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Microbiome studies estimate the functions of bacterial flora in situ on the basis of species composition and gene
function; however, estimation of interspecies interaction networks is challenging. This study aimed to develop a
method to predict the interaction networks among bacterial species from human gut metagenome data using
bioinformatics methods. Our proposed method revealed that adjacent gene pairs involved in bacterial interspe-
cies interactions are localized at boundary regions and encode membrane proteins mediating interactions be-
tween the intracellular and extracellular environments, e.g., transporters and channel proteins, and those
mediating interactions between metabolic pathways. Actual human gut metagenome data displayed numerous
such highly reliable interspecies interaction gene pairs in comparisonwith random simulated metagenome data
sets, suggesting that the species composition of the actualmicrobiome facilitatedmore robust interspecific inter-
actions. The present results indicate that molecular interaction networks in human gut flora are organized by a
combination of interaction networks common to all individuals and group-specific interaction networks.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Over a decade has passed since the culmination of large-scale
microbiome studies [1–7]. Meanwhile, studies have described the orga-
nization of the microbiome and its functions in situ [2,8–10].
Microbiome species compositions reportedly vary among individuals;
however, distributions of metabolic functions remain similar [4,7]. In
other words, molecular interactions may mediate common functions
in the human microbiome even for combinations of different species.
Databases of biological pathways and networks are typically used to ob-
tain information regarding suchmolecular interactions among bacteria.
KEGG is one of most popular databases, presenting large-scale data re-
garding molecular interactions [11], and is widely used as a promising
pathway database to observe and predict bacterial interactions. Further-
more, the STRING database contains data regarding molecular interac-
tions from various sources [12], providing information regarding
various intermolecular interaction networks including not only
reference catalog of the human
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well-established biological knowledge and molecular interactions
from experimental data but also correlative information inferred
through text mining. Therefore, the STRING database is also frequently
used as a reference database for interaction networks in microbiomes
and for other “omics” studies. Other databases [13,14] are also used
and awide variety ofmodels [15–17] are discussed to predictmolecular
interactions; nonetheless, it is difficult to predict genes and molecules
involved in bacterial interactions in specific environments. Because
most information in these databases is derived from experimental evi-
dence of metabolic activity in specific species, functional data remain
unclear owing to the heterogenous bacterial composition of
microbiomes. In addition, this is one of the reasons for the dearth of ev-
idence regarding specific metabolite intermediates for interspecificmo-
lecular interactions among microbiome bacterial species in
environments unsuitable for the growth of certain species. Therefore,
it is difficult to determine whichmolecular interaction in existing path-
way networks should be focused on when consideringmolecular inter-
actions among environmental bacteria.

In this study, we propose a new method to infer interaction net-
works among bacteria frommicrobiome data. We considered two asso-
ciations in human gut microbiome data sets: phylogenetic profiles and
co-occurrence profiles. To distinguish between bacterial cellular metab-
olism and molecular interactions among bacteria, inverse correlations
omputational and Structural Biotechnology. This is an open access article under the CC BY
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among phylogenetic profiles were considered boundary regions of in-
terspecific molecular interactions, along with correlations of co-
occurrence profiles because species interactions occur within the gut
of the same individual.

2. Materials & Methods

2.1. Data for Genomes and Pathway Networks

2.1.1. The KEGG Database
The genomic data used hereinwas downloaded fromKEGG (May21,

2014) [11]. The ortholog identifiers in each genome, determined using
KEGG Orthology (KO), were considered ortholog relationships. Further-
more, we used KEGG pathway data to estimate molecular interaction
networks. Pathway map data excluding overview maps were extracted
from kgml files as data from KEGG pathwaymaps.We derived relation-
ships between “ecrel,”which defines enzyme reactions, and “map link,”
connecting different pathway maps from kgml files, and reconstructed
the entire pathway network. The adjacent KO pairs in the obtained net-
workwere considered candidate pairs to analyzemolecular interactions
among bacteria.

2.1.2. Human Gut Metagenome Data
The Integrated reference catalog of thehuman gutmicrobiome (IGC)

[5] was considered for actual human gut metagenomic data. All data
were subjected to the same analysis pipelines for gene prediction, abun-
dance estimation, and functional annotation. We downloaded the
human gut metagenomic data derived from 324 healthy and 219 dis-
eased individuals. Because of the version of KEGG used, we re-
annotated all genes using KAAS (KEGG Automatic Annotation Server)
[18] in accordance with KO. Furthermore, we used GhostX [19], which
has a high calculation speed, to determine homology in the process of
KAAS. From the re-calculated results, the relative abundance of each
KO was re-determined based on the originally calculated values in the
IGC project. In addition, as the relative abundance of genus level KO,
the average value of relative abundance of KO confirmed for each
genus was determined.

