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Spinal cord stimulation using
differential target multiplexed
programming modulates neural
cell-specific transcriptomes in an
animal model of neuropathic pain
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Ricardo Vallejo1,2,4

Abstract

Spinal cord stimulation is a proven effective therapy for treating chronic neuropathic pain. Previous work in our laboratory

demonstrated that spinal cord stimulation based on a differential target multiplexed programming approach provided sig-

nificant relief of pain-like behavior in rodents subjected to the spared nerve injury model of neuropathic pain. The relief was

significantly better than obtained using high rate and low rate programming. Furthermore, transcriptomics-based results

implied that differential target multiplexed programming modulates neuronal–glial interactions that have been perturbed by

the pain process. Although differential target multiplexed programming was developed to differentially target neurons and

glial cells, our previous work did not address this. This work presents transcriptomes, specific to each of the main neural cell

populations (neurons, microglia, astrocytes, and oligodendrocytes), obtained from spinal cord subjected to continuous spinal

cord stimulation treatment with differential target multiplexed programming, high rate programming, or low rate program-

ming compared with no spinal cord stimulation treatment, using the spared nerve injury model. To assess the effect of each

spinal cord stimulation treatment on these cell-specific transcriptomes, gene expression levels were compared with that of

healthy animals, naı̈ve to injury and interventional procedures. Pearson correlations and cell population analysis indicate that

differential target multiplexed programming yielded strong and significant correlations to expression levels found in the

healthy animals across every evaluated cell-specific transcriptome. In contrast, high rate programming only yielded a strong

correlation for the microglia-specific transcriptome, while low rate programming did not yield strong correlations with any

cell types. This work provides evidence that differential target multiplexed programming distinctively targeted and modu-

lated the expression of cell-specific genes in the direction of the healthy state thus supporting its previously established

action on regulating neuronal–glial interaction processes in a pain model.
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Introduction

The establishment and maintenance of chronic neuro-

pathic pain involve the disruption of biological processes

that maintain the homeostatic balance of neurotransmis-

sion.1 Central to these processes are the interactions

between neurons and the surrounding glial cells that sup-

port the proper metabolic and immunologic microenvi-

ronment of the neural tissue.2 Recently, our group
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reported the transcriptomics of spinal cord stimulation
(SCS) using a differential target multiplexed program-
ming (DTMP) approach in which electrical signals
were synchronously delivered to the dorsal aspect of
the cord of rodents subjected to the spared nerve
injury (SNI) model of neuropathic pain.3 This work
showed that DTMP provided significant relief from
mechanical and thermal hypersensitivity relative to pre-
treatment levels. Additionally, the relief of mechanical
hypersensitivity obtained with DTMP was significantly
better than that obtained with high rate and low rate
stimulation programs (HRP and LRP, respectively).
This work also showed that DTMP modulated biologi-
cal processes associated with neuroglial interactions
toward a non-painful naı̈ve state, more effectively than
the other traditional SCS approaches. Given that the
analyses in that report were based in the full tissue tran-
scriptome (i.e. the entire set of genes detected), an impor-
tant matter that remained pending was demonstrating
that the electrical fields used in the DTMP approach
could differentially target neurons and glial cells (micro-
glia, astrocytes, and oligodendrocytes) in the spinal cord
tissue examined.

To address this critical matter, we examined sets of
genes (transcriptomes) from our collected data that are
known to be uniquely and unequivocally over-expressed
by the different cell types.4,5 The expression changes of
genes in these cell-specific transcriptomes upon treat-
ment with DTMP, LRP, or HRP were compared to
those in untreated animals. Correlations of gene expres-
sion patterns produced by each SCS treatment with that
of healthy naı̈ve animals were used to quantify the extent
to which each SCS treatment produced changes in each
of the cell-specific transcriptomes. High positive correla-
tions indicate a large extent of return of cell expression
levels toward those found in the naı̈ve state. This work
presents the results of this analysis.

