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Summary

We developed and compared two mathematical mod-
els of variable phenotypic switching rates between
normal and persister cells that depend on substrate
concentration and antibiotic presence. They could
be used to simulate the formation of persisters in
environments with concentration gradients such as
biofilms. Our models are extensions of a previous
model of the dynamics of normal and persistent cell
populations developed by Balaban et al. (2004,
Science 305: 1622). We calibrated the models’
parameters with experimental killing curves obtained
after ciprofloxacin treatment of samples regularly
harvested from planktonic batch cultures of Kleb-
siella pneumoniae. Our switching models accurately
reproduced the dynamics of normal and persistent
populations in planktonic batch cultures and under
antibiotic treatment. Results showed that the models
are valid for a large range of substrate concentra-
tions and for zero or high doses of antibiotics.

Introduction

Microbiologists continually grapple with bacterial resis-
tance to antibiotics (Penesyan et al., 2015). Antibiotic

resistance is an abiding major problem but other mecha-
nisms such as bacterial persistence have gained promi-
nence in recent years and have also emerged as an
important factor in the survivability of bacterial popula-
tions (Cohen et al., 2013). Persister cells (persisters) are
stress-tolerant bacteria in a susceptible isogenic popula-
tion. They are usually dormant-like cells able to resume
growth quickly on standard media (Balaban et al., 2013).
Unlike in resistant bacteria, stress tolerance is temporary
and reversible: normal susceptible cells switch their phe-
notype to the persister state and, inversely, persisters
switch their phenotype to actively growing susceptible
cells. Once persisters switch their phenotype to normal,
they lose their tolerance. This phenomenon allows bac-
terial populations to adopt a bet-hedging strategy. Con-
sequently, subparts of bacterial populations are able to
survive unpredictable stresses and regrow an active sus-
ceptible population after stress (S�anchez-Romero and
Casades�us, 2014; Vega and Gore, 2014). The pheno-
typic switch between normal and persister cells can be
caused by the bistability of toxin/antitoxin (TA) modules
(Fasani and Savageau, 2013; Gelens et al., 2013;
Zucca, 2014). Environmental conditions such as starva-
tion, quorum-sensing, biofilms, subinhibitory antibiotic
concentration and diauxic shifts all have the potential to
induce persistence (Balaban, 2011; Amato et al., 2013;
Helaine and Kugelberg, 2014; Harms et al., 2016). The
activation of stress responses, such as the stringent and
SOS responses, has been reported to be involved in tol-
erant states. Low growth rates have been mathemati-
cally modelled to influence the stability of TA modules
and increase the formation of persisters (Feng et al.,
2013). Most studies focus on the HipBA module. How-
ever, other TA modules can be involved in bacterial per-
sistence (Kint et al., 2012). The number of modules also
influences the switching rates between normal cells and
persisters (Fasani and Savageau, 2013). The switching
from persistent states to normal cells is also affected by
the growth medium. Rich media tend to induce the
wake-up of persisters and poor media to inhibit it (J~oers
et al., 2010).
Most existing persister models consider two subpopu-

lations, normal (n) and persister (p) cells (Fig. 1A). Both
subpopulations can switch their phenotype from one to
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another at defined switching rates (Balaban et al., 2004;
Gefen and Balaban, 2009). For the sake of simplicity,
these switching rates are often considered constant
(Chambless and Stewart, 2007; Levin and Udekwu,
2010). A few models have related the switching rates to
substrate and/or antibiotic concentration(s) (e.g. Roberts
and Stewart, 2005; Ayati and Klapper, 2012; Cogan
et al., 2012; Chihara et al., 2015; Szomolay and Cogan,
2014), but were theoretical in nature and not supported
by experimental data, or only succinctly (Cogan, 2006).
The model of Balaban et al. (2004) calculates different
sets of switching rates for the exponential and stationary
growth phases but does not directly relate the switching
rates to environmental parameters. There is a need for
an experimentally validated mathematical model that
relates switching rates to environmental conditions such
as substrate, antibiotic or auto-inducer concentrations.
This kind of mathematical model will help to better
understand the dynamics of persisters in heterogeneous
environments.
In this work, we tested two mathematical models that

relate switching rates to substrate and antibiotic concen-
trations, two stresses commonly reported in the litera-
ture. The models’ parameters were calibrated with
experimental killing curves of samples taken regularly
from planktonic batch cultures. These experiments
assessed the dynamics of normal and persistent popula-
tions in batch cultures with variable substrate concentra-
tions and under antibiotic treatment. The validity domain

of our models was further assessed by varying the initial
substrate concentrations of the experiments and of the
simulations. We then compared our models with a refer-
ence model with constant switching rates and a model
with discontinuous switching parameters between expo-
nential and stationary phases.

