 1. Pipeline for development and prediction of classification model.
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Fig. 2. Pairwise residue-nucleotide interface composition in training dataset.

(14.9%) being the most common (Fig. 3). This implies that com-
pared to single nucleotides (7.2%), doublets, triplets, quartets and
pentets have greater preference at the interface and can be used
for classification of binding and non-binding sites. To find out
any distinguishing pattern, we have calculated nucleotide singlet,
doublet and triplet compositions at the interface and non-
interface regions (Fig. 4 A to C). For singlet nucleotide composition
(Fig. 4A), all the four nucleotides show almost similar interface
composition. Among the four, G shows the highest non-interface
composition. Both A and U frequently occur at the interface than
at the non-interface, while C does not show any such differences.
The interface propensities of four nucleotides (Fig. S2, Table S2)
also show that A and U have positive interface propensity, whereas
G has strong negative interface propensity. However, C does not
have any preference for both interface and non-interface. Among
the nucleotide doublets (Fig. 4B), AA, AC and UA are slightly pre-
ferred at interface, whereas, AG, UC, CA, GU, GG, CG and CC are
more preferred at non-interface. Some doublets, AU and UU do
not show any preference for both interface and non-interface.
Among the nucleotide triplets (Fig. 4C), clear interface preferences
are observed for AAA, UUU, AUA, AUU, UAA, UAU, CAC and CUA.
However, many triplets including AGA, AGU, AGG, AGC, UUC,
UGG, UCG, UCC, GAU, GAG, GUU, GUC, GGU, GGG, CAG, CGA,
CGG, CCG and CCC show clear non-interface preferences. These
results indicate that NC-triplet can be used as a distinguishing fea-
ture for binary classification of binding and non-binding sites.
We have also analyzed the training data based on four different
types of RNA present in the dataset. We have calculated the
nucleotide compositions at interface and non-interface for each

70
]
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2
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Fig. 3. Distribution of nucleotide stretches at the interface in training dataset.
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class of RNA to find out whether any nucleotide is preferred more at the interfaces with ssRNA. Higher prevalence of U is found at
at the interface in a particular RNA-type (Table S3). While ssRNA the interfaces with rRNA. In dsRNA, A is slightly favoured at the
have higher composition of U, the other three types of RNA have interface. In all the four RNA types, G is disfavoured at the interface
higher composition of G. Further, the interfaces with tRNA is with greater non-interface preference in ssRNA, dsRNA and riboso-
enriched with C, whereas higher occurrence of U and A are found mal RNAs.
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3.2. Performance evaluation of different RNA features and sliding
window optimization

To validate the effect of feature selection on the prediction per-
formance, we have evaluated the parametrically tuned RF model
with different RNA features derived from the sequence at varying
window size (WS). WS optimization is performed based on the
AUC values obtained from ROC curves for each of the feature
(Fig. 5 A to F). Table 3 provides the 10-fold CV metrics at optimum
WS for each of the feature. Compared to individually trained fea-
tures (Global, BE or Local), ensemble features (Global + Local and
Global + Local + BE) performs better (Table 3). However, perfor-
mance obtained with ensemble features is comparatively lower
than individual NC-triplet and NC-quartet features. This is evident
from large decrease in AUC value from 0.93 (for NC-triplet and NC-
quartet) to 0.78 (for Global + Local) and 0.77 (for Global + Local +
BE). MCC values are also reduced from 0.70 (for NC-triplet and
NC-quartet) to 0.44 (for Global + Local) and 0.42 (for Global + Loc
al + BE). Results of 10-fold CV at different WS for other local fea-
tures of RNA, i.e., BE, NC-singlet and NC-doublet show that NC-
doublet performs better than NC-singlet and BE (supplementary
Tables S4, S5 and S6). With BE and NC-singlet, maximum AUC of
0.72 and 0.75 is obtained at WS of 27 nt and 29 nt, respectively.
However, maximum AUC of 0.92 is obtained for NC-doublet at
WS of 23 nt. The CV metrics for NC-triplet (Table 4) and NC-
quartet features (Table 5) at variable WS show that both of these
individual feature-based RF model provides similar performance
at an optimum WS of 23 nt. On the other hand, ensemble feature
(Global + Local + NC-triplet) achieves the highest AUC of 0.88,
which is much lower than individual NC-triplet and NC-quartet
features. Thus, NC-triplet and NC-quartet features provide the best
results compared to all other features as well as the ensemble fea-
ture. Further, we have also evaluated the prediction performance
on four different types of RNA sequences present in our dataset
(Table 6). All the four types of RNA achieves reasonable perfor-
mance with ribosomal RNA and tRNA obtaining slightly higher per-
formance compared to other two types of RNA sequences.