Methods and Materials

A full description of the experimental design is provided
elsewhere.3 Briefly, the study was approved by the
Institutional Animal Care and Use Committee at
Illinois Wesleyan University. Male adult Sprague–
Dawley rats (Envigo, Indianapolis, IN) weighing 275–
315 g were randomized into five groups. Animals in
four of the groups were subjected to the SNI model of
neuropathic pain and implanted with a miniaturized
SCS lead. Animals in one of these groups did not receive
stimulation (No-SCS, n¼ 10), while animals in the other
three groups were subjected to 48 h of continuous SCS
with either DTMP (n¼ 9), LRP (n¼ 11) or HRP
(n¼ 10). A control group (n¼ 7) consisted of naı̈ve ani-
mals with no surgical intervention. Animals were housed
individually in a temperature and humidity control room

and subjected to a 12-h light/dark cycle. Food and water
were supplied ad libitum.

DTMP utilizes multiplexed charge-balanced pulsed
signals with components at frequencies of 50Hz (150
ms pulse width, PW) and 1200Hz (50 ms PW), distributed
over the four contacts of the lead. LRP was set to 50Hz
and 150 ls PW, and HRP at 1200Hz and 50 ls PW.
Signal intensities were set to �70% of the motor thresh-
old (MT) tested under a given stimulation program and
were in the 0.02–0.10mA range for HRP, 0.03–0.09mA
range for LRP, and 0.03–0.10mA range for DTMP.
Programs were not duty cycled, and the initial intensities
were kept throughout the 48 h of stimulation. Naı̈ve and
No-SCS animals were assessed in parallel to the stimu-
lated animals.

Animals were euthanized after stimulation and the
ipsilateral dorsal quadrant of the L1–L2 segment of
the cord, which was underneath the SCS lead, was har-
vested. RNA was extracted and sent to the Roy J.
Carver Biotechnology Center at the University of
Illinois at Urbana-Champaign for RNA sequencing
(RNAseq). Barcoded RNAseq libraries were constructed
with the TruSeqVR Stranded mRNA Sample Prep kit
(Illumina, San Diego, CA) and quantitated with
QubitTM (ThermoFisher, Waltham, MA). These librar-
ies were diluted to 10 nM and further quantitated using
the Polymerase Chain Reaction (qPCR) on a CFX
ConnectTM Real-Time qPCR system (Biorad, Hercules,
CA) for accurate pooling of the barcoded libraries and
maximization of the number of clusters in the flow cell.
Pooled barcoded libraries were loaded on an eight-lane
flow cell for cluster formation and sequenced on an
Illumina HiSeq

VR

4000 (Illumina, San Diego, CA). The
libraries were sequenced from one end of the cDNA
fragments for a total of 100 base pairs (bp). Salmon v
0.8.2 was used to quantify the abundance of each tran-
script based on the NCBI’s Rnor_6.0 transcriptome,
Annotation Release 106.6 Gene-level counts were esti-
mated from transcript-level counts using the “bias-cor-
rected counts without an offset” method from tximport
v 1.6.0, which provides more accurate gene-level counts
and keeps multi-mapped reads in the analysis compared
to traditional genome alignment methods.7Gene-level
counts were imported into R v 3.4.3 and genes without
at least 0.5 counts per million after trimmed-mean of M
values (TMM) normalization in at least four samples
were filtered out.8 TMM normalization factors were re-
calculated, and log2-based count per million values
(logCPM) were calculated using edgeR v 3.20.5.9

Differential gene expression analysis was performed
using the limma-trend method on the logCPM values
for naı̈ve and SCS-treated groups relative to untreated
animals (No-SCS).10,11

