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Abstract: The baroque church of Saint Thomas and Saint Philip Neri (Valencia, Spain), which was
built between 1727 and 1736, contains valuable paintings by renowned Spanish artists. Due to the
considerable height of the central nave, the church can experience vertical temperature gradients. In
order to investigate this issue, temperatures were recorded between August 2017 and February 2018
from a wireless monitoring system composed of 21 sensor nodes, which were located at different
heights in the church from 2 to 13 m from the floor level. For characterizing the temperature at
high, medium and low altitude heights, a novel methodology is proposed based on sparse Partial
Least Squares regression (sPLS), Linear Discriminant Analysis (LDA), and the Holt-Winters method,
among others, which were applied to a time series of temperature. This approach is helpful to
discriminate temperature profiles according to sensor height. Once the vertical thermal gradients for
each month were characterized, it was found that temperature reached the maximum correlation
with sensor height in the period between August 10th and September 9th. Furthermore, the most
important features from the time series that explain this correlation are the mean temperature and
the mean of moving range. In the period mentioned, the vertical thermal gradient was estimated to
be about 0.043 ◦C/m, which implies a difference of 0.47 ◦C on average between sensor nodes at 2 m
from the floor with respect to the upper ones located at 13 m from the floor level. The gradient was
estimated as the slope from a linear regression model using height and hourly mean temperature as
the predictor and response, respectively. This gradient is consistent with similar reported studies.
The fact that such gradient was only found in one month suggests that the mechanisms of dust
deposition on walls involved in vertical thermal gradients are not important in this case regarding
the preventive conservation of artworks. Furthermore, the methodology proposed here was useful to
discriminate the time series at high, medium and low altitude levels. This approach can be useful
when a set of sensors is installed for microclimate monitoring in churches, cathedrals, and other
historical buildings, at different levels and positions.

Keywords: autocorrelation; Holt-Winters; LDA; temperature gradient; sPLS; wireless sensors

1. Introduction

Cultural heritage is a source of wealth because it promotes tourism, creative art and
native culture. Tourists often select places to visit based on the culture and artistic signifi-
cance of museums, monuments, exhibitions, and historical ruins, among other criteria. The
protection and conservation of cultural heritage is a challenge because artworks undergo
certain degradation over time. In order to prevent damage, artworks should be maintained
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in stable and controlled climatic scenarios. However, usually, such conditions are only
achieved in museums [1].

Temperature (T) and relative humidity (RH) tend to be more stable inside a building,
while outer air conditions present a higher daily and seasonal variability [2]. In fact,
the most significant physical factors in the preservation of collections and artefacts are
T and RH, which can potentially deteriorate or damage historical or cultural objects [3].
The requirements for appropriate control of indoor air conditions depend on the type of
materials, some of which are very sensitive to sudden variations of T or RH. Thus, particular
artworks demand specific microclimatic conditions. Furthermore, certain characteristics of
buildings can generate more complex requirements because it is not possible to control the
indoor environment [4–7]. The values of T and RH inside a historical building basically
depend on the climatic conditions outside, apart from other factors such as construction
materials, structure, and dimensions of the building. Variations in T and RH can induce
thermal shock [2], air movements, wet–dry cycles [8,9], and surface or under-surface
salt dissolution–crystallization [10]. Air movements, as well as wet and dry cycles are
usually responsible for soiling processes and deterioration [11]. Furthermore, dissolution
of alkaline surfaces can be caused by condensation that can be generated by either water
vapour coming from open doors, human metabolism, or the use of lit candles. Furthermore,
in the presence of high humidity and moderate temperatures, surface condensation and
damp can give rise to biological colonization by insects, bacteria or fungi, which can
generate biodeterioration in specific areas of the building [12]. In numerous cases, artworks
in churches have been affected due to inappropriate microclimatic conditions [13].

In the Mediterranean region, the use of active air conditioning systems has been more
common in modern spaces of worship, due to the growing request from the public for
comfortable temperatures in the buildings. Such systems must guarantee conditions of
wellbeing, safety and energy efficiency [14], but it is a challenge to satisfy at the same
time the requirements of human comfort, the preservation of artworks and energy ef-
ficiency [14]. In most cases, such requisites cannot be fulfilled optimally. In Spain, as
in other Mediterranean countries, the thermal conditions of historical buildings are not
considered in current environmental conditioning regulations (e.g., European Standards
EN 15757:2010 [15], which is based on laboratory tests [16] and on case studies [17,18]) [19].

In Spain, the majority of ancient churches, cathedrals and other historical buildings
do not have air conditioning systems; as a consequence, artworks can experience harmful
thermo-hygrometric oscillations, due to the outer climatic conditions. Moreover, these
buildings are large, which favors vertical air flows that are related to the deposition of
dust and dirt on walls, paintings, frescoes, altarpieces, and other artworks, which can
require expensive cleaning and maintenance actions for an appropriate preservation of the
cultural heritage. Vertical air movements can be caused by the ventilation, because many
of these buildings have windows in the upper part, so the air enters through the main
doors and lower inlets and leaves through the upper windows. The presence of vertical
thermal gradients is another factor of vertical air movements, because hot air has a lower
density and rises up. Therefore, studying the correlation between temperature and sensor
height is of interest to assess the vertical air flows, which makes it possible to evaluate
whether the gradient of T is acceptable or excessive, regarding the risk for dust deposition
in walls and paintings. In case of inappropriate gradients, corrective actions might be
proposed. The present research is intended to study vertical temperature gradients in
the church of Saint Thomas and Saint Philip Neri in Valencia, Spain (Latitude: 39 30 N
and Longitude: 000 28 W [20]), which has an unheated/natural microclimate indoor (see
Figure 1). The climate in Valencia is classified as BsK (tropical and subtropical steppe)
according to the Köppen classification [20]. The principal source of ventilation is through
the main entrance of the church, and there are a few air inlets in the sacristy and the chapel
of the Holy Communion though the former is separate from the main nave by a door that
usually remains closed. This church contains valuable artworks, among these are paintings
by renowned Spanish artists such as Juan de Juanes or Vicente Juan Macip (1507–1579),



Sensors 2021, 21, 6921 3 of 35

Jerónimo Jacinto de Espinosa (1600–1667), José Vergara (1726–1799), and Vicente López
(1772–1850). These paintings are located in the main chapel, as well as the altarpieces of
Saint Joseph and Our Lady of the Unforsaken (see Figure 1c,d).