3.3. Performance comparisions of different ML classifiers for NC-triplet
model

Parameter tuning is one of the most important steps in building
a good predictive model. Models for binary classification often
involve prediction of a class based on certain threshold value of
prediction probability. By default, RF gives prediction based on
threshold of 0.5. However, the default threshold can be tuned to
optimize the performance. To calculate the optimum threshold
value for the developed model, we varied the threshold based on
precision-recall optimization (Fig. S3). We have obtained optimum
recall and precision of 0.85 and 0.83, respectively at threshold
value of 0.5. Further, to optimize the learning process, an impor-
tant hyperparameter of RF, the number of estimator, is also opti-
mized. Based on sensitivity, n_estimators is set to 275 (Fig. S4).
For SVM-RBEF, kernel coefficient (gamma) and cost parameter (C)
are also varied. Maximum accuracy and AUC is achieved with C
value of 1.0 and gamma value of 0.1 (Fig. S5 A to D). The value of
‘k’, defining the number of neighbors, is tuned to 3 to achieve max-
imum accuracy and AUC in KNN (Fig. S6 A and B). We have imple-
mented 10 different ML classifiers with optimized parameters and
NC-triplet feature to compare the predictive performance of all
these algorithms. Table 7 provides the prediction performance
obtained from 10-fold CV for NC-triplet feature based model
implemented using 10 ML classifiers. ROC curves for all the 10 clas-
sifiers at variable WS are provided in supplementary Fig. S7. ROC
curves in Fig. 6 show the AUC values obtained for 10 classifiers
with optimized parameters at window-size of 23 nt. The highest
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AUC of 0.93 is achieved with RF and XGBoost, followed by MLP
(AUC = 0.92), SVM (AUC = 0.91) and KNN (AUC = 0.91). Naive Bayes
gives poor performance (AUC = 0.68) among all the classifiers. The
performance of RF is the best with the highest AUC of 0.93, MCC of
0.7 and specificity of 87%. The other classifiers that give better per-
formance are KNN (MCC = 0.68), RBF SVM (MCC = 0.67), MLP
(MCC = 0.67) and XGBoost (MCC = 0.68). The performance of
XGBoost is the closest to RF. The best performing classifiers are fur-
ther used to train a voting ensemble classifier (with soft voting),
and the predictive performance is measured. The ensemble classi-
fier performs slightly better than a few other individual classifiers,
except RF, which shows better performance than all the other indi-
vidual classifiers as well as the voting ensemble classifier (Fig. 7).