2.2. Interspecific Interaction Score

Based on genus level abundance obtained from IGC data, phyloge-
netic profiles were generated in accordance with the presence or ab-
sence of genera for each KO. Inverse correlations between the
phylogenetic profiles and the reciprocal of the correlation coefficient
(dissimilarity) among KOs were defined. In addition, as a definition of
the co-occurrence relationship within the IGC sample, the correlation
coefficient among all KO pairs was determined. As the interaction
score of each KO pair (18,914 pairs with the intermediate compounds),
the product of the dissimilarity of phylogenetic profiles and the correla-
tion coefficient of the co-occurrence profile was calculated.

2.3. Validation of Interspecific Interaction

Wedefined a KOpair ofmetabolic relationships from pathwaymaps
included in the category of “Metabolism.” To define the boundary be-
tween metabolic and non-metabolic relationships, we used the follow-
ing three pathway maps: non-metabolic pathways, of 02010; ABC
transporters, 02020; two-component system and 02060, and phospho-
transferase system (PTS). We extracted relationships among a protein,
its uptake compound, and a protein that produces the compound.
These relationships between metabolic–metabolic and metabolic–
non-metabolic KO pairs (see Supplementary Fig. S1) were used to vali-
date the interspecific interaction score.

Pathway modules in KEGG Module defines metabolic pathways
linking initial substrates and the final product. The initial substrates
and the final products (edge) and intermediate metabolites
(non-edges) were extracted from each module. To validate the inter-
specific interaction score, we enumerated the edge or non-edge inter-
mediate metabolites between the interaction KO pairs.

2.4. Simulation of Metagenome Data

We extracted the KEGG genome data with the same genera as those
in the IGC data. These genomeswere randomly combined 1000 times to
construct a random genome set. The number of genomeswas randomly
determined; however, only those sets containing unique KOs ranging
between the minimum (3548 KOs) and maximum (6095 KOs) number
of KOs of the IGC sample were considered. This was performed 1000
times in the same manner as a random genome set.

2.5. Data Availability

The source code of our method is available at http://bioinfo.med.
niigata-u.ac.jp/csbj2019/.

3. Results

3.1. Organization of Interspecific Interaction Networks

Our objectivewas to reconstruct interaction networks among bacte-
ria on the basis of data from each environment (Fig. 1A), for which phy-
logenetic and co-occurrence profiles (Fig. 1B)were used. If phylogenetic
profiles of neighboring ortholog gene pairs on a pathway network show
an inverse correlation, the ortholog gene pair can be considered a
boundary of interactions between bacterial species possessing the
genes. Conversely, the metabolic reaction catalyzed in this ortholog
gene pairmay represent a pathwaynot utilized in both bacterial species.
Therefore, genes adjacent to those in the metabolic pathway showing
inverse correlations among phylogenetic profiles were considered
boundary candidates for interspecific interactions. Furthermore, corre-
lations among co-occurrence profiles were also determined, because
metabolism as an interspecific interaction can be realized only if these
gene pairs are present in the human gut of the same individual. Finally,
the product of the dissimilarity of the phylogenetic profile and the cor-
relation coefficient of the co-occurrence profilewas calculated as a score
for identifying the interspecific interaction pairs (Fig. 1C and Supple-
mentary Table S1).

3.2. Validation of Interspecific Interaction Scores

In the obtained ortholog pair, two verifications were carried out to
determine the threshold value of the score used to indicate an interac-
tion. The first verification aimed to assess the interaction scores in
boundary regions between metabolic pathways and non-metabolic
pathways. Genes encoding cell-surface transporters and channel pro-
teins possibly interact with other genes in other bacteria via some
chemical compounds. Therefore, genes encoding transporters and chan-
nel proteins were considered the boundary between intracellular and
extracellular metabolism. Genes in another bacterial cell linked via a
compound produced from the genes on the boundary are regarded as
non-metabolic genes. Thus, these gene pairs were defined as
metabolic–non-metabolic gene pairs. A total of 239 such gene pairs
were found. Conversely, pairs of enzyme-coding genes in other normal
metabolic pathway maps were defined as metabolic pairs (a total of
8227 pairs), and differences in scores between these two ortholog
pairs were observed. As shown in Fig. 2A and B, the metabolic–non-
metabolic pairs had significantly higher interaction scores than the
metabolic–metabolic pairs (p-value = .00866, Kolmogorov-Smirnov
test, one-sided). These results suggest that ortholog gene pairs with
the higher interaction scores were often localized at boundary regions
of the interaction with extracellular regions.
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Fig. 1.Anoverview of the reconstruction of interaction networks. (A)A schematic representation of the interspecific interaction networks ofmultiple organisms in different environments.
(B) A model of our strategy to detect interspecific interaction boundaries based on the dissimilarity among phylogenetic profiles and correlation coefficients of co-occurrence profiles of
adjacent gene pairs shared in two different species. (C) Correlation coefficient of co-occurrence profiles and dissimilarity of phylogenetic profiles among the gene pairs are plotted. The
correlation coefficient of the distribution was−0.4771 and the R2 value was 0.2276.
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3.3. Relationship between Interaction Scores and Pathway Modules