Cell-specific transcriptomes for neurons, astrocytes,
oligodendrocytes (both precursors and matured), and
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microglia were obtained from the literature.4,5 The data-

set for neurons, astrocytes, and oligodendrocytes was
generated using cell sorting and high-quality purification

techniques that identified, isolated, and purified each of

these cell types from the forebrain of young mice.4 The
mRNA contained in these isolated and purified cell-

specific samples was quantified using microarray techni-
ques to develop master lists of genes consistently

expressed by only one cell population. The microglia-

specific transcriptome was obtained using cell sorting
and purification techniques that isolated microglia

from the brain of young adult mice.5 Direct RNA

sequencing was used to identify and quantify genes
that were differentially enriched in the isolated microglia

relative to the content in full brain of the rodents. These
cell-specific lists were cross-referenced to our own whole-

transcriptome data. Data that overlapped for every cell

type were used in the analysis. Pearson correlations coef-
ficients (R) and p values were calculated (Microsoft

Excel for Windows 10) for the correlation between the

gene expression pattern in each cell-specific transcrip-
tome for each SCS treatment (relative to No-SCS) and

the expression pattern of naı̈ve (relative to No-SCS). A
correlation with a p value below 0.05 was considered

significant.
The percentage of genes which underwent expression

changes due to the pain model by at least 10% (%Cp) was

estimated for each cell-specific transcriptome. The per-

centage of expression change (%C) due to the pain
model was obtained for each gene as follows (equation 1)

%C ¼ xpain � xnaive
xnaive

� 100 (1)

where xpain and xnaive are the expression levels of a gene

in the pain state (No-SCS) and the naı̈ve state, respec-

tively. Positive values of %C correspond to up-
regulation of the gene by pain, and negative values cor-

respond to down-regulation.
The percentage of genes that returned toward the

expression level in the naı̈ve state (%RSCS) due to each

SCS treatment was also obtained for each cell-specific
transcriptome. To determine if the expression of a gene

had returned to naı̈ve levels, a recovery factor (Rf) was

estimated for each gene as follows (equation 2)

Rf ¼ xpain � xSCS
xpain � xnaive

(2)

where xpain, xnaive, and xSCS are the expression levels of a

gene in the pain state (No-SCS), the naı̈ve state, and

after SCS treatment, respectively. Due to the divergent
nature of Rf, only genes with Rf � 1.5 were accounted

for when obtaining %RSCS.

Finally, the percentage of genes that had expression
levels within 15% of the expression levels in naı̈ve ani-
mals (%Dn) was obtained for each cell-specific trancrip-
tome. This was based on the percentage difference in the
expression level of a gene as a result of SCS relative to
that in the naı̈ve state (%CSCS) calculated as follows
(equation 3)

%CSCS ¼ xSCS � xnaive
xnaive

� 100 (3)

where xSCS and xnaive are the expression levels of a gene
after SCS treatment and the naı̈ve state, respectively.

Gene ontology enrichment analysis (GOEA) for bio-
logical processes and molecular functionality as well as
interaction network maps were performed using the
String Database web-based freeware application
(String Database v11.0).12 Biological processes or molec-
ular functionality are considered significantly enriched
when the false discovery rate (FDR)-based p value is
below 0.05 (FDR p< 0.05).

Results

The neuron-specific transcriptome from our data was
cross-referenced with the 72 genes of the literature set.
The astrocyte-, oligodendrocyte-, and microglia-specific
transcriptomes from our data cross-referenced with 188,
154, and 101 genes of the literature lists, respectively.
These lists are provided in the Supplementary
Material. Figure 1 shows heat maps for the four cell-
specific transcriptomes for gene expression ratios (i.e.
fold changes) for Naı̈ve:No-SCS, DTMP:No-SCS,
HRP:No-SCS, and LRP:No-SCS. Table 1 shows the
Pearson correlation coefficients (R) and p values for
the comparison of gene expression patterns of each
treatment relative to naı̈ve. Table 1 also shows the per-
centage of genes in each transcriptome that has at least a
10% change in gene expression as a result of the pain
model (No-SCS) relative to naı̈ve (%Cp), as well as the
percentage of genes returned toward naı̈ve levels by each
SCS treatment (%RSCS) and the percentage of genes that
resulted with expression levels within 15% of those in the
naı̈ve state (%Dn) due to SCS treatment. It is important
to mention here that untreated animals (No-SCS) repre-
sent a pain state, while naı̈ve animals represent a healthy
state.

