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Abstract: Different subsets of lymphocytes have the capacity to promote or counteract the progression
of solid cancers, including hepatocellular carcinoma (HCC). Therefore, to determine the infiltrative
ability and functional status of major immune cell subtypes into tumor may lead to novel insights
from the perspective of immunotherapy. After obtaining single cell suspensions from freshly collected
specimens of HCC tumor, along with paired peritumor tissues and peripheral blood mononuclear cells
(PBMCs) from 14 patients, we flow-cytometrically identified and quantified the relative frequencies
of lymphocyte subsets within the tissues of origin. We found that the recruitment in the tumor of
cytotoxic cells, namely the terminally differentiated CD4+ and CD8+ T cells (TEFF), is impaired,
whereas the effector memory CD4+ T cells (TEM) are more attracted in this site. Concerning the other
subsets, the frequency of NK CD56hi and NKT CD56hi cells infiltration in the tumor is increased,
whereas that of NKT CD56low is reduced. Although CD4+ and CD8+ T cells settled in the tumor
show a higher degree of activation than the circulating counterpart, they occur with a more exhausted
phenotype. Overall, these data demonstrate the prevalently immunosuppressive nature of HCC
microenvironment, and prompt us to search for strategies to enhance the activity of anti-tumor
immune cell subsets.
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1. Introduction

Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related deaths
worldwide and one of the most common cancers; it occurs primarily in patients with underlying
chronic liver disease and cirrhosis. Until recently, HCC patients had limited treatment options, including
only tumor resection, liver transplantation, thermo-ablation and trans-arterial chemoembolization
(TACE), but the five-year survival is poor compared with other malignancies and the rate of tumor
recurrence after surgery is very high (70–80% of cases) [1,2]. Sorafenib, a multikinase inhibitor, the only
multi-targeted pharmaceutical agent, was approved for the treatment of patients with advanced HCC in
2007 [3], but it increases patient survival by only three months in advanced stage disease [4]. It also has
various side effects including alopecia, arthralgia, diarrhea, fatigue, headache and hypertension [5,6];
improved therapeutic strategies are thus urgently needed. The other major problem in the treatment of
HCC is the onset of resistance to chemotherapeutic drugs, and even multi-drug resistance [7,8].

Cancers 2020, 12, 627; doi:10.3390/cancers12030627 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0002-7844-7377
https://orcid.org/0000-0003-2692-1169
http://dx.doi.org/10.3390/cancers12030627
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/12/3/627?type=check_update&version=2


Cancers 2020, 12, 627 2 of 16

The role of immunity in cancer has been established in the recent decades; many studies described
the importance of the immune cell infiltrate in the tumor microenvironment of various cancer types, but
also, and very importantly, the nature of infiltrating cells and their interactions with the tumor [9,10],
which itself evades immune control and creates an immunosuppressive microenvironment. Indeed,
the intra-tumoral accumulation of immunosuppressive cells, such as myeloid-derived suppressor
cells or regulatory T cells (Tregs), has been well documented in patients and in animal models and is
considered of bad prognosis in most cancers [11–16]. Furthermore, increased frequencies of circulating
Tregs were observed in HCC patients and were indeed associated with low survival [17]. A recent study
also showed a significant increase in the frequency of Foxp3+ CD8+ T cells, that correlated with the
elevated frequencies of peripheral blood Tregs and with the stage of the disease in HCC patients [18].
On the contrary, the infiltration of the tumor by T helper 1 (Th1) cells and cytotoxic CD8+ T lymphocytes
(CTL) is usually of good prognosis [9,10]. However, these tumor-infiltrating CTL are usually exhausted:
they express negative regulators of T cell activity also known as “immune checkpoints”, such as PD-1
or CTLA-4 and have an impaired cytotoxic activity [19]. These observations urged pre-clinical and
clinical studies to evaluate the strategies to overcome the immunosuppression and exhaustion at tumor
site and enhance the anti-tumor response of cytotoxic cells. Many immunotherapeutic approaches are
under evaluation for many cancers, whether used as monotherapy, combination or adjuvant therapy to
approved treatments: immunotherapeutic vaccines, adoptive cell therapy [20–22], cytokine treatments
(including in HCC patients), or immune checkpoint inhibitors [23,24], even in HCC patients [25,26].

In the particular case of HCC, immune cells are not only involved in the anti-tumoral response,
but also in the pathogenesis of the tumor [27,28], since most HCC cases develop after chronic liver
inflammation in response to the hepatitis viruses B or C (HBV and HCV respectively) or to cirrhosis.
It has thus become urgent to clearly understand the role of each immune cell type in the initiation and
progression of liver cancer, to better develop more targeted and more efficient immunotherapies.

In this study, we aimed at fully characterizing the lymphoid immune infiltrate at the tumor site
as well as in the peritumoral tissue and the peripheral blood of HCC patients at different stages of
the disease.