We attempted to verify the score by using pathway modules.
Therefore, it may be generally presumed that the units of this sin-
gle module are complete in the metabolic pathways in the same
species. Therefore, we distinguished the molecules at the
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Fig. 2. Distribution of interaction scores between metabolic and non-metabolic gene pairs. (
probabilities of the score for metabolic gene pairs were significantly higher distributed (p-valu
beginning and end of the module and those within the module.
We verified which scores of these two types of compounds exist
between the interaction pairs. As shown in Fig. 3, when the inter-
action score for ortholog pairs is high (score N 0.6), the pairs sig-
nificantly contributed to the metabolic pathway via compounds
at both ends of the modules (p-value = 7.957e-05, Mann-
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Whitney test). Ortholog pairs with a high score (N 0.6) probably
play a role in connecting modules with one another.

3.4. Comparison of IGC Data and Simulated Metagenome Data

Based on the aforementioned results, we decided to use the
ortholog pairs with a score of 0.6 or higher as gene pairs highly
likely to interspecifically interact, for subsequent analysis. To ob-
serve the interaction network defined herein, we compared the
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actual human gut bacterial metagenomic data with the simulated
random metagenomic data. The metagenomic data of healthy indi-
viduals in the IGC database was considered the actual
metagenomic data. Among the genomes annotated in KEGG, a set
randomly combined with those restricted to organisms appearing
in the IGC data was considered a random genome set. Further-
more, a random gene set was derived by randomly extracting
genes from a unique gene set appearing in the random genome
set. Fig. 4 shows a comparison between these two types of
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simulated metagenomic data with the actual metagenomic data
from the human gut. Consequently, the actual metagenomic data
from the human gut displayed the most interspecific interaction
pairs. Thereafter, the random gene set displayed the lowest fre-
quency with the interaction pairs. These results indicate that
many bacterial species interact significantly with one another in
the actual human gut environment (p-value b2.2e-16, ANOVA for
the three groups; p-value b2.2e-16, Mann-Whitney test for IGC
and both random sets).

3.5. Clustering for IGC Data

To assess the organization of interaction networks in the human gut
metagenome of an individual, a hierarchical clusteringwith the IGC data
was performed. Prior to the clustering, we assigned orthologs to each
genus level and converted the ortholog pairs to genus pairs, because
the number of interaction pairs is large, and we performed hierarchical
clustering for the genus pairs (Supplementary Fig. S2). Based on these
clustering results, the interacting genus pairs were divided into those
common to almost all individuals and the genus pairs only present in
specific groups of some individuals. In addition, re-clustering was per-
formed using data based on pairs appearing only in specific individual
donor groups, except for those common to almost all individuals
(Fig. 5A). Consequently, the donor cluster was divided into 14 groups.
Because the interaction networks of the genus pairs are expected to dif-
fer for each cluster, the linkage of each genus pair is visualized as a net-
work diagram (Fig. 5B and Supplementary Fig. S3). Consequently, there
was a difference in the linkage of the interaction network in the human
gut environment among individuals.
Fig. 5. Interaction networks in the human gut microbiome data. (A) Donor groups differently ch
cluster is colored. Genus pairs common to almost all donorswere excluded from the clustering s
level. Donor clusters 8 and10 are shownas prototype donor clusters in Fig. 5A. The colored edge
score of the genus pair (an edge with b15 is not displayed). The size of a circle of the genus re
3.6. Comparison between Healthy and Disease Samples

To compare interaction scores between healthy anddisease samples,
we also calculated the score usingmetagenomic data in disease samples
labeled in the IGC data (Supplementary Table S2). Subsequently, 8352
KO pairs present in both healthy and disease groups were extracted.
To search for specific KO pairs with differences between healthy and
disease groups, two standard deviations from the mean of score differ-
ences between them were used as a threshold. We extracted KO pairs
with an interaction score N0.6 to define KO pairs specific to healthy
and disease samples (Supplementary Fig. S4). As a result, 76 and 107
KO pairs were found from healthy and disease samples, respectively
(Supplementary Table S3).