Results

Dynamics of experimental populations and growth
parameters

The killing curves obtained were biphasic (Fig. S2) and
we were able to quantify the persister fraction in the
batch culture samples. The dynamics of the normal and
persistent populations in the batch culture with 4.0 g l�1

of initial glucose are presented in Fig. 2. The initial per-
sisters were formed during the overnight cultures used
to inoculate the batch cultures. The evolution of the per-
sistent population occurred in two phases. Between 0
and 3 h of planktonic batch culture, the persister popula-
tion decreased and was only able to increase after 3 h.
This dynamics matches the dynamics of type I persisters
predicted in Fig. 1B. However, the persister fraction
started increasing before the stationary phase was
reached. The results were quite reproducible. The initial
decrease in the persister fraction was observed for all
individual experiments. The variation between experi-
ments was small compared with the decrease in the per-
sister fraction. With 1.0 and 0.4 g l�1 initial glucose, a

Fig. 1. Expected dynamics in planktonic batch cultures.
A. A same isogenic bacterial population with two distinct phenotypes forming two subpopulations, normal (n) and persister (p) cells. a and b are
the switching rates between the two phenotypes.
B. Expected dynamics of type I persisters during bacterial growth (Gefen and Balaban, 2009). The switching rate a is null during exponential
growth (Exp. phase) and increases during stationary phase (Stat. phase) because of substrate limitation (stress). The initial persisters come
from the inoculum used to start the batch culture.
C. Expected dynamics of type II persisters during bacterial growth (Gefen and Balaban, 2009). The switching rates are constant, and the num-
ber of persisters is proportional to the number of normal cells.
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decrease in the persister fraction was also observed but
only between t0 h and t1.5 h. With these lower initial
substrate concentrations, the persister fraction started to
increase after t1.5 h. With less substrate, persister for-
mation induced by starvation occurred faster.
Table S1 brings together the experimental and opti-

mized growth parameters of the Monod growth model.
The R2 between the simulated and experimental growth
curves was > 0.99 for 4.0 g l�1 of initial glucose and
was > 0.93 for the other initial glucose concentrations
(1.0 and 0.4 g l�1). The simulated growth curves were
barely affected by the switching model used. An estima-
tion of the substrate concentration in the batch culture is
plotted in Fig. 2. The persister population started to
increase as soon as the substrate concentration started
to decrease significantly, between 3 and 4 h.

Optimal switching rate parameters

We optimized the parameters of the four models of
switching rates: the discontinuous model of type I persis-
tence (RMI), the model of type II persistence (RMII) and
models IM and DM. Parameters were optimized to fit the
mean of the three experiments with an initial glucose
concentration of 4.0 g l�1. The optimal parameters
obtained are given in Table 1. The optimal substrate

concentration threshold (CS,threshold) of model RMI was
2.4 g l�1. For the RMII model, we also tested running
optimizations with a growth rate for persisters lp > 0 but
the lP obtained was negligible and did not affect the
other parameters. We left lp = 0, as for the other mod-
els. As we assumed CA ≫ K’ during antibiotic treat-
ments, K’ was not assessed. Theoretically, for type I
persistence, a(CS; CA) is negligible when conditions are
favourable. This is consistent with the parameters
obtained for the IM and DM models as parameter a’ is
very small. The parameters obtained for the IM and DM
models show that substrate limitation is the main trigger
that leads to persister formation. aA is one order of mag-
nitude smaller than aS for both models. For the IM
model, the decay of the persister population during
antibiotic treatments was mainly due to the wake-up of
persisters while for the DM model the decay was mainly
due to direct killing of persisters by the antibiotic. We
cannot tell apart the real mechanism at stake from the
dynamics of the populations alone. Figure 3 shows the
experimental and simulated dynamics of total and persis-
tent populations in the batch culture with the different
models. As anticipated, the choice of the switching
model had negligible impact on the total viable cells in
the batch culture. Differences were observed in the
dynamics of simulated persistent populations. The RMI

Fig. 2. Total (n + p) and persistent (p) populations in the antibiotic-free batch culture. The persistent population was assessed for each of the
three experiments with an initial glucose concentration of 4.0 g l�1 separately. The error bars represent the standard deviation of the three
experiments. The dynamics of the persistent population shows the pattern of type I persistence. The persister population starts to increase
when the substrate concentration (CS) starts to diminish significantly.