(a) (b)

(c) (d)

Figure 1. Church of Saint Thomas the Apostle and Saint Philip Neri in Valencia (Spain). (a) Front and side view of the church;
(b) front view; (c) longitudinal section; (d) plan of the church, where the different observable structures are indicated: A.
Baptismal chapel, B. Chapel of Our Lady of the Forsaken, C. Chapel of the Holy Trinity, D. Chapel of Our Lady of Mount
Carmel, E. Chapel of the Calvary, F. Chapel of Saint Anthony of Padua, G. Altarpiece of Saint Joseph, H. Altarpiece of Our Lady
of La Salette, I. Chapel of the Holy Communion, J. High altar and main altarpiece, K. Sacristy, L. Bell tower, E1. Main entrance,
E2. Side entrance. The small circles indicate the projection of vaults of the internal chapels. The larger circle represents the
projection of the main dome of the church. The arrows indicate the air inlet and sources of ventilation in the church.

1.1. Microclimatic Monitoring for the Preservation of Cultural Heritage

In recent years, European governments have funded different initiatives with the goal
of preserving artworks in museums and similar buildings. For example, the Collection-
Care Project is working at present on an innovative system of wireless sensors for the
preservation of cultural heritage [21]. In this context, experts suggest that it is necessary to
implement continuous monitoring systems to identify harmful microclimatic conditions
that affect the works of art [22]. Long-term monitoring of indoor air conditions is a key
issue according to the new requirements for preventive conservation [23]. Such systems
require maintenance and routine practices [24]. Furthermore, practical solutions need
to be proposed for the adaptation of climate change [25]. Furthermore, it is important
to define the compatibility between the climate control potentials and the preservation
requirements [22].

Many studies about the microclimate monitoring of historical buildings have recorded
time series of either T or RH by means of autonomous data loggers [2,14,26–33] or wireless
monitoring systems [1,34]. Some of these research works [2,14,32] have been carried out
in European churches to investigate the possible consequences derived from traditional
heating in order to improve indoor air conditions for preserving the cultural heritage.
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Sensors are often located in the historical buildings at a similar distance to the floor level.
Regarding the statistical methodology, Principal Component Analysis (PCA) was applied
to time series of RH recorded at the Cathedral of Valencia aimed at obtaining clusters of
sensors [29,30]. Using the same data set, a novel methodology was recently proposed
for classifying the different time series of RH [28]; it was based on sparse Partial Least
Squares Discriminant Analysis (sPLS-DA) [35] using input variables extracted from either
Autoregressive Integrated Moving Average models (ARIMA), the Holt-Winters method,
or functions applied to time series of RH. In a subsequent research, the aforementioned
approach was extended using new variables from the Holt-Winters method and Wold
decomposition, which was applied to time series of T recorded at the archaeological site of
L’Almoina in Valencia [33].

1.2. Microclimatic Studies with Sensors Located at Different Heights

The European Friendly-Heating Project [36] highlights the problems caused by in-
stalling heating systems in old worship places [14]. In the Mediterranean region, the
heating demand in churches is much lower in winter compared with places in Northern
Europe, while the requirements for dehumidifying and cooling are greater in spring and
summer because of the outdoor humidity and high temperatures [14].

Merello et al. [31] studied time series of T and RH recorded from dataloggers in specific
wall orientations and at different levels (floor vs. upper position) at Ariadne’s house in
Pompeii (Italy). They applied Analysis of Variance (ANOVA) to either estimates of mean,
minimum, or maximum of daily time series of RH and T in order to study the effect of
height and wall orientation where the sensors were located on. Likewise, Aste et al. [9]
estimated the vertical gradients of T and RH on the entire volume of the Duomo Cathedral
(Milan, Italy). They computed the gradient as the difference of T or RH from the lowest
sensors compared with those located at the highest levels. Measurements were recorded at
5, 10, 15, and 20 m, from the floor level. Where the maximum height was 45 m, two further
measurements were recorded at 35 and 40 m. They found that the gradients in different
points were not relevant except for the areas near the entrance to the North aisle, which
undergoes higher changes because the gate is used as a primary entrance by churchgoers.
Klein et al. [34] installed a wireless monitoring system at The Cloisters, the medieval
branch of the New York Metropolitan Museum of Art, in order to improve long-term
microclimate monitoring. Sensors were located at different heights in the galleries (e.g., in
the Late Gothic Hall the sensor placement height ranged from 0.5 m up to 11.0 m). They
evaluated air moisture levels, the thermal stratification along the height of one gallery, and
slight temperature gradients between different galleries. They found higher variations
in the Hall at the upper level. Using sensors located in different positions and heights,
García-Diego et al. [37] applied ANOVA and contour plots to study the performance of the
mean T and RH when the heating system was switched on in order to quantify the effects
of the heating system on temperature and RH.

Recently, in contrast to traditional technology, Adán et al. [12] used three-dimensional
thermal computer vision-based technologies (3D-TCV) for monitoring climatic conditions.
This novel approach records dense thermal information in a 3D space, resulting in a data
matrix containing 3D coordinates with the associated T and time when the values were
recorded. This methodology, combined with traditional recordings of T and RH using
a wireless monitoring system, was recently applied at the church of Santos Juanes in
Valencia [12]. Data were recorded by the wireless sensors at the lower zone of the principal
nave of this church and at the upper zone near the domes. Furthermore, the local surface
temperature monitoring system obtained data from three different zones. Such information
was studied by computing the standard deviation of surface T. The datasets from 3D-TCV
were analyzed by means of thermal orthoimages at different times and graphs of thermal
evolution over time [12].

In total, the present research analyzed 21 hourly time series of T from wireless nodes,
for seven months during 2017–2018. Sensors were positioned at different heights, ranging
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from 2 to 13 m from the floor level in the church of Saint Thomas and Saint Philip Neri in
Valencia (Spain). The microclimate monitoring system was developed a few years ago as a
test prototype [1].

Different monitoring campaigns for the preventive conservation of cultural her-
itage have been carried out [38,39]. Some of them used autonomous data-loggers, e.g.,
Hobo data-loggers [40] were employed by Visco et al. [41], data-loggers DS1922L [42] by
Valero et al. [43], and DS1923 [44] by Merello et al. [45,46]. There are also studies about
microclimates in cultural heritage based on a wired sensor network, composed of dif-
ferent nodes wired to a single microcontroller [29,45]. A more versatile wired/wireless
system [47] can be used to solve the problem when using data-loggers, which requires
recordings from them to be downloaded manually. The IoT wireless system employed in
this study was developed by Perles et al. [1].

The study of thermal conditions in a building can be approached in different ways;
for instance, by analyzing the rate of T changes every two height levels (low to high), or
by analyzing changes in the characteristics of time series of T at different height levels
in the buildings. The latter approach would correspond to classifying time series of T in
different clusters according to the height levels. In the first case, a pronounced rate of T
change per height might imply phenomena of dust deposition on the walls and artworks
in the building, thus it would be necessary to take corrective actions to reduce risks on
works of art. In the second case, classifying time series according to different heights (e.g.,
high, medium and low levels) could be helpful for monitoring the microclimatic conditions
in the building. Possible reasons for classifying a set of sensors incorrectly might be the
malfunctioning of sensors, changes of thermal conditions where the sensors are located,
and the classification method performance, which is influenced by the total number of
sensors or the number of sensors per clusters. Thus, sensors incorrectly classified should
be evaluated to identify possible setbacks for the artworks.