2. Results

2.1. Lymphocyte Recruitment into HCC Tumor and Peritumor Site

First, we analyzed the immune cells’ frequencies in the peripheral blood of HCC patients as
compared to healthy controls. As expected, we found similar frequencies of total CD45+ cells in both
groups (Figure 1a). However, the percentages of T cells and B cells were significantly reduced in HCC
patients, while those of NK cells (CD3− CD56+ cells) and NKT cells (CD3+ CD56+ cells) were increased
(Figure 1b–e and Table 1). When we analyzed the infiltration of immune cells (CD45+) in the tumor
tissue and peritumor, we found that the percentage of CD45+ cells in the peritumor is higher than
that in the tumor itself (Figure 1a), showing that although the liver is considered as an immunological
organ, the infiltration of immune cells to the tumor site is impaired. When we further analyzed the
lymphoid subsets, we found that the immune infiltrate in the peritumor consists mainly of T cells
(49.79 ± 5.76), NK cells (8.13 ± 1.76) and NKT cells (7.00 ± 2.45), while B cells were lower (4.57 ± 1.72)
(Figure 1b–e and Table 1). T cell and B cell percentages were lower in the tumor site as compared to
the peritumor, while NK and NKT cell frequencies were similar. These results confirm the impaired
recruitment of lymphocytes to the site of the tumor: indeed, while T cells are increased in the peritumor,
their entry to the tumor site seems to be inhibited. Furthermore, while the percentages of NK and
NKT cells are increased in the blood of HCC patients, these cells are less present in the peritumor and
not more recruited to the tumor site. These data clearly show, and corroborate previously published
data [29], that the tumor site is a very particular microenvironment with preferential recruitment of
some immune subsets.
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Figure 1. Hepatocellular carcinoma (HCC) patients have imbalanced circulating lymphocyte 

proportions and an impaired immune infiltration to the tissues. Cell suspensions were prepared from 

peripheral blood mononuclear cells (PBMC), tumor and peritumor taken during surgery and were 

analyzed by flow cytometry. The PBMC from healthy donors were used as control. (a) Percentage of 

immune infiltration was identified by the total CD45+ cell portion in each tissue. (b–e) Percentage of 

lymphoid subsets within total CD45+ cells. Grey histograms represent cells obtained from healthy 

donors, while white histograms represent cells from HCC patients. Results are expressed as Mean ± 

SEM from cumulative results (n = 9–14 patients or controls). * p < 0.05, ** p < 0.01 and *** p < 0.001, as 

determined by Mann–Whitney’s test between each lymphoid subset, in each tissue.

Figure 1. Hepatocellular carcinoma (HCC) patients have imbalanced circulating lymphocyte
proportions and an impaired immune infiltration to the tissues. Cell suspensions were prepared from
peripheral blood mononuclear cells (PBMC), tumor and peritumor taken during surgery and were
analyzed by flow cytometry. The PBMC from healthy donors were used as control. (a) Percentage of
immune infiltration was identified by the total CD45+ cell portion in each tissue. (b–e) Percentage of
lymphoid subsets within total CD45+ cells. Grey histograms represent cells obtained from healthy
donors, while white histograms represent cells from HCC patients. Results are expressed as Mean± SEM
from cumulative results (n = 9–14 patients or controls). * p < 0.05 and ** p < 0.01, as determined by
Mann–Whitney’s test between each lymphoid subset, in each tissue.



Cancers 2020, 12, 627 4 of 16

Table 1. Total lymphocyte and NK subsets.

% Within CD45+ Cells

Mean ± SEM

PBMC Ctrl PBMC HCC p Value 1 Peritumor Lymphocytes p Value 1 p Value 2 TILs HCC p Value 1 p Value 2 p Value 3

T cells 61.52 ± 5.16 37.89 ± 4.59 0.0071 49.79 ± 5.76 0.22 0.11 42.29 ± 7.12 0.09 0.38 0.51
NKT cells 5.94 ± 1.64 10.32 ± 2.48 0.36 7.001 ± 2.45 0.95 0.47 6.53 ± 2.34 0.97 0.31 0.70
NK cells 9.28 ± 1.15 15.72 ± 3.41 0.60 8.133 ± 1.76 0.68 0.15 9.80 ± 2.97 0.40 0.41 0.76
B cells 9.76 ± 2.30 3.00 ± 0.58 0.0046 4.569 ± 1.72 0.032 0.67 1.81 ± 0.45 0.002 0.28 0.39

p value 1 = PBMC in ctrl vs. other tissues, p value 2 = PBMC in HCC patients vs. other tissues, p value 3 = Tumor vs. peritumor.

Table 2. NK and NKT subsets.