3.4. Performance evaluation on other validation and test datasets

We have achieved maximum validation AUC of 0.93 (Fig. 8A)
and accuracy of 84.72% (Table 4) with RF-based NC-triplet model
at optimized WS of 23 nt in 10-fold repeated stratified CV on PB-
RNA194 dataset. Fig. 8B shows the confusion matrix obtained for
the same. The trained model is evaluated on another dataset
RNA-208 [53] comprising of 208 RNA chains obtained from PRIDB
database with RNA chain length greater than 10 nt. This dataset
consists of 46,582 nt, of which, 10,198 are protein interacting
according to the cutoff distance of 5.0 A. The validation metrics
achieved by RF model trained on ‘PB-RNA194' and tested on
‘RNA-208’ (Table 8) shows poor performance with maximum
MCC of 0.51. In RNA 208 dataset, a class imbalance is observed
with binding class being the minority. Hence, we use random over-
sampling technique (ROS) to deal with class imbalance followed by
model training and testing. Although, an increase in performance
(MCC increase by 0.2) is observed, yet the maximum prediction
performance achieved is still low. Probable reason for poor perfor-
mance on RNA-208 could be the differences in length distribution
of the two datasets. On plotting the histogram of RNA sequence
lengths for both the datasets, we observe that the longest sequence
in PB-RNA194 have 160 nt (Fig. S8A), while RNA-208 have few RNA
sequences with length 1500 nt to 3000 nt (Fig. S8B). Thus, the
trained predictor performs better for small and medium length
RNA chains but provide poor performance on very long chains.
To validate this claim, a subset of sequence is selected from RNA-
208 with length below 500 nt (RNA-150). The model trained on
PB-RNA194 is tested on this subset. An increase in the performance
of the model in both accuracy (0.83 to 0.91) and AUC (0.87 to 0.95)
is observed on this validation subset (Table 8). Further, a new data-
set ‘RNA-344’ is prepared by combining PB-RNA194 and RNA-150
datasets. SASA is used for assigning the nucleotides as binding or
non-binding as described in the section 2.2. Out of 13,452 nt pre-
sent in RNA-344, 4693 are protein binding and 8759 are non-
binding. Maximum AUC of 0.94 is achieved with WS of 19 and
above (Fig. S9). Performance metrics of RF model obtained after
10-fold CV on RNA-344 dataset for varying WS are provided in
Table S7. We have obtained AUC much greater than 0.50 (random),
indicating the feasibility of predicting the interface nucleotides
using only RNA sequence as input information.

3.5. Prediction performance on independent test dataset

An independent test dataset (RNA30) comprising of 30 RNA
sequences is prepared by taking all non-redundant RNA sequences
of protein-RNA complexes deposited in PDB after January 2018.
The filtered sequences have sequence similarity below 50% with
all the sequences in training dataset. RNA30 is used as an indepen-
dent test set to evaluate the prediction performance of the NC-
triplet RF model trained on original data (PB-RNA194) to exclude
the possibility of overfitting. The prediction performance on



A. Agarwal, K. Singh, S. Kant et al.

Fig. 5. ROC curves at variable window size (5 nt to 30 nt) for (A) BE-feature, (B) NC-singlet, (C) NC-doublet, (D) NC-triplet, (E) NC-quartet and (F) Ensemble-feature based RF
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Table 3

10-fold CV results for different RNA features at optimized WS using RF.
Features WS ACC SPE SEN F-score PPV McCC AUC
Global (SL + NC) - 0.68 0.77 0.57 0.61 0.67 0.35 0.73
Local (pKa) 29 0.68 0.85 0.46 0.55 0.71 0.34 0.72
Local (mass) 29 0.67 0.85 0.45 0.55 0.70 0.33 0.72
Local (pKa + mass) 27 0.67 0.85 0.45 0.55 0.71 0.34 0.72
Binary encoding (BE) 27 0.67 0.85 0.45 0.54 0.70 0.34 0.72
NC-singlet 29 0.70 0.73 0.66 0.66 0.67 0.40 0.75
NC-doublet 23 0.84 0.86 0.82 0.82 0.82 0.69 0.92
NC-triplet 23 0.85 0.86 0.84 0.83 0.83 0.70 0.93
NC-quartet 23 0.85 0.86 0.84 0.83 0.83 0.70 0.93
Global + Local + BE 27 0.71 0.84 0.42 0.56 0.74 0.42 0.77
Global + Local (SL + NC + pKa + mass) 23 0.72 0.84 0.58 0.65 0.75 0.44 0.78
Ensemble features 27 0.81 0.87 0.75 0.78 0.83 0.63 0.88

(Global + Local + NC-triplet)

Best performing features are marked in bold considering AUC and MCC.