Table 1. Optimal parameters of the different switching models obtained with 4.0 g l�1 glucose.

a’ (h�1) aS (h�1) aA (h�1) b’ (h�1) bS (h�1) bA (h�1) bSA (h�1) K (g.ml�1) kn (h�1) kp (h�1)

RMI 1.8E-01 4.2E-01 1.4E+01 1.9E-02
RMII 2.2E-02 2.2E-14 2.0E+01 5.2E-01
IM 2.2E-14 1.2E-01 1.6E-02 1.8E-01 3.6E-01 6.0E-01 3.5E-05 1.3E+01 4.4E-10
DM 8.8E-13 7.6E-02 8.7E-03 9.8E-02 1.7E+00 3.5E-05 1.1E+01 2.2E-01
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model showed a sharp change when the substrate
threshold was reached whereas the IM and DM models
were smoother. The strain used produces type I persis-
ters and the RMII model cannot present the characteris-
tic initial decay of the persistent population, between 0
and 3 h.
With the optimized parameters in Table 1, we ran two

additional simulations by just changing the initial sub-
strate concentration to 1.0 g l�1 or 0.4 g l�1 and the ini-
tial number of normal and persister cells. We compared

the results of the simulations with the experimental ones
with the same initial glucose concentrations to check the
validity of the models in the different conditions. The
coefficients of determination (R2) obtained for the differ-
ent models and for the different initial substrate concen-
trations are given in Fig. 4. Figure 4 groups together the
R2 between the experimental and simulated killing
curves and the R2 between the experimental and simu-
lated persistent populations as an additional indicator of
the validity of the models. The models were optimized to

Fig. 3. Experimental and simulated total (X) and persistent (p) populations in an antibiotic-free batch culture with the different switching models.
The initial substrate concentration used is 4.0 g l�1. The experimental data plotted is the mean of the three experiments performed with
4.0 g l�1 glucose. The switching model selected barely affects the dynamic of the total population. The switching models principally differ by the
behaviour of the persistent population in the first five hours of the batch culture.

Fig. 4. R2 obtained for different initial glucose concentrations with the different models. The models’ parameters are optimized for an initial sub-
strate concentration of 4.0 g l�1. The models react differently when this initial concentration is reduced.
A. R2 between the simulated killing curves and the experimental ones.
B. R2 between the simulated persistent population in the antibiotic-free batch culture and the experimental one. The IM and DM models are
more representative of the experimental data than the RMI and RMII models for the initial glucose concentrations of 1.0 and 0.4 g l�1. The DM
model gives the best results.
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fit the experimental killing curves. However, they were
also able to simulate accurately the persister fraction in
the batch culture with the initial glucose concentration of
4.0 g l�1. Although the strain used produces type I per-
sisters, the RMII model, used for type II persistence, also
produced good results. In Fig. 3, we can observe that
the models mainly differ during the first five hours of the
batch culture. Although they have different patterns, they
all stay close to the majority of the experimental points
when the initial substrate concentration is 4.0 g l�1. In
contrast, all the models do not have the same validity
domain. The RMI model was the most affected by sub-
strate concentration changes. When we compared killing
curves, the RMII, IM and DM models showed similar
losses of accuracy when the initial substrate concentra-
tion deviated from 4.0 g l�1. When comparing the persis-
ter fractions, the IM and DM models appeared to be the
least affected by substrate concentration changes. The
R2 obtained with CS,i = 1.0 or 0.4 g l�1 were higher than
with CS,i = 4.0 g l�1. Considering the killing curves, the
DM model was the best model. Considering the persister
fraction, the IM and DM models were just as good.

Discussion and conclusion

Four models of switching rates between normal and per-
sister cells were tested: RMI, RMII, IM and DM. The IM
and DM models were developed to relate substrate and
antibiotic concentrations to the switching rates. RMI is a
reference model with discontinuous switching rates
depending on the growth phase and RMII is a reference
model with constant switching rates. The IM and DM
models accurately reproduced the experimental data and
gave better results than the RMI and RMII models for
the different experimental conditions tested. They could
be used to simulate persister dynamics in complex envi-
ronments with substrate concentration gradients.
We fitted a relatively large number of parameters

together. As we used numerous initial conditions, we
assume that the best local optima obtained for each
model are reliable. The optimal parameter sets obtained
show that starvation is the main cause of persister for-
mation. The parameter a’ tends to zero and aA is an
order of magnitude smaller than aS for both models IM
and DM. As reported in previous studies, the stringent
response may be involved (Harms et al., 2016). As
the DM model gave the best results, it is likely that the
antibiotic inhibits the wake-up of persisters despite the
presence of substrate. Only experiments at the single
cell level would be able to determine the underlying bio-
logical mechanism involved, of which there may be sev-
eral (Helaine and Kugelberg, 2014; Harms et al., 2016).
The substrate used in our assays was glucose, and it