% Within NK Cells

Mean ± SEM

PBMC Ctrl PBMC HCC p Value 1 Peritumor Lymphocytes p Value 1 p Value 2 TILs HCC p Value 1 p Value 2 p Value 3

CD56hi 7.47 ± 2.21 5.71 ± 1.59 0.47 18.49 ± 6.51 0.55 0.13 19.60 ± 6.13 0.07 0.014 0.78
CD56low 81.15 ± 10.16 82.73 ± 7.43 0.78 76.45 ± 6.36 0.25 0.21 70.76 ± 8.65 0.11 0.10 1.00

% Within NKT Cells

Mean ± SEM

PBMC Ctrl PBMC HCC p Value 1 Peritumor Lymphocytes p Value 1 p Value 2 TILs HCC p Value 1 p Value 2 p Value 3

CD56hi 8.27 ± 3.87 8.83 ± 6.38 0.35 10.28 ± 3.56 0.93 0.29 26.49 ± 9.90 0.11 0.013 0.14
CD56low 88.49 ± 3.98 88.99 ± 6.42 0.43 88.15 ± 3.49 1.00 0.28 69.19 ± 9.61 0.08 0.003 0.04

p value 1 = PBMC in ctrl vs. other tissues, p value 2 = PBMC in HCC patients vs. other tissues, p value 3 = Tumor vs. peritumor.
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2.2. CD56hi NK and NKT Cells Are Increased in the Tumor

When we analyzed the frequencies of NK (CD56+ CD3-) and NKT cells (CD56+ CD3+),
we observed increased proportions of the CD56hi subset of NK cells, both in the peritumoral (18.49± 6.51)
and tumoral tissues (19.6 ± 6.13), as compared to those in the peripheral blood mononuclear cells
(PBMC) of the same HCC patients (5.71 ± 1.59) and in the PBMC of healthy donors (7.47 ± 2.21)
(Figure 2a and Table 2). On the other hand, the proportions of CD56low NK cells were decreased in
both tissues. However, the proportion of CD56hi NKT cells was only increased in the tumor (Figure 2b
and Table 2), while the CD56low NKT cells were decreased. Since the CD56low subset of NK cells
is known for their cytotoxic activity [30], we can suggest that in the tumor microenvironment, the
cytotoxic NK cells are reduced.
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Figure 2. Decreased frequencies of CD56low NK and NKT cells in tumors. Cell suspensions were
prepared from PBMC, tumor and peritumor taken during surgery and were analyzed by flow cytometry.
The PBMC from healthy donors were used as control. The intensity of CD56 expression in NK and
NKT cells was analyzed in all tissues and the expression of CD56hi (hatched histograms) and CD56lo
(white histograms) NK and NKT cells are shown in (a) and (b), respectively. Results are expressed
as Mean ± SEM from cumulative results (n = 9–14 patients or controls). * p < 0.05, as determined by
Mann–Whitney’s test between each lymphoid subset, in each tissue.

2.3. Cytotoxic T Cells Are Reduced at Tumor Site, While Tregs Accumulate

We further analyzed the T cells subsets in all tissues and observed an increased percentage of
CD8+ T cells in PBMC of HCC patients, as compared to controls, while the CD4+ T cells were reduced
(Figure 3a and Table 3). The frequencies of CD8+ T cells in the peritumor and in the tumor where
similar to the PBMC of the same patients; however, the frequencies of CD4+ T cells were similar in both
tissues, but lower than in their blood. Due to the fact that regulatory T cells (Tregs) are known to be
increased in cancer patients [31–33], we also evaluated Tregs (CD3+ CD4+ Foxp3+) in all the tissues of
HCC patients and, indeed, observed an increased frequency in the PBMC of HCC patients (4.88 ± 0.97),
as compared to healthy controls (2.28 ± 0.44) (Figure 3b and Table 3). Their proportion was even
higher in the peritumor and in the tumor (5.32 ± 2.50 and 5.63 ± 1.59, respectively). These data show
that Tregs have an increased recruitment to tumor site and are not blocked in the peritumor tissue.
Th1 cells (CD3+ CD4+ T-bet+ Foxp3-) are also increased in the PBMC of HCC patients (2.41 ± 1.60),
and even more increased in their peritumoral tissue (4.35 ± 1.49) and at the tumor site (12.97 ± 7.39)
(Figure 3b and Table 3); showing that the tumor microenvironment is an ongoing inflammatory
response. Furthermore, we detected the presence of T-bet+ Tregs (CD3+ CD4+ T-bet+ Foxp3+) only at
tumor site.
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Table 3. CD4+ and CD8+ T cell subsets.

% Within CD3+ T Cells

Mean ± SEM

PBMC Ctrl PBMC HCC p Value 1 Peritumor Lymphocytes p Value 1 p Value 2 TILs HCC p Value 1 p Value 2 p Value 3

CD4+ T cells 70.29 ± 2.94 54.45 ± 4.97 0.036 48.13 ± 6.03 0.0056 0.74 48.07 ± 5.22 0.006 0.74 0.78
CD8+ T cells 19.20 ± 2.08 30.97 ± 4.06 0.0498 29.514 ± 4.94 0.25 0.81 31.95 ± 3.65 0.017 0.48 0.72

% Within CD4+ T Cells

Mean ± SEM

PBMC Ctrl PBMC HCC p Value 1 Peritumor Lymphocytes p Value 1 p Value 2 TILs HCC p Value 1 p Value 2 p Value 3

Tregs 2.28 ± 0.44 4.88 ± 0.97 0.60 5.32 ± 2.50 0.833 0.596 5.63 ± 1.59 0.024 0.840 0.463
Th1 0.04 ± 0.02 2.41 ± 1.60 0.12 4.35 ± 1.49 0.017 0.120 12.97 ± 7.39 0.024 0.229 0.779

T-bet+ Tregs 0.09 ± 0.01 0.40 ± 0.19 0.88 0.56 ± 0.28 0.617 0.410 3.90 ± 1.90 0.2788 0.16 0.462

p value 1 = PBMC in ctrl vs. other tissues, p value 2 = PBMC in HCC patients vs. other tissues, p value 3 = Tumor vs. peritumor

Table 4. T cell subsets. TEFF = Terminally differentiated CD4+ and CD8+ effector T cells. TEM = Effector memory CD4+ T cells.