Table 4
10-fold CV results at varying WS for nucleotide triplet composition using RF.
WS Accuracy Specificity Sensitivity F-score PPV MCC AUC
5 56.35 59.11 52.92 51.92 50.96 11.99 0.58
7 68.78 73.03 63.50 64.44 65.40 36.65 0.72
9 80.13 84.42 74.78 77.02 79.39 59.62 0.85
11 83.06 86.08 79.30 80.66 82.06 65.63 0.89
13 84.12 87.01 80.51 81.86 83.27 67.77 0.91
15 84.45 86.48 81.92 82.43 82.95 68.48 0.92
17 84.17 85.75 82.21 82.22 82.24 67.96 0.92
19 84.24 86.15 81.87 82.23 82.59 68.08 0.92
21 84.34 85.81 82.50 82.43 82.36 68.30 0.93
23 84.72 85.61 84.11 83.06 82.04 69.75 0.93
25 84.82 85.71 83.70 83.08 82.47 69.32 0.93
27 83.99 84.82 82.95 82.19 81.43 67.65 0.928
29 84.13 84.68 83.45 82.41 81.39 67.98 0.926
31 84.43 85.08 83.62 82.71 81.82 68.56 0.926

WS with optimum performance are marked in bold considering AUC and MCC.

Table 5
10-fold CV results at varying WS for nucleotide quartet composition using RF.
WS Accuracy Specificity Sensitivity F-score PPV McCC AUC
5 56.83 59.84 53.09 52.28 51.49 12.90 0.58
7 69.40 73.69 64.12 65.14 66.18 37.95 0.74
9 81.23 85.25 76.23 78.35 78.35 61.88 0.87
11 83.34 85.95 80.09 81.07 82.07 66.21 0.91
13 84.21 86.31 81.58 82.15 82.72 68.00 0.92
15 84.80 86.78 82.33 82.83 83.33 69.20 0.92
17 84.72 86.55 82.46 82.78 83.11 69.06 0.93
19 85.00 86.38 83.28 83.18 83.08 69.65 0.93
21 84.91 86.11 83.41 83.12 82.83 69.48 0.93
23 85.04 86.11 83.70 83.29 82.87 69.75 0.93
25 85.02 86.08 83.70 83.27 82.84 69.71 0.93
27 84.41 85.15 83.49 82.67 81.86 68.52 0.93
29 84.48 84.92 83.95 82.82 81.71 68.70 0.93
31 84.10 84.98 82.99 82.29 81.61 67.87 0.93

WS with optimum performance are marked in bold considering AUC and MCC.

Table 6
Performance measures of NC-triplet RF model for different RNA-types in the dataset.

RNA-type Accuracy Specificity Sensitivity F-score PPV MCC
tRNA 0.975 0.978 0.970 0.960 0.960 0.940
sSRNA 0.930 0.910 0.950 0.940 0.930 0.860
dsRNA 0.950 0.930 0.960 0.950 0.930 0.890
rRNA 0.980 0.980 0.980 0.980 0.980 0.960
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Table 7

10-fold CV comparisions for 10 ML algorithms at optimized WS using NC-triplet feature.
Sl.no. Algorithm Optimum WS ACC SPE SEN F-score PPV MCC AUC
1. GNB 27 0.63 0.82 0.40 0.49 0.64 0.24 0.69
2. MNB 23 0.62 0.70 0.52 0.55 0.58 0.22 0.68
3. KNN 17 0.84 0.85 0.83 0.82 0.82 0.68 0.91
4. MLP 25 0.84 0.85 0.81 0.81 0.81 0.67 0.92
5. Linear SVM 29 0.72 0.87 0.53 0.62 0.76 0.42 0.80
6. RBF SVM 25 0.84 0.85 0.82 0.81 0.81 0.67 0.91
7. ADB 29 0.70 0.77 0.61 0.64 0.68 0.40 0.79
8. GBT 27 0.79 0.85 0.71 0.75 0.80 0.59 0.88
9. XGBoost 27 0.84 0.85 0.83 0.82 0.82 0.68 0.93
10. RF 23 0.85 0.87 0.84 0.83 0.83 0.70 0.93
11. Voting Ensemble 25 0.84 0.86 0.82 0.82 0.82 0.67 0.92

Best performing ML classifiers are marked in bold. Voting ensemble is trained using five best performing classifiers marked in bold.
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Fig. 6. ROC curves obtained for NC-triplet model at optimum window size of 23 nt
for 10 different ML classifiers.