is likely that changing the substrate will affect the

switching rates (J~oers et al., 2010; Helaine and Kugel-
berg, 2014). We also did not take into account oxygen
(O2) availability and assumed that the use of a shaking
incubator did not limit the cells’ access to O2. However,
O2 may play a significant role in complex environments
such as biofilms. The stress induced by the depletion of
oxygen in deep biofilm layers may increase the switching
rate from normal to persisters in addition to the depletion
of substrate. Experiments with different oxygen availabili-
ties should be tested, e.g. by lowering the shaking speed
for studies in which the hypothesis of non-limiting oxy-
gen cannot be made. If glucose is indeed the main limit-
ing growth substrate, the IM and DM models give
reliable results. With use of the same method, their
parameters will need to be calibrated again if other
solutes essential for growth are limiting, and the concen-
tration of substrate replaced by the new limiting solute in
the equations. The models must be calibrated depending
on the environmental conditions of the study conducted.
Another issue is how the switching rates are affected

by low antibiotic concentrations. Sub-MICs have been
reported to induce persister formation (Helaine and
Kugelberg, 2014) but the parameter aA obtained was
very low for both models IM and DM. In our work, nor-
mal cells were rapidly lysed after contact with the high
dose of the bactericidal ciprofloxacin antibiotic and did
not have the time to switch to persister cells. Additional
experiments should be run to determine the parameter
K’ and the validity of the models at low antibiotic concen-
trations. K’ is probably a value below the MIC to avoid
competition between the death of normal cells at antibi-
otic concentrations above the MIC and the switch to the
persister state. At present, according to our results, the
IM and DM models are valid for zero or high antibiotic
concentrations.
We considered two subpopulations, normal and per-

sister cells. However, additional persistent subpopula-
tions could be included to explain the dynamics of
particular populations, for example, the wild-type strain in
Balaban et al., (2004). Persistent populations are quite
heterogeneous (Kint et al., 2012; Zhang, 2014; Kaldalu
et al., 2016). Different antibiotics and different combina-
tions of consecutive antibiotic treatments may differently
affect a persistent population, suggesting that various
kinds of persisters with different tolerance or cross-toler-
ance properties can co-exist in a same culture (Keren
et al., 2004; Lechner et al., 2012). Persisters surviving a
given antibiotic may not be the same as those surviving
another given antibiotic (or other kinds of stresses). If
more than one subpopulation of persisters is observed,
each population can have its own model parameters and
susceptibility to the antibiotic(s) used. Survival hetero-
geneity in an isogenic bacterial population can also be
due to other mechanisms such as heterogeneity in efflux
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pump activity among cells (S�anchez-Romero and
Casades�us, 2014), mistranslation of enzyme messen-
gers (Wang et al., 2014) or heterogeneity in enzyme pro-
duction (Wakamoto et al., 2013). This heterogeneity
between cells may originate from biological noise (Tsim-
ring, 2014). It has also been observed that debris of
dead cells can shield viable cells from an antibiotic treat-
ment (Podlesek et al., 2016). Although particular mecha-
nisms have been clearly related to persister formation,
bacterial persistence is still unclear and may be more
widely the reflection of the response diversity of a popu-
lation (Kahiluoto et al., 2014).
In this first study, the IM and DM models accurately

reproduced the experimental data. The method devel-
oped here could be tested with new strains, limiting sub-
strates or antibiotics. The structure of their equations
can be kept and their parameters modified to match new
environmental conditions. Knowing the dynamics of per-
sistent populations is crucial to adjusting the timing of
antibiotic treatments (Cogan et al., 2012). In another
context, antibiotics could be used as a means of control
to manage ecosystems. Also, the IM and DM models of
switching rates can be implemented into models with
heterogeneous substrate concentrations, such as biofilm
models (see Ayati and Klapper, 2012; Szomolay and
Cogan, 2015; Chihara et al., 2015).

Experimental procedures
Development of a mathematical model with environment-
dependent switching rates

Reference mathematical model of the dynamics of
persistent populations. Balaban et al. (2004) propose
that in the case of two subpopulations, normal and
persister cells (Fig. 1A), the dynamics of both
populations in a planktonic batch culture follow
equations 1 and 2. Cells can grow and switch between
two phenotypes. n is the population of normal cells and
p is the population of persisters. ln and lp are the
growth rates of the normal and persister subpopulations
respectively. a is the switching rate towards the persister
state and b is the switching rate towards the normal
state.

dn=dt ¼ lnnðtÞ � anðtÞ þ bpðtÞ; (1)

dp=dt ¼ lppðtÞ þ anðtÞ � bpðtÞ: (2)

Persisters are divided into types I and II (Balaban
et al., 2004; Gefen and Balaban, 2009). Type I persis-
ters are induced by external stresses. In type I persis-
tence, a is assumed to be null in exponential growth. a
increases with external triggers such as the lack of sub-
strate in stationary phase. In addition, type I persisters
have a negligible growth rate, lp � 0. In contrast, type II

persisters are produced stochastically regardless of the
bacterial environment, i.e. a and b are constant. Type II
persisters have been observed to have a positive,
though small, growth rate lp > 0. The two persister types
result in two different kinds of population dynamics dur-
ing planktonic batch culture (Fig. 1B,C).
The switching and growth rates of equations 1 and 2