% Within CD4+ T Cells

Mean ± SEM

PBMC Ctrl PBMC HCC p Value 1 Peritumor Lymphocytes p Value 1 p Value 2 TILs HCC p Value 1 p Value 2 p Value 3

TN 14.24 ± 5.80 18.06 ± 5.21 0.65 2.02 ± 0.66 0.0096 0.005 5.55 ± 3.22 0.030 0.015 0.69
TCM 15.36 ± 6.87 10.24 ± 1.84 0.65 8.99 ± 3.27 0.46 0.52 14.69 ± 4.14 0.84 0.69 0.35
TEM 46.54 ± 5.58 44.41 ± 6.02 0.92 68.80 ± 8.11 0.012 0.012 69.75 ± 6.98 0.020 0.007 0.92
TEFF 26.82 ± 6.79 26.22 ± 6.52 0.60 11.22 ± 2.80 0.10 0.015 9.95 ± 1.95 0.09 0.018 0.97

% Within CD8+ T Cells

Mean ± SEM

PBMC Ctrl PBMC HCC p Value 1 Peritumor Lymphocytes p Value 1 p Value 2 TILs HCC p Value 1 p Value 2 p Value 3

TN 19.90 ± 8.58 19.47 ± 4.99 0.43 11.56 ± 4.20 0.90 0.15 10.45 ± 4.61 0.94 0.06 0.70
TCM 9.36 ± 4.39 4.62 ± 2.10 0.19 9.86 ± 3.99 0.50 0.05 14.30 ± 5.88 0.90 0.31 0.76
TEM 40.31 ± 9.17 28.98 ± 4.64 0.32 51.91 ± 9.23 0.36 0.049 49.77 ± 8.16 0.36 0.10 0.85
TEFF 30.43 ± 6.32 46.93 ± 5.90 0.09 26.68 ± 5.78 0.72 0.021 25.49 ± 7.26 0.41 0.023 0.70

p value 1 = PBMC in ctrl vs. other tissues, p value 2 = PBMC in HCC patients vs. other tissues, p value 3 = Tumor vs. peritumor
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Figure 3. Tregs are increased in HCC patients while Effector T cells are reduced. Cell suspensions
were prepared from PBMC, tumor and peritumor taken during surgery and were analyzed by flow
cytometry. The PBMC from healthy donors were used as control. The frequencies of T cell subsets were
analyzed in detail. (a) Frequencies of total CD4+ T cells, and CD8+ T cells within total CD3+ T cells are
shown; (b) Frequencies of Tregs (CD4+ Foxp3+ T-bet− T cells), Th1 (CD4+ Foxp3− T-bet+ cells) and
T-bet+ Tregs (CD4+ Foxp3+ T-bet+ cells) within CD4+ T cells. (c,d) Naïve (TN), central memory (TCM),
effector memory (TEM) and effector cell (TEFF) subsets within CD4+ T cells and CD8+ T cells. Results
are expressed as Mean ± SEM from cumulative results (with n = 9–14 patients or controls). * p < 0.05
and ** p < 0.01 as determined by Mann–Whitney’s test between each lymphoid subset, in each tissue.