In order to study vertical temperature gradients and to characterize the time series of
T per different height level, two methodologies are proposed. The first one is helpful to
determine the existence of a vertical gradient, to estimate the gradient, and to establish the
period in a year when such gradient is apparent. This methodology is based on Pearson’s
correlation coefficient [48] and linear regression [49]. The second methodology could be
used for characterizing the temperature at high, medium and low altitude heights and
to determine the main variables that help establish the changes of temperature by level.
This methodology that classifies time series is based on sparse Partial Least Squares regres-
sion (sPLS) and Linear Discriminant Analysis (LDA). They are employed for classifying
purposes, using features from time series as input, which are computed with two meth-
ods. The first one corresponds to using some traditional time series functions (i.e., Auto
Correlation Function ACF, Partial Auto Correlation Function PACF, periodogram, Moving
Range MR), and features defined using quantiles [50]. The second corresponds to using the
Holt-Winters method. Finally, with the goal of proposing a plan for long-term monitoring
in the church of Saint Tomas and Saint Philip Neri in Valencia, Spain, the thermal condition
in this building was analyzed by using both methodologies.

With respect to the first methodology proposed, the temperature gradient has not re-
ceived much attention yet in the context of art conservation. Some studies have approached
the temperature analysis by computing the variation in temperature at different levels
of heights [9,34], by using contour graphs of temperatures or by comparing estimates of
parameters such as the maximum and minimum temperature [31,37].

Regarding the second methodology proposed, which is used here for classifying time
series of T according to different levels of height, it is considered as a novel approach in
the context of clustering of time series and cultural heritage. The methodology consists
of applying both sPLS [51] with LDA, using features extracted from time series as input.
The dissimilarity measures calculated for the method were computed according to other
approaches employed in the field of clustering of time series (i.e., profiles of time series,
dynamic structure of series, assuming specific underlying models, future forecasts, among
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others) [52–54]. In this case, the dissimilarity measure (i.e., Mahalanobis or Euclidean
distance) was computed using a linear combination of a set of variables. These variables
could correspond to different approaches, e.g., assuming specific underlying models
and future forecasts, profiles of time series and the dynamic structure of series. In this
sense, Elorrieta et al. [55] proposed using several features from the field of astronomy
and two features that they designed as input for different classification methods (e.g.,
logistic regression, CART algorithm, boosting, random forest, support vector machine,
artificial neural network, and Lasso regression). Some features were extracted from raw
data, while others after fitting a harmonic model [55,56]. Concerning the classification
algorithms and the methods for computing features from series that are proposed in this
paper, this is probably the first time that the combination of both algorithms and such
methods are used for classifying and clustering of time series. On the other hand, for art
conservation, classifying time series has rarely been explored and it has only been analyzed
using PCA [29,30] or sPLS-DA [28,33].

Finally, this research reports a statistical analysis conducted in the church of Saint
Tomas and Saint Philip Neri for the first time, which is of relevant interest since inappropri-
ate conditions of temperature can affect the artworks inside the church. Furthermore, the
results found in this study might provide guidelines for establishing a plan for thermal
monitoring and preventive conservation in similar churches.

The structure of this paper is as follows. Firstly, Section 2 describes the monitoring
system, the data set, installation of wireless nodes, as well as criteria for determining the
stages of the time series of T, methods for computing features from the series, and the
regression method for relating temperature values according to sensor height. The most
relevant results and discussion of the different analyses are presented in Section 3. Finally,
conclusions can be found in Section 4.

2. Materials and Methods
2.1. Description of the Monitoring System

The monitoring system used in this paper is the same as in [1], where the details and
descriptions of the general system and their components are provided. Furthermore, the
reason why the general system and their different components were used is explained.

The system (Figure 2) was specifically designed for the monitoring needs of cultural
heritage buildings and objects. It consists of low-energy wireless sensors, a gateway for
collecting the data sampled by the sensors, and a cloud computing infrastructure for data
storage, processing and visualization.

Figure 2. Scheme of the wireless microclimate monitoring system. With respect to the notation: IoT is Internet of Things,
ISM is industrial, scientific, medical band, UTMS is Universal Mobile Telecommunications System, and AWS is Amazon
Web Services.



Sensors 2021, 21, 6921 7 of 35

A total amount of 21 wireless sensor nodes were installed at the church Saint Thomas
and Saint Philip Neri (Figure 3a) for monitoring indoor air conditions. These sensor nodes
are built around an ultra-low power C8051F920 microcontroller (Silabs, San José, CA, USA),
a CC1101 radio-modem (Texas Instruments, Dallas, TX, USA), a high-density 3.6 V, 1 Ah
Lithium-thionyl battery, and a SHT15 chip. The latter is a surface mountable device with an
RH sensor and a temperature sensor (Sensirion, Staefa ZH, Switzerland). This device was
individually calibrated by the manufacturer (Sensirion). The calibration coefficients are
programmed into an inside memory on the chip. To improve the accuracy, these coefficients
and the internal voltage regulator are used to calibrate the transmitted signals from the
sensors. The accuracy of the SHT15 sensor is ±0.3 ◦C in the range 10–40 ◦C [57].

(a) (b)

Figure 3. (a) Wireless sensor node (approximate dimensions: 4.1× 1.5× 1.5 cm); (b) sink gateway.

The sensor nodes were used to sample environmental variables of interest, which were
transmitted using GFSK (Gaussian Frequency Shift Keying) modulation in the 868 MHz
European unlicensed industrial, scientific, medical (ISM) band. All sensors transmit blindly
on the same channel without acknowledgment messages from the gateway. This approach
allows being very energy efficient at the cost of losing some transmissions.

This sensor node is an adaptation of a previous one devoted to the detection of xy-
lophagous [58] and copes adequately with the requirements of life-span and long distances
and thick walls of historical buildings [1].

The gateway, shown in Figure 3b, was built to be as flexible as possible in order to
experiment with different approaches, so it was decided to implement it around a Raspberry
Pi 3 board (Broadcom Inc., San Jose, CA, USA) and the Linux operating systems. To this
base system, we added suitable hardware to support the functionality: a CC1101 radio
module and an STM32L04 microcontroller (StMicroelectronics n.v, Geneva, Switzerland)
to receive the transmissions of the sensor nodes, a 3G USB dongle to provide mobile
connectivity to Internet, and, considering that the gateway is connected to the mains
power, a rechargeable lithium-ion battery to provide energy to the gateway during power
outages. The main task of the gateway is to collect wireless transmissions of the sensor
nodes, store them temporarily in a local database and transmit it to the Internet when
connectivity is available. The data transfer is implemented using the MQTT [59] client
server publish/subscribe messaging transport protocol.