0.88
0.86 1
>
 0.82 x L, A
&
0.804 | * l T
0.781 J_
KNN SVM XGB  MLP SoftVoting RF
Classifiers

Fig. 7. Boxplot showing the CV performance of individual and voting ensemble
classifiers based on sensitivity.

RNA3O0 test data is shown in Table 8. The results show that a rea-
sonable performance is obtained on the test data with AUC of
0.89, MCC of 0.62 and accuracy of 0.83.
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3.6. Prediction performance on a test case

The capability of the prediction model is tested on an indepen-
dent case (PDB ID: 4JXZ). The RNA chain of the complex is a 71 nt
tRNA interacting with glutaminyl-tRNA synthetase. The interface
nucleotides in the complex are identified based on SASA calcula-
tions and are shown as red spheres (Fig. 9A). The predicted nucleo-
tides are represented in red (TP), cyan (TN), yellow (FP) and purple
(FN) spheres (Fig. 9B). The model correctly predicts 24 out of 34
true protein-binding nucleotides, achieving an overall accuracy of
83.2%, specificity of 97.1%, sensitivity of 67.7%, precision of 95.0%,
F-score of 80.1% and MCC of 0.69.

3.7. Model implementation in web based tool

NC-triplet and NC-quartet feature-based models optimized
with 10-fold CV with best performing RF predictor and other opti-
mized predictors such as SVMRBF and KNN are implemented in a
user-friendly web based tool “Nucpred”. The input to the devel-
oped predictor is the protein-binding RNA sequence in fasta for-
mat. The web server will automatically generate NC-triplet
feature profiles from the submitted sequence and use them as
the input to the default trained RF classifier. The webserver
prompts the user to either paste or upload their sequence and an
option to select other classification models including RF-NC-
quartet, SVMRBF and KNN apart from the default RF-NC-triplet
model. The results provided by the webserver includes the raw
probability scores and the annotations 1 or O to the nucleotides
as RBP-binding or non-binding, respectively. The webserver is
freely accessible from following link: “http://www.csb.iitkgp.ac.
in/applications/Nucpred/index”.

4. Discussion

Over the years, multitude of protein-coding and non-coding
RNA have been discovered which interacts with proteins to per-
form various important biological functions. Nucleotides in RNA
sequences specifically bind to their partner protein to carry out
various cellular processes. For example, the specific recognition
of GGU motif by the zinc finger domain in fused in sarcoma protein
indicates the significance of protein binding nucleotides [54].
Hence, identification of the binding nucleotides can contribute to
our understanding of the molecular basis of these interactions.
Although, several methods have been developed to predict RNA-
binding residues in protein sequences, yet the problem of predict-
ing protein-binding nucleotides in RNA sequences has received lit-
tle attention. Moreover, predicting protein-binding nucleotides is
more challenging due to less diverse RNA sequence with only four
nucleotides as compared to protein sequence with 20 amino acid
residues.
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Fig. 8. (A) ROC curve and (B) Confusion matrix obtained with 10-fold CV for NC-triplet RF model at optimum window size of 23 nt.
Table 8
10-fold CV measures of NC-triplet RF model for different validation and test datasets.
Dataset ACC SPE SEN F-score PPV MCC AUC
PB-RNA194 0.85 0.87 0.84 0.83 0.83 0.70 0.93
RNA-208 0.83 0.89 0.62 0.62 0.63 0.52 0.88
RNA-208 (ROS) 0.83 0.86 0.71 0.64 0.58 0.53 0.87
RNA-150 0.91 0.95 0.80 0.81 0.84 0.75 0.95
RNA-344 0.87 0.90 0.81 0.81 0.82 0.71 0.94
RNA-30 0.83 0.89 0.70 0.68 0.69 0.62 0.89