2.4. Terminally Differentiated Effector T Cells Are Strongly Reduced at Tumor Site

We wanted to further analyze the compartmentalization of naive, effector and memory cells within
CD4+ and CD8+ T cells. We used the CD45RA and the CCR7 markers to distinguish between naïve T
cells (TN; CD45RA+ CCR7+), central memory T cells (TCM; CD45RA- CCR7+), effector memory T
cells (TEM; CD45RA- CCR7-) and terminally differentiated effector T cells (TEFF; CD45RA+ CCR7-)
(representative dot plots are shown in Supplementary Figure S1, left panels). We found that the
proportions of CD4+ TN were slightly increased in the blood of HCC patients as compared to healthy
controls (18.06 ± 5.21 vs. 14.24 ± 5.80), and TCM were decreased (10.24 ± 1.84 vs. 15.36 ± 6.87 in
controls) (Table 4 and Figure 3c), whereas the proportions of TEM and effector cells TEFF were similar.
On the contrary, the percentages of TN were significantly decreased in the peritumor and at the tumor
site (2.02 ± 0.66 and 5.55 ± 3.22, respectively). TCM are similar in the peritumor and the PBMC of the
same patients but were surprisingly higher in the tumor (8.99 ± 3.27 and 14.69 ± 4.14, respectively).
TEM percentages were significantly increased in both the peritumor and tumor (68.8 ± 8.11 and
69.75 ± 6.98, respectively), while the terminally differentiated TEFF were decreased in both tissues
(11.22 ± 2.8 and 9.95 ± 1.95, respectively), as compared to PBMC of the same patients (26.22 ± 6.52) and
to the PBMC of healthy donors (26.82 ± 6.79). When we look at these subsets within CD8+ T cells,
we observe that while TN in the PBMC of HCC patients (19.47 ± 4.99) were similar to those of healthy
donors (19.90 ± 8.58) (Table 4 and Figure 3d), and both TCM (4.62 ± 2.10) and TEM (28.98 ± 4.64) were
decreased as compared to controls (9.36 ± 4.39 and 40.31 ± 9.17, respectively). Importantly, TEFF
were drastically increased in the PBMC of HCC patients (46.93 ± 5.90 vs. 30.43 ± 6.32, in healthy
controls). In the peritumor, we found decreased proportions of TN (11.56 ± 4.2), but TCM were higher
than in patients’ PBMC (9.86 ± 3.99). TEM were significantly increased (51.91 ± 9.23) as compared to
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the PBMC, while TEFF were decreased (26.68 ± 5.78). In the tumor, however, TN were lower than
in patients’ PBMC but similar to the peritumor (10.45 ± 4.61), while TCM were strongly increased
(14.3 ± 5.88). TEM were augmented similarly to the peritumor (49.77 ± 8.16). Most interestingly, TEFF
were lower than in the PBMC, but similar to the peritumor (25.49 ± 7.26). These data corroborate
our hypothesis that some subsets are preferentially recruited to the tumor site and show that the
recruitment of terminally differentiated effector T cells to the tissue is strongly impaired.

2.5. Tumor- and Peritumor-Infiltrating T Cells Are Activated and Exhausted

Finally, because T cells that infiltrate tumor sites were previously shown to be exhausted [32], we
checked their activation state using the CD69 and the PD-1 markers (representative dot plots are shown
in supplementary Figure S1, right panels). We found significantly increased proportions of activated
CD69+ CD4+ and CD8+ T cells in the peritumor and tumor (15.25 ± 3.38 and 25.26 ± 4.55 respectively
for CD4+ T cells and 14.3 ± 3.74 and 31.87 ± 5.34 respectively for CD8+ T cells), as compared to
the PBMC of the same patients and of healthy controls (Figure 4a and Table 5) while the expression
intensity was only slightly higher as compared to the PBMC of healthy controls and PBMC of the
same patients (Figure 4b and Table 5). Interestingly, the percentage of T cells that express PD-1 is
significantly increased in the peritumor (14.98 ± 4.14 for CD4+ T cells and 14.24 ± 4.82 for CD8+ T
cells), and even more at tumor site (18.3 ± 5.2 for CD4+ T cells and 17.07 ± 6.59 for CD8+ T cells)
(Figure 4c and Table 5), and the intensity of the expression is also significantly increased on both T cells
in the tumor as compared to the PBMC of the same patients and to those of healthy donors (Figure 4d
and Table 5). These data clearly show that the tumor-infiltrating T cells are indeed exhausted.
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Figure 4. The percentage of PD-1+ and CD69+ T cells are increased in the tumor. Cell suspensions
were prepared from PBMC, tumor and peritumor taken during surgery and were analyzed by flow
cytometry. PBMC from healthy donors were used as control. The expression of PD-1 and CD69 on T
cells from PBMC, tumor and peritumor of each patient and on T cells from PBMC of healthy controls
was quantified. (a) Percentage of CD69+ CD4+ T cells and CD-69+ CD8+ T cells; (b) gMFI of CD69; (c)
Percentage of PD-1+ CD4+ T cells and PD-1+ CD8+ T cells; (d) Geometric mean fluorescence intensity
(gMFI) of PD-1. Results are expressed as Mean ± SEM from cumulative results (with n = 9–14 patients
or controls). See Table 5 for statistical analysis.
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Table 5. PD-1 and CD69 expression on T cell subsets.

% of CD69+ Cells

Mean ± SEM

PBMC Ctrl PBMC HCC p Value 1 Peritumor Lymphocytes p Value 1 p Value 2 TILs HCC p Value 1 p Value 2 p Value 3

CD4+ T cells 8.31 ± 4.83 4.01 ± 0.96 0.64 15.25 ± 3.38 0.0057 0.014 25.26 ± 4.55 0.0039 0.010 0.65
CD8+ T cells 6.79 ± 2.30 3.60 ± 0.92 0.38 14.30 ± 3.74 0.0006 0.026 31.87 ± 5.34 0.037 0.12 0.55

gMFI of CD69+ Cells

Mean ± SEM

PBMC Ctrl PBMC HCC p Value 1 Peritumor Lymphocytes p Value 1 p Value 2 TILs HCC p Value 1 p Value 2 p Value 3

CD4+ T cells 6.31 ± 1.18 5.19 ± 0.65 0.55 7.20 ± 0.82 0.70 0.10 7.65 ± 0.90 0.36 0.054 0.74
CD8+ T cells 5.50 ± 0.87 5.04 ± 0.50 0.59 7.52 ± 1.10 0.16 0.05 7.19 ± 0.90 0.18 0.099 1.00