Table 2 shows the most significant biological process-
es related to the 40 most upregulated genes by the pain
model in the microglia-specific transcriptome. Table 3
shows the most significant biological processes related
the top 40 most downregulated genes by the pain
model in the neuron-specific transcriptome. Tables for
the most significant biological processes involving oligo-
dendrocytes and astrocytes are found in the
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Figure 1. Differential gene expression heat maps for cell-specific transcriptomes of each SCS treatment relative to no treatment (pain
state) compared to the healthy state (naı̈ve) relative to the pain state (No-SCS). For illustration purposes, genes that did not change more
than 10% as a result of the pain model (No-SCS) relative to naı̈ve were not included in the figure.

Table 1. Pearson correlation coefficients (R), percentage of genes changed by the pain state relative to naı̈ve (%Cp), percentage of genes
recovered by SCS (%Rscs) and percentage of genes that ended near naı̈ve levels upon SCS treatment(%Dn) for each cell-specific
transcriptome.

Microglia

(n¼ 101)

Astrocyte

(n¼ 188)

Oligodendrocyte

(n¼ 154)

Neuron

(n¼ 72)

Pearson correlation

coefficients

R (DTMP) 0.652

(p< 0.001)

0.693

(p< 0.001)

0.651

(p< 0.001)

0.737

(p< 0.001)

R (HRP) 0.613

(p< 0.001)

0.235

(p¼ 0.001)

0.250

(p¼ 0.002)

0.409

(p< 0.001)

R (LRP) �0.202

(p¼ 0.043)

0.160

(p¼ 0.029)

0.0870

(p¼ 0.283)

0.302

(p¼ 0.010)

% changed by paina %Cp 79% (")
11% (#)

36% (")
17% (#)

42% (")
13% (#)

14% (")
51% (#)

% recovered by SCSb %RSCS (DTMP) 84% 79% 82% 85%

%RSCS (HRP) 79% 68% 65% 49%

%RSCS (LRP) 23% 65% 41% 60%

% within 15% of naivec %Dn (DTMP) 13% 65% 75% 70%

%Dn (HRP) 19% 48% 38% 36%

%Dn (LRP) 6.6% 51% 24% 32%

SCS: spinal cord stimulation; DTMP: differential target multiplexed programming; HRP: high rate programming; LRP: high rate programming
aPercentage of genes with expression level changes of at least 10% by the pain model. "¼ increased, #¼ decreased.
bPercentage of genes that returned toward naive levels upon treatment.
cPercentage of genes that returned to within 15% of the expression level in naı̈ve animals upon treatment.
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Supplementary Material. This also contains interaction

network maps and molecular functionality enrichment

for each cell type.

Discussion

Effect of the pain model in the cell-specific

transcriptomes

It is evident that the SNI model of neuropathic pain has

a strong effect on the cell-specific transcriptomes, as

illustrated clearly by the differential gene expression

between naı̈ve (healthy state) and No-SCS (pain state)

animals (left-most columns in Figure 1). This is also

reflected in the percent of genes that have experienced

at least a 10% change in the expression levels in going

from the naı̈ve to the pain state (%Cp in Table 1). The

total of genes (sum of both up and downregulated)

being modulated by pain corresponds to 65% of

neuron-specific genes, 90% of microglia-specific genes,

55% of oligodendrocyte-specific genes, and 53% of

astrocyte-specific genes contained within our data. An

interesting result from the analysis is that in all glial

cell-related transcriptomes, the pain model up regulates

most of the genes. The larger effect is especially observed

in the microglia gene set, where 79% of genes are upregu-

lated by the pain model. In contrast, the pain model down

regulates most of the genes specific for neurons (51%).

This counter effect in the expression levels of glia and

neurons imply an imbalance in neuronal–glial interactions

as a result of the establishment of neuropathic pain.
As previously reported, the pain model sets an

immune and inflammatory response that involves glial

cells.3,13 The larger effect on microglia reflects the early

stage of the development of chronic pain in our model.