(ln, lp, a and b) are obtained by fitting the equations to
the dynamics of normal and persistent populations in
planktonic batch cultures and regrowth experiments (Bal-
aban et al., 2004; Lechner et al., 2012). The persister
fraction in a sample is measured by treating it with
antibiotics and counting viable cells over time to obtain a
killing curve. A regrowth experiment is the measurement
of the regrowth of the survivors of an antibiotic treatment
(mostly persisters) over time in a fresh, antibiotic-free
medium. a and b are considered constant when fitting
these equations. This does not matter in the case of
type II persistence, as switching rates are always con-
stant (equations 5 and 6). However, for type I persis-
tence, no continuous model can be used for all growth
phases. Different switching rates must be calculated for
different environmental conditions. Assuming a = 0 in
exponential growth, b can be estimated during this time
lapse. Then, assuming that b remains constant, a can
be estimated during stationary phase. This results in a
discontinuous model for a whole batch culture with differ-
ent parameters for exponential and stationary phases. If
we consider a particular substrate concentration (CS,

threshold) to be the threshold between the exponential and
stationary phases, we write the switching rates of type I
persistence in a batch culture as equations 3 and 4. CS

is the substrate concentration and a’ and b’ are con-
stants. We take the following switching models, RMI and
RMII, as reference models.

• RMI model: discontinuous model of type I persistence

ifCS �CðS;thresholdÞ a ¼ 0 andb ¼ b0; ð3Þ

ifCS\CðS;thresholdÞ a ¼ a0 andb ¼ b0: ð4Þ

• RMII model: type II persistence

a ¼ a0 ð5Þ

b ¼ b0 ð6Þ

The RMI model is suitable for batch cultures but could be
unsuited for environments with concentration gradients
such as biofilms. We must extend the model of Balaban
et al. (2004) to account for environmental conditions and
use it for complex environments, where exponential and
stationary phases cannot be clearly separated and
switching rates are not spatially homogeneous.
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Extending the current model to include substrate and anti-
biotic concentrations. As mentioned in the introduction,
various environmental conditions can affect switching
rates. Substrate limitation and stressful conditions, such
as the presence of antibiotics, are common (Balaban,
2011; Helaine and Kugelberg, 2014). We chose to take
into account substrate and antibiotic concentrations (CS

and CA) and to relate them to the switching rates a and
b. We assumed the growth rate of persisters to be zero
(lp = 0) as in the case of type I persistence. As we
assume lp = 0, the growth rate of the total population
(l) is the growth rate of normal cells, l = ln. We
adapted equations 1 and 2 by replacing the constant
parameters l, a and b with the functions l(CS), a(CS;
CA) and b(CS; CA). In addition, in the presence of
antibiotic, normal cells and persisters are killed. We
added killing rates to equations 1 and 2 to take this
factor into account. The new equations that we used to
simulate the dynamics of normal and persistent
populations in batch cultures were equations 7 and 8.
kn(CA) and kp(CA) were the killing rates of normal and
persister cells respectively. They are considered
constant during antibiotic treatments and set to zero
during antibiotic-free batch cultures.

dn=dt ¼ lðCSÞnðtÞ � aðCS ;CAÞnðtÞ
þ bðCS ;CAÞpðtÞ � knðCAÞ nðtÞ (7)

dp=dt ¼ aðCS ;CAÞnðtÞ � bðCS ;CAÞpðtÞ � kpðCAÞ pðtÞ
(8)

For the switching rate a(CS; CA), the literature is unan-
imous on the induction of the persister state. Starvation
or sub-MIC antibiotic concentrations can separately
induce the persister state (Balaban, 2011; Helaine and
Kugelberg, 2014; Harms et al., 2016). Thus, we assume
that a(CS; CA) must increase when the substrate con-
centration decreases or the antibiotic concentration
increases. For the switching rate b(CS; CA), the literature
is unclear whether the substrate and the antibiotic influ-
ence the wake-up of persisters independently or interde-
pendently. In a few models previously described, the
switching rate b was assumed to be zero in the pres-
ence of antibiotic regardless of the substrate concentra-
tion (Cogan et al., 2012; Szomolay and Cogan, 2015). If
b(CS; CA) was inhibited by the presence of antibiotic, it
would prevent persisters from waking up and dying dur-
ing an antibiotic treatment. In this case, the substrate
and the antibiotic influence b interdependently. However,
a few experiments tend to prove that the substrate
improves the efficacy of antibiotic treatments (Wood,
2016). The substrate could increase the switching rate b
despite the presence of antibiotic. In this case, the sub-
strate and the antibiotic influence b independently.