Fig. 9. Three-dimensional structure of tRNA (4JXZ_B, 71 nt) in complex with glutaminyl-tRNA synthetase (4]XZ_A). (A) The 34 protein-binding nucleotides, calculated based
on SASA from the PDB structure, are shown as red spheres. The rest of the non-binding nucleotides are shown in orange cartoon. (B) The 24 protein-binding (TP) and the 36
non-binding (TN) nucleotides along with one false positive and 10 false negative nucleotides predicted by the developed classifier are represented in red, cyan, yellow and
purple spheres, respectively. Protein is represented in green ribbons in both the structures. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

4.1. Sliding window optimization and feature selection

Binding sites are highly influenced by the surrounding adjacent
sites as evident from the occurrence of contiguous stretches of
nucleotides at the interface (Fig. 3). Hence, to incorporate the fea-
tures of target and surrounding nucleotides in the sequence, we
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have employed a sliding-window strategy to represent each
nucleotide of the non-redundant 194 RNA sequences comprising
of structurally different types of RNA (tRNA, ssRNA, dsRNA and
rRNA) in the training dataset. We have used different WS and eval-
uated performance for each sliding window to get optimum WS.
Optimum performance for all the metrics is obtained at WS of 23
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nt as evident from Table 4 and Fig. 6. An increase in all the perfor-
mance metrics is observed with each incremental window till opti-
mum WS is reached. Thus, it can be inferred that selection of
window size plays a crucial role in improving the prediction per-
formance while training.

Feature selection is an efficient way to discard information
irrelevant for classification, and to reduce the search dimension.
For this purpose, different global and local sequence features of
RNA are calculated. These features are evalutaed to select the best
features with more distinguishing capability. For performance
assessment in RF, we have compared AUC and MCC obtained on
10-fold CV for all the individual feature and feature combinations
(Table 3 and Fig. 5). NC-triplet and NC-quartet features improved
the performance and increased the classification accuracy com-
pared to other individual and combined features. This demon-
strates the importance of triplet and quartet nucleotide
compositions at the RNA binding sites.

4.2. Comparative analysis of predictive performance of ML classifiers

Ten different ML algorithms trained on PB-RNA194 dataset with
selected features are compared based on 10-fold CV scores
(Table 7). Among all the classifiers, RF provides the best results
on 10-fold stratified CV. XGBoost with 0.05 learning rate and 500
estimators performed closer to RF. It also provides 0.93 AUC on
10-fold stratified CV. We have tested an ensemble of five best per-
forming classifiers, i.e., Random Forest, XGBoost, SVM, KNN and
MLP and achieved maximum 0.92 AUC and 0.67 MCC. The voting
ensemble classifier performed well but does not increase the per-
formance compared to RF classifier, which stand out as the most
powerful method in discriminating binding and non-binding
nucleotides.