For the implementation of the cloud infrastructure, it was decided to choose the
offering from Amazon Web Services (AWS). The MQTT messages are processed by the
AWS IoT cloud service in order to split the message in sensed magnitudes such as tem-
perature, humidity or light level (humidity and light not used in this work), as well as in
communication-related parameters (e.g., received signal strength indicator, battery level
and message counter). These two types of data flows are stored in a NoSQL (stands for
“non SQL” for ones and for “not only SQL” for others) AWS NoSQL DynamoDB database
and in an SQL AWS AuroraDB, respectively. In order to allow data access through web
browsers, a Linux virtual machine was deployed in the AWS EC2 service, which runs a
Redash [60] data visualization dashboard. For statistical analysis, all data collected along
the monitored period could be downloaded locally using the AWS Datapipelines service.

Among the advantages of this monitoring system are (1) it is capable of storing an
unlimited volume of data, which cloud helps to increase sample frequency and means that
updating the recorded information can be carried out every time period, as required (i.e.,
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every second, minute, and another time period), (2) the fact that updating the recorded
information does not need to be carried out manually.

The cost of these devices is highly dependent on the type of work to be performed.
Mass-market devices tend to be cheaper due to the scale of production, which reduces
the cost of the bill of materials and dilutes the engineering cost. In the field of cultural
heritage specific devices, and in general in the scientific field, this scale does not apply,
so engineering costs are easy to estimate in the cost of the devices and other important
costs, such as installation costs (e.g., a wired installation is often very expensive) or per-
sonnel costs (e.g., a classical data logger will require periodic battery replacement and
manual data downloading), which have to be taken into account. In this particular project,
wireless sensor nodes were the best fit in terms of simplicity of installation and personnel
requirements, but in a different situation, other options might be more suitable [1].

2.2. Experiment for the Calibration of Temperature Sensors

As stated above, the temperature sensor used (SHT15) provides an accuracy of±0.3 ◦C
according to the manufacturer. In order to obtain the best performance of the deployment,
all the sensors were calibrated by comparison before being installed in the church, aimed
at estimating their bias and improving the accuracy.

Basically, the set of nodes was located together inside a climate chamber of 23 m3

that was driven by an air cooler in the ceiling (Küba Comfort DP model DPB034). The
temperature was controlled inside the chamber during a period of three hours, increasing
from 26 ◦C up to 30 ◦C. Sensors collected the temperature at a rate higher than a sample
per minute.

By computing the mean temperature recorded in the hot stage of the calibration
experiment for each sensor, it was found that node M was the one closest to the overall
sample mean. Hence, this sensor was regarded as a reference (i.e., with a null bias). Then,
for each sensor, the bias was computed as the difference between the mean T recorded by
that node, during the hot stage, and the mean T of this reference node (see Table 1).

Table 1. Temperature bias (◦C) per node derived from the calibration experiment.

Node B T U S R C D G E O K
Bias −0.280 0.097 0.160 −0.003 0.069 −0.088 0.077 0.009 −0.019 −0.089 −0.036

Node N L M I J Q A F P H
Bias −0.046 −0.249 0.000 0.150 0.189 −0.277 −0.098 0.276 0.335 0.175

An independent accurate sensor with a certified calibration would lead to a better
estimation of the bias, but, unfortunately, such sensor was not available.

This approach is good enough for the purpose of the present study because the
main goal is to analyze the relationship between temperature and the height of nodes,
and knowing the real bias per node is of little interest to this paper. Bias values range
from −0.28 to +0.28, which is consistent with the accuracy of ±0.3 ◦C indicated by the
sensor manufacturer.

Each value of temperature registered per node during the microclimate monitoring
experiment was corrected by subtracting its corresponding bias.

The calibration “in situ” of sensors [41,61] is an effective technique that consists of
putting together all node sensors along with a calibrated sensor inside the building that
is being monitored. Thus, it is possible to have a climatic condition reference from the
calibrated sensor for comparing the records from all nodes. In this study, calibration “in
situ” was not considered because, for a massive campaign, the application of this technique
requires a greater investment due to the cost of using a calibrated sensor and more time for
its implementation. Furthermore, the experiment calibration approach of T used here was
possible given that the goal was to compute the differences of T from sensors, instead of
estimating the mean of T.
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2.3. Installation of Wireless Nodes

After the calibration experiment, the 21 wireless sensor nodes were located in the
church at different heights (h): 2, 2.5, 3.9, 4.0, 4.3, 5.0, 8.7, 12.1, and 13 m from the floor level
(Figure 4). The sensors located at each different height are the following:

• h = 13.0: nodes I and J were located at the upper part of the retable decorating the
presbytery.

• h = 12.1: nodes A, F, P, and Q were placed at the upper position, close to the ceiling
vaults.

• h = 8.7: nodes L and M were also located at the retable.
• h = 5.0: nodes G, H and O were placed near to the main altar.
• h = 4.3: it corresponds to node U, which was located near the main entrance.
• h = 4.0: nodes K and N were also installed at the retable.
• h = 3.9: node D was located close to the altarpiece of Saint Joseph.
• h = 2.5: nodes B and T were positioned near to the main entrance.
• h = 2.0: nodes C, E, R, and S were located, as indicated in Figure 4, at the lowest level.

Figure 4. Position of the 21 wireless nodes located in the church of Saint Thomas and Saint Philip
Neri (Valencia, Spain). Color refers to height (h) of the node (in meters, m). SG indicates the position
of the sink gateway that receives data wirelessly from the sensor nodes. The light gray rectangle
indicates the position of the main altarpiece (retable).

Some criteria for establishing the position of nodes were the following: (i) to spread
out the sensors in different places of the church, (ii) to locate some nodes close to the main
entrance and other openings allowing air exchange from outside, and (iii) to install at
least 2 nodes at a comparable height for comparison purposes. Moreover, sensors were
not placed too close to the floor level because they might be stolen or manipulated by
churchgoers. The ideal scenario would have been to spread out the 21 nodes randomly
inside the church. However, restrictions such as the building characteristics, the maximum
number of nodes available, and the need to prevent problems caused by the movement
of people, among other factors, made it impossible to achieve a random distribution of
the nodes.

2.4. Data Pretreatment

The experiment of microclimate monitoring was carried out from the 1st of August
2017 until the 28th of February 2018 (7 months, 212 days). When programming the
communication of sensor nodes with the sink gateway, the time between two consecutive
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measurements of T (tj, tj+1) was established as a random variable following an exponential
distribution with a mean of one hour. The fact that the church has an unheated/natural
microclimate indoors better explains the selection of the sampling time of 1 h, which in the
case of a heated microclimate, could not be sufficient. The main reason for using this type
of distribution was to decrease the probability of data transmission collisions. However, as
a drawback, it leads to missing values, which becomes a problem for the methodology of
the time series analysis applied here.