Thus, we developed two mathematical models to
relate the switching rates to the substrate and antibiotic
concentrations, CS and CA respectively. We developed a
model in which substrate and antibiotic concentrations
affect b(CS; CA) independently (model IM), and one in
which substrate and antibiotic concentrations affect b
(CS; CA) interdependently (model DM). We used Hill
functions (such as Monod and Michaelis–Menten equa-
tions), which are common in biology, to build the equa-
tions of the two models. Switching rates are bounded by
a minimum and a maximum, depending on environmen-
tal conditions, as observed in previous models (Cogan,
2006; Cogan et al., 2012).

• Model IM: Substrate and antibiotic concentrations
influence b(CS; CA) independently.

aðCS ;CAÞ ¼ a0 þ aS � ð1� CS=ðCS þ K ÞÞ
þ aA � CA=ðCA þ K 0Þ ð9Þ

bðCS ;CAÞ ¼ b0 þ bS � CS=ðCS þ K Þ
þ bA � ð1� CA=ðCA þ K 0ÞÞ ð10Þ

• Model DM: Substrate and antibiotic concentrations
influence b(CS; CA) interdependently.

aðCS ;CAÞ ¼ a0 þ aS � ð1� CS=ðCS þ K ÞÞ
þ aA � CA=ðCA þ K 0Þ ð11Þ

bðCS ;CAÞ ¼ b0 þ bSA � CS=ðCS þ K Þ
� ð1� CA=ðCA þ K 0ÞÞ ð12Þ

a’, aS, aA, b’, bS, bA, bSA, K and K’ are constants. Equa-
tions with the form Concentration/(Concentration+Con-
stant) are bounded by 0 and 1. Thus, a(CS; CA) is
bounded by a’ and (a’ + aS + aA) and b(CS; CA) is
bounded by b’ and (b’ + bS + bA) or (b’ + bSA). The IM
and DM models are consistent with observations made
in the literature (Balaban, 2011; Helaine and Kugelberg,
2014; Harms et al., 2016): a(CS; CA) will increase owing
to nutrient starvation or the presence of antibiotics, even-
tually at subinhibitory concentrations. At stationary
phase, substrate limitation will lead to an increase in the
persister/normal cell ratio. We could not determine
whether the substrate and the antibiotic influence b(CS;
CA) independently or interdependently. In the IM model,
b(CS; CA) needs the presence of substrate or the
absence of antibiotic to increase. In the DM model, b
(CS; CA) needs the presence of substrate and the
absence of antibiotic to increase.

To calculate l(CS), we chose a classical Monod
growth model. The growth rate l(CS) depends on the
substrate concentration CS, the maximal growth rate
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lmax and the Monod constant KS (equation 13). The
Monod growth model usually assumes l(CS) = 0 during
the lag phase. The growth rate during the lag phase was
determined by equation 14, with tlag being the duration
of the lag phase. With YXS, the average mass of sub-
strate consumed to produce one cell, substrate dynam-
ics in the batch culture was determined by equation 15.
We assumed the consumption of substrate by persisters
to be zero. Substrate concentration over time could be
related to growth and switching rates: l(CS), a(CS; CA)
and b(CS; CA).

• Growth rate during exponential and stationary phases

lðCSÞ ¼ lmaxCS=ðCS þ KSÞ ð13Þ

• Growth rate during the lag phase

Ift\tlag lðCSÞ ¼ 0 ð14Þ

• Substrate consumption

dCS=dt ¼ �lðCSÞnðtÞ � YXS ð15Þ
With equations 7, 8 and 15, we are now able to simulate
the dynamics of normal and persistent populations in a
batch culture and under antibiotic treatment. a(CS; CA)
and b(CS; CA) must be replaced by the switching model
selected. To calibrate our models’ parameters, we need
experimental dynamics of normal and persistent popula-
tions in environments with variable substrate concentra-
tions and under antibiotic treatment. A batch culture
experiences a diminishing substrate concentration owing
to its consumption by growing cells. Switching rates
should vary accordingly. To experimentally reveal the
persistent population, we must challenge a culture with
antibiotic and count the survivors over time. The

persister fraction can be quantified by the characteristic
biphasic killing curve obtained. Switching rates are also
affected by the antibiotic treatments, as assumed by the
IM and DM models. Table 2 shows the different limit val-
ues of a(CS; CA) and b(CS; CA) in different possible envi-
ronments for models IM and DM. For model
identification purposes, we will use killing curve data
obtained from batch experiments.