% of PD1+ Cells

Mean ± SEM

PBMC Ctrl PBMC HCC p Value 1 Peritumor Lymphocytes p Value 1 p Value 2 TILs HCC p Value 1 p Value 2 p Value 3

CD4+ T cells 1.12 ± 0.39 3.97 ± 1.95 0.92 14.98 ± 4.14 0.058 0.0045 18.30 ± 5.20 0.0033 <0.0001 0.20
CD8+ T cells 1.83 ± 0.67 5.04 ± 1.76 0.26 14.24 ± 4.82 0.09 0.017 17.07 ± 6.59 0.0004 0.0001 0.035

gMFI of PD1+ Cells

Mean ± SEM

PBMC Ctrl PBMC HCC p Value 1 Peritumor Lymphocytes p Value 1 p Value 2 TILs HCC p Value 1 p Value 2 p Value 3

CD4+ T cells 4.58 ± 0.65 3.85 ± 0.51 0.30 6.12 ± 1.08 0.15 0.11 6.97 ± 0.67 0.0016 0.005 0.23
CD8+ T cells 7.69 ± 3.56 4.28 ± 0.75 0.19 7.48 ± 1.63 0.21 0.05 9.97 ± 1.76 0.010 0.001 0.17

p value 1 = PBMC in ctrl vs. other tissues, p value 2 = PBMC in HCC patients vs. other tissues, p value 3 = Tumor vs. peritumor
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3. Discussion

HCC is the most common liver cancer with very few treatment options; indeed, surgery, including
tumor resection and liver transplantation, is proposed at early stages of the disease, while more
advanced stages are treated with sorafenib or TACE. Traditional chemotherapy has a limited effect on
HCC, especially in advanced phases. Many studies are evaluating the combination of sorafenib with
TACE, or with other chemotherapeutic agents already in use for the treatment of other malignancies,
or with other molecules that target cell proliferation or angiogenesis [34]. Other possible strategies,
currently under evaluation for HCC, include immunotherapy using mainly checkpoint inhibitors that
interfere with CTLA-4 or PD-1 pathways [34]. These inhibitors indeed showed good efficacy in other
malignancies, including melanoma and renal cell carcinoma [35,36], and many were approved by the
FDA [37]. However, one of the main risks in the use of checkpoint inhibitors would be the induction of
autoimmune side effects known as immune related adverse events [37–39], particularly in the liver.

Indeed, the liver plays a major role in the clearance of gut-derived and blood-borne microbes and
pathogens, through the complex network of immune cells (mainly NK cells and lymphocytes) and
non-parenchymal liver-resident cells (Kupffer cells, dendritic cells, liver sinusoidal endothelial cells),
that create an immunosuppressive microenvironment via the production of anti-inflammatory cytokines
including Interleukin-10 and TGF-β. The liver is thus responsible for systemic immunotolerance to
non-pathogenic microbes/antigens and to chronic inflammation and the deregulation of this network
leads to loss of tolerance, liver disease (chronic infection, cirrhosis and eventually HCC) and failure.
The mechanisms responsible for the altered liver function are not completely understood. Furthermore,
in the case of HCC, immune cells are not only responsible for the anti-tumoral response but themselves
contribute to carcinogenesis, particularly CD8+ T-cells. During the infection with HBV or HCV,
virus-specific CD8+ T-cells are responsible for the clearance of the virus, however, these cells become
somehow exhausted and immune suppressed by the liver environment and thus are unable to eliminate
the pathogens, resulting in chronicity and HCC. In addition, myeloid-derived suppressor cells (MDSCs)
also represent an important immunosuppressive branch of the immune infiltrate in HCC. They
are a heterogeneous pool of leukocytes that are massively recruited to the tumor site, due to the
hypoxia-induced activation of surface enzymes and release of chemokines [40,41]. From a therapeutic
perspective, more efficient interventional framework may arise from combining current immune
treatments based on PD1, PD-L1, and CTLA-4 inhibition, with the induction of MDSCs differentiation
or activity neutralization [42]. Thus, manipulating the immune system or certain immune cells as a
therapy for HCC should be studied carefully, and understanding the immune response is crucial.

Therefore, in our study, we aimed at fully characterizing the lymphoid immune response to HCC
at different stages, in the blood, the tumor and the peritumor.

We found significant changes in the distribution of immune cells in the peripheral blood of
HCC patients as compared to healthy controls, but more importantly, some immune subsets were
preferentially recruited to the peritumor or to the tumor itself, while other cells were not. Indeed, total
T-cells and B cells were decreased in the PBMC of HCC patients as compared to healthy donors, but
not in the tissues; similarly, NK and NKT cells were only increased in the blood of HCC patients, but
not in either tissues.