Regarding the missing data resulting from the exponential distribution used for
establishing two consecutive measurements of T, it was checked that the percentage of
missing values per node was approximately the same for the different nodes. By contrast,
when the reason was problems of wireless communication with the gateway or electrical
failures, the percentage of missing values was greater. In particular, such amount was
the highest for node R (41.4%). Taking into account that this node was at 12.5 m from
the gateway, which is not too far away, the problem of wireless communication with the
gateway was discarded as a reason for having such significant amount of missing values,
and the main cause could be a flaw in the electronics. The target was to have a common
number of observations per sensor, particularly, one value per hour. For this purpose, all
missing values were imputed. Taking into account that the distribution of missing data does
not follow any specific pattern (i.e., missing at random [62]), all missing data were imputed
using either Stineman interpolation [63] or linear interpolation. The latter was used when
the time between two consecutive available measurements of T were less than 2 h (i.e., a
single missing value). For the rest of the cases, the Stineman interpolation was used. The
interpolation equations were solved for every unknown observation of T between two
known values of T. The resulting data were organized as a matrix with 5088 rows (one
per hour) by 21 columns (one per node). Finally, each value of temperature registered
per node during the microclimate monitoring experiment was corrected by subtracting
its corresponding bias. Similar studies have also applied interpolation procedures for the
imputation of missing values. Klein et al. [34] estimated temperature and air moisture
values using a smooth bivariate interpolant to the scattered sensor data, which is an
effective method when the temperature is smoothly varying over short distances. However,
this approach most likely loses accuracy near air inlets and outlets in galleries. Trying to
overcome this drawback, the authors [34] also applied physics-based models incorporating
Computational Fluid Dynamics by prescribing thermal boundary conditions.

2.5. Statistical Methods

The methodology is composed of five main steps. First, identification of stages in the
time series of T (see Section 2.5.1). Second, estimation of the vertical gradient of T (see
Section 2.5.2). Third, computation of parameters from the time series (e.g., sample mean
values of Auto Correlation Function ACF, moving range MR, Partial Auto Correlation
Function PACF at the first 4 lags, among others, and the additive seasonal Holt-Winters (SH-
W) method (see Section 2.5.3). Fourth, analysis of the relationship between T and sensor
height, using variables determined in the previous step and sparse Partial Least Squares
(sPLS) (see Section 2.5.4). Finally, characterization of temperature at high, medium, and
low altitude heights using Linear Discriminant Analysis (LDA) and the latent components
from sPLS calculated in the previous step [64]. The R software (version 4.3) was used to
carry out the statistical analyses. The main packages used were mixOmics [65], klaR [66],
and spls [67].

2.5.1. Identification of Stages in the Time Series

Regarding the monitoring experiment, two main stages were visually identified in
the different time series of T: firstly, the average temperature slightly decreases until about
November 14th and, next, it becomes approximately stationary (see Figure 5a). By visually
inspecting the evolution over time of the time series of T, all of them are quite parallel (see
an example in Figure 5b), which can be partly explained by the different position of each
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node and, moreover, by the bias of each sensor (Figure 5a,b show raw data, prior to the bias
correction). The trajectory of M (i.e., the reference node) is depicted in red in Figure 5a,b.

(a)

(b)

Figure 5. (a) Trajectories of temperature for the 21 nodes, before subtracting their corresponding
sensor bias. The thick vertical dotted line (November 14th) indicates a change of trend: T slowly
decreases before this date on average while, next, the mean T is rather constant. Each thin vertical
dotted line separates two consecutive stages (months) that were considered to split the different time
series of T. In total, seven stages were considered. (b) Trajectories of temperature (before subtracting
their corresponding sensor bias) for the nodes B (in blue), H (in green), and M (in red) corresponding
to the period between October 30th 2017 and December 29th 2017.

The observed time series of temperature were denoted as T, where T = (t1, . . . , tj, . . . , tn).
By using the supF test [68,69], two potential structural breaks were identified (i.e., changes
in the slope of a linear trend), at observation number 763 (September 1st at 6:00 PM,
p-values< 0.02) and 2797 (November 11th at 12:00 AM, p-values< 0.01).

The supF test was applied after calculating the logarithmic transformation and one
regular differentiation to the distinct time series. Such logarithmic transformation was
employed to stabilize the variance, and the regular differentiation was intended to eliminate
the trend of the different time series [70]. The notation employed throughout this article
is as follows: r indicates the logarithmic transformation of T , and W refers to one regular
differentiation of r. Thus, each value of W corresponds to wj = rj− rj−1 , where rj = ln (tj).
The two structural breaks identified lead to splitting the time series into three stages, but
this number seems too low for the target of the present work. In order to extract more
features from each time series, which presumably might lead to better results, it was
decided to split all time series into seven stages, one per month (see Figure 5a). This
criterion is consistent with the structural break identified on September 1st, though not
with the one found on November 11th, but this issue was considered as a minor drawback.

2.5.2. Estimation of the Vertical Gradient of Temperature for Each Month

With the goal of determining if the vertical gradient is apparent, the Pearson corre-
lation test [48] was applied to different periods of the time series of T (i.e., each month
as established in Section 2.5.1). By using the test, it is possible to determine whether the
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correlation between temperature and height of sensors is statistically significant. Once
a period with statistically significant correlation was identified, the slope of the linear
relationship was considered as the gradient estimation. Such slope is the derivative of the
function that estimates the mean temperature in the month with respect to height.

Consider that the relationship between temperature, T = (t1, . . . , tn), and height,
h = (h1, . . . , hn), is determined by the following linear regression model in Equation (1),
where, ε = T − E(T |h), E(T |h) is the conditional expectation of T given h, E(ε) is the
expectation of the errors ε, and V(ε) is the variance of ε [49]. Details about computing the
estimated values and confidence intervals of β0 and β1 can be found in [49].

ti = β0 + β1hi + εi, where

i = 1, . . . , n

E(ε) = 0

V(ε) = σ2

(1)

Considering the linear equation that estimates temperatures as a function of height,
the derivative of this function is the slope β1 of the regression line, which is the gradient
estimation. The thermal vertical gradient can be interpreted as the rate of increase of T
according to height.

In this study, for each month, the gradient was estimated as the slope of the linear
regression model by using height (h) as the predictor variable and mean temperature as
response. This gradient was expressed as ◦C/m.

The existence of a gradient implies that the correlation between T and h is statistically
significant, which was checked for each month. If this condition is not fulfilled, there is not
enough evidence to affirm that the slope of the regression line is different from zero at the
population level. Hence, there is no evidence for a vertical thermal gradient. The proposed
method for the calculation of vertical gradients seems reasonable when all sensors are
located one above the other, in the same vertical axis, but this is not the case here. However,
a preliminary analysis suggested that longitudinal thermal gradients were not relevant
in this case, because the ventilation rate of the building is rather limited and because
indoor air conditions are not affected by heating or air conditioning systems, which are not
installed in this church.