By the time tissues are dissected, animals in the

Table 2. Top 10 most significant biological processes related to the 40 most upregulated genes by the pain model in the microglia-specific
transcriptome.a

GO ID# Biological process Number of genes FDR p value

GO:0007166 Cell surface receptor signaling pathway 13 4.66� 10�7

GO:0007186 G protein-coupled receptor signaling pathway 11 6.13� 10�7

GO:0002252 Immune effector process 7 2.31� 10�6

GO:0007165 Signal transduction 16 7.47� 10�6

GO:0051716 Cellular response to stimulus 19 7.47� 10�6

GO:0002376 Immune system process 10 2.28� 10�5

GO:0006955 Immune response 8 3.56� 10�5

GO:0050900 Leukocyte migration 5 3.56� 10�5

GO:0070887 Cellular response to chemical stimulus 13 3.56� 10�5

GO:35,589 G protein-coupled purinergic nucleotide

receptor signaling pathway

3 5.01� 10�5

FDR: false discovery rate.
aA list of the 117 biological processes found to be significant, and an interaction network of these 40 genes can be found in the Supplementary Material.

Table 3. Ten of the top most significant biological processes related to the 40 most downregulated genes by the pain model in the
neuron-specific transcriptome.a

GO ID# Biological process Number of genes FDR p value

GO:0007399 Nervous system development 12 2.26� 10�5

GO:0007154 Cell communication 13 2.0� 10�4

GO:0023052 Signaling 12 4.8� 10�4

GO:0006810 Transport 11 7.9� 10�4

GO:0034220 Ion transmembrane transport 7 8.1� 10�4

GO:0007267 Cell–cell signaling 6 1.0� 10�3

GO:0007268 Chemical synaptic transmission 5 1.0� 10�3

GO:0098660 Inorganic ion transmembrane transport 6 1.0� 10�3

GO:0042391 Regulation of membrane potential 5 1.3� 10�3

GO:0071242 Cellular response to ammonium ion 3 1.4� 10�3

FDR: false discovery rate.
aA list of the 80 biological processes found to be significant and an interaction network of these 40 genes can be found in the Supplementary Material.
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untreated group have experienced seven days of pain-
like behavior. At such stage, microglia are the most
active glia population, as they are heavily engaged in
responding to injury. A GOEA on the microglia genes
most upregulated by the pain model implies that these
are involved in signaling pathways that activate the
immune response (Table 2). As expected, the expression
of astrocyte-specific genes was not affected at the same
extent. The effect of astrocyte activation is known to
manifest more robustly as the pain process extends.
We also found that the %Cp for oligodendrocyte-
specific genes is remarkably similar to that found in
the astrocyte-specific genes. This result reaffirms the
role of oligodendrocytes in the establishment of chronic
pain14,15 and emphasizes that the effect of the pain
model on oligodendrocytes during the early stages of
pain chronification is not as noticeable as it is in the
microglia.

As mentioned above, the overall effect of the pain
model in the neuron-specific transcriptome contrasts
with that found for the glial transcriptomes. The expres-
sion levels of neuronal genes are mostly downregulated.
A GOEA for the 40 most downregulated neuron-specific
genes by the pain model (Table 3) implies that pain
affects biological processes involved with neurotransmis-
sion via ion transmembrane transport, as well as proper
neuronal development. It is well known that chronic
pain reduces inhibitory neurotransmission that involves
the reduction of the activity of GABAergic cells.16

Previous research in rodent models also demonstrated
that neuropathic pain causes apoptosis of neurons in
the dorsal horn of the spinal cord.17