4.3. Comparisions with existing predictive methods

We have compared the performance of the method developed
in this study with a few existing methods for the prediction of pro-
tein binding sites in RNA. RNApin [53] utilizes composition profile
of tri-nucleotides to discriminate the protein-interacting and non-
interacting nucleotides. It achieved a maximum AUC of 0.88 and
MCC of 0.62 with SVM model and MCC of 0.47 with RF model.
The RF model developed in this study when tested on RNA-208
dataset shows improvement in performance measures with
increase in MCC from 0.47 to 0.53 and increase in accuracy from
0.76 to 0.83 (Table 8). RPI-Bind [55] is a structure based method
for identification of protein-RNA interactions. It achieved maxi-
mum accuracy and MCC of 0.63 and 0.27, respectively using
nucleotide composition profile and RF algorithm. Including RNA
local structural features, it further achieved a maximum accuracy
and MCC of 0.71 and 0.4, respectively. On RNA-208 dataset, it
achieved an accuracy of 0.81 and AUC of 0.88. On the other hand,
our method achieved a higher accuracy of 0.83 and similar AUC
of 0.88 on RNA-208 dataset (Table 8). RBPbinding [56] predicts
protein binding regions in mRNA sequences using SVM model. It
achieved high accuracy (0.87) and MCC (0.75) in cross-validation
on a balanced dataset. However, it was designed to predict binding
regions in mRNA sequences only. PRIdictor [57] combined both
nucleotide and residue level information to predict binding sites.
With SVM model, it achieved MCC of 0.69 in 10-fold cross valida-
tion, similar to that of our method. Few frameworks are developed
recently to predict protein-binding nucleotide motifs in RNA
sequences. iDeepS [58] is one such method. It applies one-hot
encoding for the sequences and predicted secondary structures,
and used these features in Convolutional Neural Networks (CNNs)
to predict the protein-binding motifs in RNA. The method achieved
high AUC of 0.87; however, it is a RBP-specific model and thus can
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predict binding targets only for the specific RBPs trained in their
study. Moreover, it utilizes a RNA structure prediction tool for fea-
ture calculation, and thus depends on another external tool for the
prediction, which is time consuming. These models were designed
to predict binding motifs in the sequences rather than prediction of
binding nucleotides, which is the focus of the present study. Hence,
we do not perform direct comparision with these methods. All
these existing methods developed using different datasets, binding
site definition and features have their own advantages and disad-
vantages. Thus, fine-tuning of the features, refinement of input
data and parameter optimization of ML algorithm provides consid-
erable realm of scope for improvement in the overall prediction
performance. In this study, we have performed parameter opti-
mization of ten ML classifiers, and compared their performance.
With RF model, we have achieved the best performance, which is
comparable to that of few state-of-the-art methods developed to
predict protein-binding sites in a given nucleotide sequence.

4.4. Predictive performance on validation sets and future direction

We have evaluated the model developed on PB-RNA194 train-
ing dataset on different validation and test datasets to check how
well the model generalizes. We have extracted all RNA chains with
sequence length below 500 nt from RNA-208 dataset [53], and dis-
carded long ribosomal RNAs as they largely contain non-binding
nucleotides (~95%). On this length-restricted dataset (RNA-150),
we have achieved significantly better accuracy of 0.91 with high
AUC and MCC of 0.95 and 0.75, respectively (Table 8). Further,
we have merged the PB-RNA194 and RNA-150 datasets. On this
combined dataset (RNA-344), we have performed 10-fold cross
validation and achieved reasonably better performance with accu-
racy of 0.87, AUC and MCC of 0.94 and 0.71, respectively. On an
independent test set, we have achieved accuracy of 0.83, specificity
of 0.89, sensitivity of 0.70, MCC of 0.62 and AUC of 0.89. Although,
we get reasonably good performance on our training dataset, test
dataset shows average performance. The limitation of current
method is the relatively smaller dataset used to train the classifier.
This can be overcome in future with availability of more experi-
mentally solved structures of RNA-protein complexes. Training
and evaluation on larger datasets, capable of capturing more infor-
mation at the sequence level, are required to improve the predic-
tive performance on unknown data and to develop a more robust
model. Further, different RNA types interact with proteins differ-
ently and hence possess distinct binding sites. Thus, with increase
in structural data for each type of RNA, which is currently very lim-
ited, specific training models for each RNA type can be developed.

5. Conclusion

RNA interacts with proteins to drive many cellular processes.
Knowledge of interaction sites is thus crucial to decipher the func-
tional implications of binding. In this study, we have compared ten
different ML approaches to predict the protein binding nucleotides
in a RNA sequence. We have used window size optimization and
feature selection-based approach to distinguish the interacting
and non-interacting patterns. Triplet nucleotide compositions are
used as primary feature for the prediction. RF classifier with prop-
erly tuned classifier parameters, such as bootstrap number, depth
of trees and number of estimators provides the best prediction
results compared to other classifiers. All the models are evaluated
using repeated stratified 10-fold cross validation technique. Rea-
sonably good predictive performance obtained on an independent
test case shows the generalized predictive capability of the trained
classifier on unknown sequences. The final model built with the
best performing nucleotide-triplet feature based RF algorithm at
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optimized window-size of 23 achieved an AUC of 0.93, accuracy of
0.85 and MCC of 0.70. The performance of the model can be
enhanced in future with employment of more distinctive nucleo-
tide features of RNA obtained from larger datasets.
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