2.5.3. Calculation of Classification Variables

Two methods were used to compute features from the time series, which were applied
to the different observed time series (T or W ) separately per month. As an exception, each
complete time series was also used in the second method, in addition to modeling each
month independently. Features will be denoted hereafter as classification variables.

1. Method 1: Using Time Series Functions
This method consists of computing features from the observed time series T , in some
cases, and from the time series after applying the logarithm transformation and
regular differencing to T. The goal of using this transformation and differencing
was to stabilize the variance and remove the trend of the series in order to extract
information about the seasonal component. Features were calculated by means of
values of sample Auto Correlation Function (ACF), sample Partial Auto Correlation
Function (PACF), periodogram, Moving Range (MR) [71,72], as well as features
defined using quantiles [50]. Each variable was computed for each month and sensor.
These correspond to estimates of the following parameters:

(a) mean.ts: Mean of T recorded in the month. This parameter allows to compare
the level of the different time series.

(b) sd.ts: Standard deviation of T, which provides information about the vari-
ability of the recorded values.
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(c) range.ts: Range of T (i.e., by subtracting the minimum to the maximum).
It reflects the amplitude of the time series of T and gives information about
the dispersion.

(d) mean.mr: Mean of MR values with order 24 of T. MR computes the moving
range for all sequences of 24 consecutive observations.

(e) median.mr: Median of MR values with order 24 of T . This parameter and the
previous one are helpful for capturing the daily variability of the different time
series of T.

(f) mean.acf: Mean of the first 72 lags (l = 1, . . . , 72) of sample ACF applied
to W time series. Each value of ACF for W at lag l (ac fl) is the correlation
coefficient between the observations that are lagged for a time gap l. It is given
by ac fl = cor(wj, wj−l), i.e., Pearson’s correlation coefficient between the time
series and the lagged values (i.e., the time gap which is considered). The value
72 was used because sample ACF values computed for l = 1, 2, . . . , 72 were
comprehended within the limits of a 95% confidence interval in the correlo-
gram. This parameter provides information about the dynamic structure of
the time series.

(g) median.acf: Median of the first 72 lags of sample ACF applied to W . As in
the previous case, this parameter can be useful for comparing the dynamic
structure of the time series.

(h) sd.acf: Standard deviation of the first 72 lags of sample ACF of W .
(i) pacf: First 4 lags (l = 1, . . . , 4) of sample PACF applied to T . A value of PACF

at lag l measures the autocorrelation between the observation tj and tj−l , which
is not accounted for by lags 1 to l− 1. The first four values of PACF are usually
the most important ones for capturing the most significant autocorrelation
information. These four values were computed trying to differentiate the
dynamic structure of the different time series.

(j) maximum.I: Maximum value from the periodogram (I), which is employed
for identifying the dominant periods or frequencies of time series of T. This
parameter is helpful for recognizing the dominant cyclical behavior in a series.

(k) range.I: Range of values of the periodogram. This parameter can be useful to
compare the impact of the dominant cyclical pattern in the different series.

(l) maximum.slps: Maximum increase of T in one hour found in the month
(i.e., max(tj+1 − tj)). This parameter allows the comparison of the maximum
changes of T for two consecutive hours, and it is intended to capture the
information of abnormal peaks or sudden increases due to occasional events.

(m) median.abs.sd: Median of absolute values of the deviation between the values
of T and the median of T. It is given by median(|T − median(T)|). This
parameter is somewhat related to the variance (i.e., average of the squared
deviations with respect to the mean) and, hence, it is another measurement of
data dispersion.

(n) t.p.r.m20: It is computed as (T60 − T40)/(T95 − T5), being Ta the percentile
a of values in the month. Thus, it is the ratio of percentiles (60th–40th) over
(95th–5th) of T. The numerator is the range of variability corresponding to
20% of the central part of the original time series. The denominator is basically
the range of the original time series after removing the lowest 5% and highest
5%. An equivalent interpretation corresponds to the parameters t.p.r.m35,
t.p.r.m50, and t.p.r.m80 described next.

(o) t.p.r.m35: It is computed as (T67.5 − T32.5)/(T95 − T5), which is the ratio of
percentiles (67.5th–32.5th) over (95th–5th) of T .

(p) t.p.r.m50: Ratio of percentiles (75th–25th) over (95th–5th) of T .
(q) t.p.r.m80: Ratio of percentiles (90th–10th) over (95th–5th) of T .



Sensors 2021, 21, 6921 14 of 35

(r) p.d.f.p: Ratio of percentiles (95th–5th) over the median of T . This parameter
divides the amplitude (range) of the time series, after removing the lowest 5%
and highest 5% of observations, by the median of T .

This list comprises a set of 21 variables that were computed for each one of the seven
months, which implies 147 variables in total. They were arranged in a matrix denoted
as X1 comprised of 21 rows (one per node) and 147 columns (one per variable).

2. Method 2: Additive Seasonal Holt-Winters Method (SH-W)
This approach calculates features from time series of T, by using the Holt-Winters
method (SH-W) [73], which is an extension of the Holt’s method [74]. It captures
the level, trend, and seasonality of the different time series and is comprised of the
forecast equation and three smoothing equations (i.e., one for the level ai, one for
the trend or slope bi, and one for the seasonal component si) with corresponding
smoothing parameters α, β, and γ [75]. According to the additive SH-W, the forecast
equation for a time series of T with period length p is given by Equation (2) (in this
study, p is 24), where k is the integer part of (l − 1)/p, and t̂i+l|i is the forecast at step
(i + l) [75].

t̂i+l|i = ai + lbi + si+l−p(k+1), where

ai = α(ti − si−p) + (1− α)(ai−1 + bi−1)

bi = β(ai − ai−1) + (1− β)bi−1

si = γ(ti − ai−1 − bi−1) + (1− γ)si−p,

where 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, and i > s

(2)