Total CD4+ T cells were decreased in HCC patients, in all organs, while the CD8+ T cells were
increased. These results seem comforting as the infiltration of CTL is usually of good prognosis for the
patients [9,10]. When we looked further into the T cells subsets, we found reduced TEM in the PBMC
of HCC patients as compared to healthy controls, while the terminally differentiated effectors (TEFF)
were significantly decreased in the peritumor and tumor as compared to the PBMC of the same patients,
confirming the preferential recruitment of some immune subsets to the tumor. These data also clearly
show, that although the immune response seems to be mounted in the periphery, some mechanism(s)
seem(s) to inhibit the migration or the entry of cytotoxic and effector cells to the tumor site, partly
explaining why the anti-tumoral immune response is impaired in the tissue. Indeed, the cytotoxic
cells (including NK, NKT and CD8+ TEFF) are activated and expanding in the periphery, but seem
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unable to reach the site of inflammation. Therefore, understanding the mechanisms responsible for the
altered recruitment to tumor site is crucial. The significantly decreased proportions of the cytotoxic
CD56lo subset [30] of NK and NKT cells in the peritumor and furthermore in the tumor, corroborate
the reduced efficacy of the cytotoxic response to the tumor.

We also found increased frequencies of Th1+ CD4+ T cells in HCC patients, particularly in the
tumor itself, showing an efficient recruitment of these cells and an ongoing cytotoxic response in
the tumor. However, Tregs were also highly increased in the PBMC of HCC patients and in both
tissues, with no differential recruitment. From the light of many studies, the accumulation of Tregs
is usually of bad prognosis [11–16]. Moreover, we observed a preferential accumulation of T-bet+
Tregs in the tumor tissue, while they are rare in PBMC and peritumor of HCC patients, and absent in
healthy controls. Recent studies described these Tregs, and showed that they are able to dynamically
express the transcription factor of the cells they are supposed to inhibit [43,44]. In our case, we can
also suggest that a part of the Tregs accumulating in the tumor are aimed at inhibiting Th1+ CD4+

T cells. Additionally, the preferential accumulation of total Tregs (both T-bet+ Foxp3+ and T-bet-
Foxp3+ Tregs) might be due to the presence of a gradient of cytokines that attract them, including
TGF-β. TGF-β signalingplays indeed a major role in liver disease onset and progression [45], but also
in the differentiation and function of Tregs. It cannot be excluded that once Th1 cells reach tumor site,
they convert into Tregs, due to the immunosuppressive microenvironment. Furthermore, Tregs exert
immune suppression through the production of anti-inflammatory cytokines including TGF-β and
IL-10 or through the expression of surface molecules, such as CTLA-4. Therefore, TGF-β is playing a
crucial role in HCC development and progression. Studies are currently evaluating the way to target
TGF-β as a therapy for HCC [46]; Galunisertib, an inhibitor of TGF-β, is currently in a phase II clinical
trial for HCC patients. Notably, in a recent report, a positive correlation between CD4+, CD8+ FoxP3+

Treg cells and the progression stage of HCC was also observed. This association meaningfully enforces
the significance of evaluating the whole Treg compartment for a more reliable assessment of disease
staging [18]. Furthermore, we found increased proportions of T cells that express the activation marker
CD69 in the PBMC of HCC patients; they were more significantly increased in the tissues, clearly
showing the activated status of T cells. On the other hand, significantly increased percentages of PD-1+

T cells were also found in both tissues, but not in the PBMC of HCC patients, confirming that these
cells are activated but, once in the tissue, they become unable to eliminate tumor cells, probably due to
the chronic inflammation or to the immunosuppressive liver microenvironment. Our results are in line
with those obtained by Zheng et al., who performed a single-cell characterization of the transcriptome
of T cells, in the blood, tumor and surrounding tissue in 6 HCC patients infected with the hepatitis B
virus, and identified new biomarkers in tumor Tregs and exhausted CD8+ T cells [47]. It is interesting
to note that in two different liver diseases (HBV- and HCV-induced HCC), in patients who develop
chronic infection and progress to HCC, we observe eventually similar impairments in the adaptive
immune response: an accumulation of Tregs and exhaustion of CD8+ T cells.

These results led us to try to assess the efficacy of the cytotoxic response to the tumor in these
patients. Our preliminary data show that PBMC, tumor- and peritumor-infiltrating lymphocytes are
unable to kill tumor cells in vitro, but that the addition of an anti-PD-L1, but not anti-PD-1, inhibitor
partly restores their cytotoxic ability (data not shown). It would therefore be very interesting to assess
the combination of approved drugs such as Sorafenib with a checkpoint inhibitor.

In summary, our data suggest that the anti-tumoral immune response is likely developing normally,
at least in the periphery, but is impaired or inhibited by many mechanisms that occur in the tissue. It is
well known that the immune response that is mounted in the periphery is reshaped in the tissue [48],
particularly the tumor tissue. Since solid tumors, particularly carcinomas, are usually less vascularized
than normal tissue, the recruitment of immune cells would be reduced as compared to the peritumor
or normal tissue. Moreover, less nutrients, including oxygen and glucose, are available in the tumor
microenvironment. Recent studies have shown that under low-glucose conditions, Tregs, for example,
can adapt and overcome the suppression of T cell metabolism and function, while conventional T cells



Cancers 2020, 12, 627 12 of 16

cannot [49,50]. Therefore, we propose a model where: (i) the anti-tumoral immune response seems
to mount properly in the periphery and probably in the liver tissue itself, where the inflammation
is taking place, (ii) but that some immune subsets are preferentially recruited to both the peritumor
and tumor site (including Th1 cells, Tregs, TEM, CD56hi NK and NKT cells), (iii) while some cells are
only accumulating in the tumor itself (T-bet+ Tregs), and other cells’ entry or function is inhibited
(TEFF). Once in the tissue, the microenvironment reshapes their phenotype and function and favors
immunosuppression, explaining why the anti-tumoral response is impaired.