4. Discussion

This study evaluated interspecific interaction networks of the
human gut microbiome based on the scoringmethod developed herein
with bacterial interaction pairs, displaying robust bacterial species in-
teractions in the actual human gut environment. The present results
suggest that the actual human gut environment probably retains signif-
icantlymore bacterial interactions than simple combinations of random
genomes, and the human gut environment is at least a highly structured
community, being responsible for environmental metabolic function. A
high possibility of microbiome species not organized randomly but
rather structurally organized has been speculated on the basis of inter-
specific interactions, thus yielding robust environmental perturbations.
This study only utilized intestinal microbiomes to validate this specula-
tion; however, this method may be used to evaluate the robustness in
aracterized by common genus pairs were subjected to hierarchical clustering. Each genus
hown in Fig. S1. (B) Each donor cluster displayed specific interaction networks at the genus
represents a genus pair cluster (colored as in Fig. 5A), and thewidth represents the average
presents the total scores of the related genus pairs.
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other environments such as the ocean and the soil. Comparison of the
robustness of various environments should is important, considering
the ecology of environmental microorganisms.

Our method uses the correlation of co-occurrence relationships
and the inverse correlation of phylogenetic profiles to infer interspe-
cific interactions for adjacent gene pairs on the pathway. In past re-
ports, several studies focused mainly on the correlation of co-
occurrence relationships (for example, SparCC [20]), but the concept
of applying inverse correlation of phylogenetic profiles in addition to
the correlation is an advantage of our method. Correlation-based
methods are conceptually similar in terms of using co-occurrence cor-
relation. However, by inferring the boundary of bacterial interactions
using inverse correlation of phylogenetic profile, our method more
specifically predicts the interspecific interaction as compared to
other correlation-based methods.

This study focused on interactions among bacteria; however,
bacteria-host interactions are also critical. Bacterial metabolites are re-
portedly absorbed by the human intestinal tract and utilized [21–23],
and are involved in disease pathogenesis and progression [8,9,24,25].
In particular, the impact on the host immune system is well known
[9,25]. Therefore, future studies are required to further establish analyt-
ical methods focusing on bacteria-host interactions. From the interme-
diate metabolites of interaction pairs with the scoring method
proposed herein, high scores are mostly important for host metabolism
such as amino acids and folic acid in the case of healthy samples. When
we applied our approach to the differences between healthy anddisease
samples, we obtained interaction gene pairs and their intermediate
compounds specific for each sample. For example, the KOpair via nitrite
showed very high interaction scores in healthy samples but lower in
disease samples. Nitrate plays an important role in the nitrogen cycle,
and catalysis to ammonia via nitrite is performed by several
enterobacteria such as Escherichia coli and lactic acid bacteria [26]. Fur-
thermore, surprisingly, benzoate also showed a higher score as a
healthy sample-related chemical compound. This compound seemed
to be detected at higher levels in healthy feces (168.49 nmol/g wet in
average) than in disease feces (not quantified) as described in the
Human Metabolome Database (HMDB) [27]. Although chemical com-
pounds such as hippurate synthesized from benzoate would be gener-
ally considered toxic to human body [28,29], a healthy gut
microbiome community may use interspecific metabolic interactions
to degrade it. To characterize the many interspecific interaction net-
works identified, future studies are required to focus on metabolic net-
works between bacteria and also their hosts on the basis of such
intermediates.

Finally, although we validated our method using randomized data,
we could still not perform any validation using real interaction data ob-
tained from experiments such as transcriptome and metabolome anal-
ysis and single cell-based assays. Recently, real bacterial interspecies
interaction has been reported based on such omics approach and co-
culture experiments [30,31]. Verification using such real interaction
data should be performed in a future study.

5. Conclusions

This study shows interactions among gene pairs, which organize
bacterial interaction networks in a complex human gut environment.
Comparison with random metagenomic simulation data suggests that
the actual intestinal metagenome would comprise robust interspecific
bacterial interaction networks. Furthermore, the intestinal environment
of individuals is more likely to be optimized with a specific interaction
network along with a common interaction network module.
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