Slope, level and seasonal components at step i are estimated by using the three
smoothing equations (i.e., for bi, ai, and si), respectively. If the algorithm converges, a,
b and s1 to sp are the estimations for the level, trend or slope and seasonal components.
This algorithm was run by using the function HoltWinters of the stats package [76]
of R software.
The flow diagram for the additive SH-W method is displayed in Figure 6. In this
diagram, all the steps are repeated with each observation of time series ti, i : 1, . . . , n.
However, in step (1), the initial values of level (a0), trend, (b0) and seasonal coefficients
(s0) are only used once to start up the algorithm. The initial conditions are estimated
through a simple decomposition in trend and seasonal component by using moving
averages. After initialization, steps from (2) to (4) perform the forecast task internally,
these values were updated and stored for the next step [76]. In step (2), the estimation
of slope requires knowledge of the level at steps i, (i− 1), and so on until a0, as well as
slope at steps i− 1, and so on until b0. In step (3), as in step (2), the equation is solved
recursively. Estimation of the level requires knowledge of the level, slope, seasonal
components at different steps starting at i− 1 (for ai), i− 1 (for bi), i− p (for si), and
finishing when the values are a0, b0, and s0. It also requires values of T at steps i, and
so on until t0, where t0 is just the oldest data point in the training data set (i.e., a set of
observations starting from t1 until the current observation ti). Note that the weighting
coefficients α, β and γ need to be computed for running steps (2), (3) and (4). Such
coefficients are calculated by minimizing the squared one-step prediction error [76].
Now that the level, trend and seasonal component at time step i have been estimated,
the forecast t̂(i+l) at step (i + l) with l = 1, . . . , 24 can be estimated by using the three
values of components together.
According to this method, the level, trend, and seasonal components are updated
over a historical period. For example, when the method is applied per month, the
components are updated every hour over each month. If the algorithm converges, a,
b and s1 to s24 are the estimated values for the level, trend and seasonal components
at the last instant of time in the month.
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The level at a time t corresponds to a weighted average between the seasonally
adjusted temperature and the level forecast, based on the level and slope at the
previous instance of time t− 1. This component gives an estimate of the local mean
(i.e., mean per hour in this study). Regarding the slope component, it expresses
the linear increment of the level, over an hour. Finally, the seasonality component
estimates the deviation from the local mean, due to seasonality.
The features calculated per sensor are the following:

(a) a: Estimated value for the level for each month of the time series.
(b) b: Estimated value for the trend (slope) for each month.
(c) s1,s2,...,s24: Estimated values for the seasonal components for each month.
(d) sse: Sum of squared estimate of errors per month.
(e) maximum.I: Maximum value of the periodogram computed with the residuals

of SH-W for each month.
(f) mean.acf: Mean of sample ACF of residuals at lags 1 to 72 per month.
(g) median.acf: Median of sample ACF of residuals at lags 1 to 72 for each month.
(h) range.acf: Range of sample ACF of residuals at lags 1 to 72 per month.
(i) Dn: Statistic of the Kolgomorov–Smirnov (KS) normality test [77] of the residu-

als derived from SH-W, per month of the time series. The KS normality test
was employed to compare the empirical distribution function of the residuals
with the cumulative distribution function of the normal model.

(j) Wn: Statistic of the Shapiro–Wilk test (SW) [78] of the residuals per month. This
test was used to detect deviations from normality, because of either kurtosis
or skewness, or both. The Dn and Wn statistics were also used as classification
variables, because they provide information about deviation from normality
for the residuals derived from the SH-W method.

(k) fcast: 24 forecasts of T (i.e., t̂i+l|i, l = 1, . . . , 24) for a unique additive SH-W
model that was fitted using the complete time series without splitting it in
different months.

Features calculated from (a) to (j) imply a set of 33 variables computed for each month.
By including the 24 forecasts as explained in (k), the total number of variables was
33× 7 + 24 = 255, which were organized as a matrix denoted as X2, comprised of
21 rows (one per sensor) and 255 columns (one per variable).Version October 5, 2021 submitted to Sensors 15 of 37
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Figure 6. The flow diagram displays five steps for carrying out the additive SH-W method. Step (1)
indicates that the initial conditions for the components are computed. Steps (2), (3), and (4), indicate
that the slope, level and seasonal component at step i are estimated. Finally, step (5) indicates that
forecasts (t̂i+l) at step (i + l) are calculated, where l : 1, . . . , 24.
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Figure 6. The flow diagram displays five steps for carrying out the additive SH-W method. Step (1)
indicates that the initial conditions for the components are computed. Steps (2), (3), and (4), indicate
that the slope, level and seasonal component at step i are estimated. Finally, step (5) indicates that
forecasts (t̂i+l) at step (i + l) are calculated, where l : 1, . . . , 24.
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For both data sets, X1 and X2, those variables with a strongly skewed distribution were
transformed with the goal of finding a simple transformation leading to normal distribution.
For this purpose, standard (simple) Box-Cox transformations [79] were applied to those
variables with a Fisher–Pearson standardized moment coefficient of skewness [80], or with
a Fisher coefficient of kurtosis [80] outside the intervals of −2.0 to 2.0. For those variables
with a negative skewness, absolute values were used instead of their original ones for
applying a Box-Cox transformation. The skewness statistic evaluates the asymmetry of the
probability distribution. The kurtosis statistic indicates which variables were heavy-tailed
or light-tailed, relative to a normal distribution. Furthermore, the estimates of kurtosis
were useful measures for identifying outliers in the different variables.

The percentage of outliers in both data sets was 0.73% in X1 and 0.65% in X2, which is
a small amount. Outliers were discarded, and the resulting missing values were imputed
using Non Linear Estimation by Iterative Partial Least Squares (NIPALS [81,82]). Given the
low percentage of missing values, their estimation is assumed to be appropriate [83]. Next,
once the values were imputed, each column of X1 and X2 was centered by subtracting
its column mean. Furthermore, it was scaled to unitary variance by dividing over its
standard deviation.

As both data sets contain more than 100 variables and just 21 rows, a high degree
of multicollinearity is expected a priori, which would lead to severely ill-conditioned
problems. Furthermore, from a practical point of view, for these high-dimensional data
sets, results might be difficult to interpret given the large number of variables. One solution
is to extract latent variables that summarize the information using a subset of variables.
In this context, many sparse versions [51,84–87] have been proposed for feature selection
purposes. These versions work properly in regression by introducing penalties in the
model such as Lasso [88] and Ridge [89].

2.5.4. sPLS

Since Partial Least Squares (PLS) regression was introduced by Wold [81], it has been
employed as an alternative approach to Ordinary Least Squares (OLS) regression in ill-
conditioned linear regression models that emerge in many disciplines, such as biology,
chemistry and economics [87]. PLS is a dimension reduction technique that relates a regres-
sor matrix X and a response matrix Y by computing latent components that correspond to
linear combinations of the original variables (predictors). PLS maximizes the covariance
between components from two data sets. PLS is computationally fast and the projection
of observations on a low-dimensional space allows a graphical representation of obser-
vations and variables. Due to these reasons, this method has gained a lot of attention in
high-dimensional classification problems [51].