To our knowledge, this is the first study that analyzes the changes in lymphoid response
simultaneously in three different organs from each HCC patient, giving a clear overview of the
peripheral and local anti-tumoral lymphoid response in HCC patients infected with the hepatitis C
virus. Our next step would be to evaluate the efficacy of the anti-tumoral response and try to find the
optimal combination therapy to enhance the cytotoxic response to tumor cells.

4. Materials and Methods

4.1. Patients

Peripheral blood, tumor and peritumoral tissue from 14 patients with HCC (all males aged
between 52 and 74 years; suffering from HCV infection) undergoing tumor resection or liver transplant
were collected at the surgery room of the Department of Emergencies and Organ Transplant of the
Policlinic hospital of Bari, between September 2016 and September 2017. Tissues were taken directly
after surgical removal from 13 patients (2 patients underwent thermo-ablation of the tumor, without
surgical intervention and tissue collection). The peripheral blood of 9 healthy individuals was taken as
control. This study has been approved by the local ethical committee of University Hospital Policlinico
Consorziale and has also been accepted by the Italian Association for Cancer Research.

4.2. Isolation of Patients’ Peripheral Blood Mononuclear Cells (PBMC), Tumor-Infiltrating Lymphocytes (TILs)
and Lymphocytes from the Peritumor Site

Blood samples were collected during surgery and processed for PBMC isolation using the
Ficoll-paque Plus gradient centrifugation (GE Healthcare, Chicago, IL, USA). Briefly, after the removal
of plasma, the blood was diluted in PBS 1× (1:1 volume) and layered over the ficoll-hypaque (ratio
2:1) and centrifuged for 30min at 800 rcf, without brake, at room temperature. The upper layer was
then discarded and the PBMC at the interface between the PBS and the ficoll were harvested, washed,
counted and further processed for FACS staining. Tumor and peritumor tissue samples were harvested,
mechanically disrupted and treated for 2 to 4h with 400 U/mL collagenase D, then filtered to obtain
single-cell suspensions. Lymphoid cells were further isolated using the Ficoll-paque Plus gradient
centrifugation, as described for PBMC.

4.3. Flow Cytometry Analysis

The following monoclonal antibodies (mAbs) were used for FACS staining: FITC-conjugated
anti-FoxP3, or anti-CCR7, APC- conjugated anti-CD56, or anti-CD69, or anti-CD127,
APC-eF780-conjugated anti-CD3, AlexaFluor 700-conjugated anti-CD4, eFluor450-conjugated anti-CD8,
PerCPCy5.5-conjugated anti-CD45RA or anti-HLA-A2, PE-conjugated anti-CD19 or anti-PD-1,
PE-Cy7-conjugated anti-CD45. PBMC, tumor and peritumor cell suspensions were incubated for
20min with the antibody mixes in the dark at 4 ◦C, washed twice. For the staining and detection
of Th1 and Tregs, cells were permeabilized and stained with PerCPCy5.5- conjugated anti-T-bet
and FITC-conjugated anti-Foxp3, respectively, according to the manufacturer’s protocol (eBioscience
Thermo Fisher Scientific, Waltham, MA, USA). All mAbs and their respective isotypes were purchased
from BD Pharmingen and eBioscience. Stained cells were then acquired on a Navios cytometer
(Beckman coulter, Brea, CA, USA) and analyzed using the FlowjoTM software (Becton Dickinson and
Company, Ashland, OR, USA) (Supplementary Figure S2).
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4.4. Statistical Analysis

The two-tailed Mann–Whitney’s test was used to measure the statistical significance for differences
between the groups, using the Prism software (GraphPad Software, Inc., San Diego, CA, USA). p values
less than 0.05 were considered statistically significant.

5. Conclusions

The data here presented highlight the immunosuppressive nature of HCC micro-environment.
We show that the overall number of circulating T cells is reduced in HCC patients, as compared to
healthy subjects. Moreover, we show that the entry of cytotoxic lymphocytes, such as CD4+ and
CD8+ TEFF into the tumor tissue is compromised, and that, following recruitment, these effectors
undergo exhaustion. This may be, at least in part, explained by the aptitude of solid neoplasms
such as HCC to re-shape the phenotypes of lymphocytes functionally committed to exert anti-tumor
activities, to finally achieve the evasion of cancerous cells from immune surveillance. Further
investigations will be important to clarify the cellular and molecular mechanisms behind the impaired
recruitment of immune effector cells within the tumor and/or their early exhausted status. The resulting
knowledge will potentially address the major issue of designing more focused therapies to re-enable
the anti-tumor immunity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/3/627/s1,
Figure S1: Representative dot plots for CCR7/CD45RA and CD69/PD-1 staining in T cells, Figure S2: Lymphocyte
gating strategy.
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