Experimental set-up

Bacterial strain and growth conditions. The strain used
was Klebsiella pneumoniae CH1440, a green fluorescent
protein-tagged strain constructed after the insertion of
the mini-Tn7-gfpmut3 into the genome of the biofilm-
forming CH1034 strain (Guilhen et al., 2015) using the
method described by Choi and Schweizer (2006).
The strain was grown in M63B1 broth supplemented with

glucose (4.0 g l�1; 1.0 g l�1 or 0.4 g l�1) and Luria–Ber-
tani agar for CFU count. Overnight cultures were made by
inoculating 15 ml of supplemented M63B1 broth in a 50 ml
Erlenmeyer flask with cells from a glycerol stock (�80°C)
and incubated 12 h at 37°C with shaking (100 rpm). Glu-
cose is assumed to be the only limiting nutrient and is
referred to as the substrate in the models’ equations.

Minimal inhibitory concentration. A solution of
ciprofloxacin (Sigma-Aldrich, Saint-Quentin-Fallavier,
France) at 10 mg ml�1 was prepared. The minimal inhibitory
concentration (MIC) determined according to the guidelines
of the Clinical Laboratory Standard Institute (CLSI) with
Mueller–Minton (MH) medium was 0.05 lg ml�1.

Killing curves. An overnight culture (12 h old) was
diluted to obtain a 150 ml bacterial suspension with an
optical density (OD620) of 0.015 in a 1 l Erlenmeyer

Table 2. Limit values of the switching rates in set environments for the IM and DM models. Normal and persistent population dynamics must
be obtained in the different environments to calibrate the models.

a(CS; CA) � b(CS; CA) �

ExperimentEnvironment/Model IM DM IM DM

Exponential culture
CS ≫ K
CA ≪ K’

a’ a’ b’ + bS + bA b’ + bSA Batch culture

Stationary culture
CS ≪ K
CA ≪ K’

a’ + aS a’ + aS b’ + bA b’

Antibiotic-treated exponential
culture
CS ≫ K
CA ≫ K’

a’ + aA a’ + aA b’ + bS b’ Killing curves obtained by treating batch culture samples

Antibiotic-treated stationary
culture
CS ≪ K
CA ≫ K’

a’ + aS + aA a’ + aS + aA b’ b’

ª 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology., Microbial
Biotechnology, 10, 1616–1627

Switching rates of bacterial persistence 1623



flask. This batch culture was run for 24 h at 37°C with
shaking (100 rpm).
At 0, 1.5, 3, 4, 5, 6, 7, 8, 9, 10 and 24 h, 5 ml of the

batch culture was sampled and placed in a new 50 ml
Erlenmeyer flask and supplemented with 1000-fold the
ciprofloxacin MIC. For each antibiotic-treated sample,
150 ll was taken at 0 (before the addition of ciprofloxa-
cin), 0.5, 1, 3 and 5 h. Quickly after sampling, each
150 ll sample was centrifuged at 6000 g for 1 min and
the bacterial pellet resuspended in 1.5 ml of cold saline
(water + NaCl 9 g l�1). Samples were then appropriately
diluted with saline and plated on LB agar with an easy-
Spiral� using the exponential mode. CFUs were deter-
mined after at least 12 h of incubation at 37°C. We
assumed that all bacteria able to resume growth formed
a visible colony within this time.

The experiment was performed three times with
M63B1 broth supplemented with glucose 4.0 g l�1, once
with 1.0 g l�1 and once with 0.4 g l�1. A schematic view
of the experiments is presented in Fig. 5.
To check whether the survivors of the antibiotic treat-

ments were resistant or susceptible to ciprofloxacin, 100
colonies were transferred on LB agar with 2.0 lg ml�1 of
ciprofloxacin. None was able to grow overnight. A bacte-
rial strain is considered resistant to ciprofloxacin if the
MIC is > 1 lg ml�1 (Bonnet et al., 2015). The colonies
transferred were from three samples plated on antibiotic-
free LB agar of three 7-h-old cultures treated for 5 h.
Although there could be a few resistant cells, they were
in minority compared with tolerant cells and we can rea-
sonably assume that their impact on the killing curves
obtained was small.

Fig. 5. Experimental design used to obtain data to calibrate the models.
A. 5 ml samples were regularly taken from an antibiotic-free batch culture, put into a new flask and treated with 1000-fold the ciprofloxacin MIC.
Treated cultures were themselves sampled over time to determine the number of CFUs.
B. The total cells in the batch cultures showed the classical phases of bacterial growth: the lag, exponential and stationary phases.
C. Characteristic biphasic killing curve obtained by quantifying viable cells over time in treated samples. One killing curve is obtained for each
5 ml sample from the batch culture.
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Quantification of the persistent population from the killing
curves. The presence of persisters in a population leads
to biphasic killing curves under antibiotic treatment
(Fig. 6). During a treatment, the normal and persistent
populations evolve over time as two exponentials
(equations 16).