Effect of SCS treatment in the cell-specific
transcriptomes

The results clearly indicate that SCS has a modulating
effect on the gene expression of cells in neural tissue.
However, the characteristics of the electrical stimulation
field influence the extent of the modulation of gene
expression patterns for each specific cell population.
For instance, treatment with LRP correlates the least
with the naı̈ve state profile. Correlations for microglia-,
astrocyte-, and neuron-specific cells were significant,
albeit weak. Interestingly, the correlation for the
microglia-specific transcriptome was negative. This indi-
cates that the expression levels of certain genes modulat-
ed by the pain model are further modulated in the same
direction by LRP. Indeed, LRP upregulates many
microglia-specific genes that are already upregulated by
the pain model. This implies that LRP increases the
effect on the signaling and immune processes that have
been affected in the pain state. Whether this effect is

beneficial or not would depend on the role of these pro-

cesses in terms of neuroprotective or neurodegenerative
effects that microglial activation may induce. These

effects will be presented in future work in which the

changes in the expression of genes associated with micro-

glial phenotypes will be studied.
The correlations between HRP treatment and naı̈ve

for all cell-specific transcriptomes are statistically signif-

icant and positive. Only the correlation for the

microglia-specific transcriptome is strong, while the cor-
relation for the neuron-specific transcriptome is moder-

ate, and the other two correlations are weak. In contrast

to the effect of LRP, HRP drives microglia gene expres-
sion toward the naı̈ve state as a predominant effect,

while the effect of astrocytes, oligodendrocytes, and neu-

rons is weaker.
The effect of multiplexing stimulating electrical sig-

nals as done in DTMP is significant. The correlations

between DTMP treatment and naı̈ve animals were pos-

itive and strong for all the cell-specific transcriptomes. In
contrast with the other two treatments, DTMP is more

effective at modulating gene expression in all cell types

and more strongly in the direction of expression levels in

the naı̈ve state. The enhanced effect of DTMP is also
reflected in the percentage of genes that are modulated

back toward the naı̈ve state (%RSCS in Table 1). DTMP

modulates about 80% or more of the genes toward the
naı̈ve state in all cell populations. Only HRP has a sim-

ilar effect on the microglia population. Indeed, it can be

stated that the HRP treatment only matches DTMP on

its effect on microglia, while LRP does not match the
effect of DTMP in any of the different cell populations.

Additionally, when compared to HRP and LRP, the

cell-specific transcriptomes related to DTMP contained

the largest percentage of genes with expression levels
that are within 15% (%Dn in Table 1) of the levels

they have in the healthy naı̈ve state. In this respect, the

effect of DTMP and HRP in microglia-specific genes is
also similar, although less than 20% of these genes

returned to expression levels within 15% of the naı̈ve

state. It is plausible that at the early stage of pain chron-

ification studied here, the large expression levels of
microglia genes overcome the effect of 48 h of SCS

with DTMP or HRP and thus the effect of stimulation

may not yet be pronounced in this cell population.

Future work is planned to explore the effect of the
pain model at longer times and how longer exposure

to SCS affects the neuronal and non-neuronal cell

populations.
This study provides evidence that the multiplexing of

electric signals as implemented in DTMP is effective at

returning a majority of genes in the transcriptomes of
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neuron and glial cells to the expression patterns found

for naı̈ve animals. In contrast, HRP provides similar

effects only at the microglia-specific genes and only

weak to moderate effects on the other cells’ genes.

LRP, on the other hand, is weakly effective, and for

many genes in the microglia-specific transcriptome, it

enhances the effect of the pain model.
There are certain limitations in this study. The study

depicts an early stage in the chronicity of the pain model,

equivalent to 3–4months of pain in humans.18 It is likely

that the results would be different at longer times when

the astrocytes have become more active. Also, 48 h of

continuous stimulation is not a reflection of the clinical

long-term stimulation periods used in humans. It is plau-

sible that longer durations of stimulation may result in

different outcomes. For instance, gene expression pro-

files for HRP and LRP may yield stronger correlations

with naı̈ve profiles, similar to those obtained with

DTMP. Another limitation is that, given the limited

existing data, the cell-specific transcriptomes used for

comparisons were obtained from brain cells in mice.

However, the evolutionary similarities in the role of

glial cells and neurons imply that the cell-specific tran-

scriptomes of neural cells in mice and rats should be

remarkably similar. It is our intention to address these

limitations in future studies through utilization of longer

stimulation periods and generating cell-specific tran-

scriptomes from rat spinal cords.
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