X ðtÞ ¼ n0 � eð�dn�tÞ þ p0 � eð�dp�tÞ (16)

X(t) is the total population over time. n0 and p0 are the
initial populations of normal and persister cells in the
treated sample. dn and dp are the decay rates of the nor-
mal and persister populations under the antibiotic treat-
ment. The decay rates are caused by switching rates
between normal and persister cells and the susceptibility
of both populations to the antibiotic. The two populations
are distinguished from each other because dn ≫ dp. By
fitting equation 16 to a killing curve, it is therefore possi-
ble to quantify the persister fraction in a sample. This
method of quantification is used to obtain the experimen-
tal measurements of the persister fractions in the treated
samples from the batch cultures.

Optimization and validity of the models

The models were implemented in MATLAB�. Simula-
tions were discretized in time and initialized with experi-
mental data, unlike in the study of Balaban et al. (2004),
who used analytical solutions. The optimization of the
parameters was performed with the MATLAB� function
lsqcurvefit, which uses the least square method. The
parameters were optimized to obtain the optimal fit
between simulated and experimental killing curves. As
the antibiotic concentrations used were very high, we

approximated CA/(CA + K’) � 1 during simulated antibi-
otic treatments. We also assumed that the growth rate l
(CS) and the substrate consumed were zero during
antibiotic treatments. The optimization process of the
switching models is presented in the supporting informa-
tion of this study (Fig. S1). Solutions obtained were the
best local minima obtained from one thousand optimiza-
tions run with random initial conditions. The parameters
were bounded by relatively narrow limits. The parame-
ters a’, aS, aA, b’, bS, bA and bSA were bounded by 0
and 2 h�1. Parameter K was bounded between 0.1*Ks
and 10*Ks. Parameter kn was bounded by 6 and 20 and
parameter kp by 0 and 2 h�1. Experimental and simu-
lated data were compared in log CFU ml�1. The experi-
mental data used for the optimization were the means of
the three experiments using the medium supplemented
with 4.0 g l�1 of glucose. Thus, all parameters were opti-
mized for an initial substrate concentration of 4.0 g l�1 in
the batch culture.
We optimized the parameters of the Monod growth

model separately from the switching and death parame-
ters. We assumed that the effect of the switching models
on the dynamics of the total populations was negligible.
lmax was determined by fitting the function
X ðtÞ ¼ y � elmaxt to the exponential phase points of the
batch culture, between 1.5 and 5 h (four points). KS, tlag
and YXS were then optimized by fitting the equa-
tions 13–15 to the whole growth curve.
To test the extent of the validity of the models, we run

simulations by just changing the initial substrate concen-
tration, CS,i, to 1.0 g l�1 or 0.4 g l�1. Simulations were ini-
tialized with the experimental normal and persistent
populations at t = 0 of the experiments with medium sup-
plemented with 1.0 or 0.4 g l�1 of glucose. The other
parameters of the models were maintained as optimized
for the initial glucose concentration of 4.0 g l�1. The coef-
ficients of determination (R2) between simulated and
experimental results were used to assess the validity of
the models for changes in initial substrate concentrations.
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Supporting information

Additional Supporting Information may be found online in
the supporting information tab for this article:

Fig. S1. Optimization procedure of the switching model
parameters. Simulations were discretized in time. Substrate
concentration, biomass and switching rates were updated at
each time step (Dt = 0.001 h). t is the culture time of the
batch and t’ is the treatment time of the antibiotic-treated
samples. n(t = 0) and p(t = 0) are initialized with the experi-
mental measurements. Simulations of antibiotic treatments
were initialized with the variables of the simulated batch cul-
tures at the time of the samplings. We assume CA/
(CA + K’) = 1 and dCs/dt = 0 during antibiotic treatments.
Simulations exported sets of simulated killing curves directly
comparable to the experimental ones. The parameters were
optimized to obtain the best match between simulated and
experimental killing curves, i.e. the smallest chi-square

possible. All parameters of the switching model selected
and kn and kp were optimized together. 1000 optimizations
with random initial conditions were tested for each model.

Fig. S2. Killing curves obtained with the different samples
from the batch cultures with 4.0 g l�1 initial glucose. The
error bars represent the standard deviations of three repli-
cates. All killing curves are plotted on the same graph but
were obtained from separate treated samples from the
antibiotic-free batch culture harvested at 0, 1.5, 3, 4, 5, 6, 7,
8, 9, 10 and 24 h of culture. CFUs of each treated sample
were measured at 0, 0.5, 1, 3 and 5 h of treatment. The kill-
ing curve of the sample t0 h has a similar pattern to that of
the stationary phase killing curves, with a small decay of
the persistent population. There is some lag time before the
persisters of the overnight cultures start to wake-up in the
fresh medium.

Table S1. Growth parameters optimized for the initial
substrate concentration 4.0 g l�1.
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