In this study, the data sets X1 and X2 were analyzed using sPLS with a regression
model in an attempt to identify the main variables correlated with sensor height, which
will explain the differences in the time series of T according to the distance to the floor
level. The information used by sPLS was the following: the response vector, Y ∈ Rn×1,
containing the height of each sensor (n = 21), and the regressor matrix, X ∈ Rn×p (X1 or
X2), which contains the classification variables computed in Section 2.5.3.

sPLS modeled X and Y as a linear regression, where X = ΞC+ E1 and Y = ΞD+ E2 =
Xβ + E2, where β ∈ Rn×p is the matrix of regression coefficients, E1 ∈ Rn×p and E2 ∈ Rn×1

are random errors, Ξ = (ξ1, . . . , ξH) ∈ Rn×H is the matrix of the latent component,
where Ξ = XU, with U ∈ Rp×H as H direction vectors, with 1 ≤ H ≤ min{n, p} and
U = (u1, . . . , uH). Furthermore, (uh, vh) is the solution of the optimization problem
according to Equation (3) for j = 1, . . . , h− 1, subject to ‖u‖2 = 1.

min
u,v
{‖M− uv>‖2

F + Pλ1(u)} (3)
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The optimization problem minimizes the Frobenius norm ‖M− uv>‖2
F = ∑n

i=1 ∑
p
j=1(mij −

uivj)
2, where M = X>Y, u and v are the loading vectors, and V = (v1, . . . , vH). Further-

more, Pλ1(u) is the Lasso penalty function, where Pλ1(u) = λ1‖u‖1 [35,86].
This optimization problem is solved based on the PLS algorithm [82] and Singular

Value Decomposition (SVD) [90] of a matrix M̃h per dimension h. The SVD decomposition
of matrix M̃h is subsequently deflated per iteration h. This matrix is computed as U∆V>,
where U and V are orthonormal matrices, and ∆ is a diagonal matrix whose diagonal
elements are called the singular values. During the deflation step of PLS, Mh 6= X>h Yh,
given that Xh and Yh are computed separately, and the new matrix is called M̃h. At each step,
a new matrix M̃h = X>h Yh is calculated and decomposed by SVD. Furthermore, in sPLS
algorithm, the soft-thresholding function g(u) = (|u| −λ)+sign(u), with (x)+ = max(0, x),
was used in penalizing loading vectors u to perform variable selection in the regressor
matrix; thus, unew = gλ(M̃h−1vold) [85].

The mixOmics package [91] offers different functions for carrying out multivariate
analysis of data sets, with a specific focus on data exploration, dimension reduction and
visualization [65]. Among the different functions, it proposes some in order to carry out
sPLS. Furthermore, it implements Leave-One-Out cross-validation (LOO-CV) to compare
the performance of diverse models with different Lasso penalties. Furthermore, in order to
perform variable selection, it employs an algorithm that uses the soft-thresholding function
g(u), according to Equation (4). By controlling η instead of the direction vector specific
sparsity parameters λ, the method evades combinatorial tuning of the set of sparsity
parameters and supplies a bounded range for the sparsity parameter [51].

g(u) = (|u| − ηmax1≤j≤p| uj |)+sign(u), where

0 ≤ η ≤ 1

(x)+ = max(0, x)

(4)

The algorithm implemented in the mixOmics package uses the number of variables
denoted as keepX for running PLS, instead of the parameter η, while it employs η close to
1. The keepX argument in the package functions is employed in order to evaluate different
subsets of variables on each latent component and determine the best number of variables
that optimizes the objective function of PLS.

The perf function was used to determine the optimal number of components. The
performance of sPLS was evaluated for 10 components using LOO-CV. The optimal number
of components was determined by identifying when the further decrease in Root Mean
Square Error of Prediction RMSEP is relatively insignificant [92]. RMSEP is defined in
Equation (5), where PRESSh = ∑n

i=1 (yi − ŷh(−i))
2, with ŷh(−i) is the model prediction with

1 to h components across all but the i-th observation.

RMSEPh =

√
PRESSh

n
(5)

The main criterion for selecting the optimal number of components was RMSEP,
while the second one was the goodness-of-fit R2 (0 ≤ R2 ≤ 1). The latter is inflationary
and rapidly approaches 1 as the number of model parameters increases. Therefore, it is not
sufficient to only have a high R2.

In order to determine the optimal number of variables to select on each component, a
grid (keepX) of the non-zero elements of the loading vector was assessed on each compo-
nent, one at a time. The values of three different grids were carefully chosen to achieve
a trade-off between resolution and computational time. Firstly, two coarse tuning grids
were evaluated before establishing a finer grid. The penalization parameter was chosen by
computing the error prediction (RMSEP) with LOO-CV, per component. The tune.spls
function was used to determine the optimal number of variables per component. Once



Sensors 2021, 21, 6921 18 of 35

the optimal number of components and variables were determined, the final sPLS method
was run.

Variable Importance in Projection VIPj [93] was used for computing the overall impor-
tance of each predictor variable on the response, cumulatively over the total components.
This measure was computed using the loading vectors and the sum of squares per compo-
nent. Variables with VIPj > 1 are the most important ones in the regression model.

Although PLS was not originally designed for classification, it has been employed
for that objective, with effective performance [51]. With respect to the adjustment of
PLS to classification for high-dimensional data, some approaches have been studied, e.g.,
SPLS Discriminant Analysis (SPLSDA), Sparse Generalized PLS (SGPLS) [87], and sPLS-
Discriminant Analysis (sPLS-DA)[35]. Regarding SPLSDA, different variants have been
proposed: SPLSDA-LDA (i.e., with linear discriminant analysis) and SPLSDA-LOG, (i.e.,
with Logistic Regression). These methods aim to improve the PLS classification approaches
by using dimension reduction and variable selection simultaneously. In fact, sPLS-DA has
been used in order to classify time series in the context of art conservation [28,94].

Likewise, this study proposed a statistical methodology based on SPLSDA [87] for
classifying different time series of T in the context of preventive conservation of cultural
heritage. SPLSDA computes latent components using sparse partial least squares (SPLS)
regression [51]. SPLS selects predictors while reducing dimensions. Next, a classifier is
fitted, either Logistic Regression (LOG) or Linear Discriminant Analysis (LDA) [51]. Chung
and Keles [51] suggest using a linear classifier because it might be better from an interpre-
tation point of view. The methodology proposed here consists of using sPLS [85] instead
SPLS [51]. Once the latent components are computed, LDA is used subsequently.

When examining time series for art conservation, they are generally very similar in
distinct positions or height levels of the same building. In this area of research, it is of
interest to develop statistical methodologies that can improve the classification of time
series with easy interpretation. Such classification can be useful for characterizing and
monitoring microclimatic conditions in different zones and heights in a museum, archaeo-
logical site or heritage building, with the goal of avoiding problems such as moisture and
dust deposition on walls and artworks.

2.5.5. Linear Discriminant Analysis (LDA)

LDA is a supervised method for the discrimination of qualitative variables in which
two or more clusters are known a priori and new observations can be classified into one
of them, according to their characteristics [89]. In this study, for separating three clusters
(K = 3) of sensors according to height, LDA was run by using the matrix X ∈ Rn×d, whose
elements correspond to values of the d components for n sensors. The components (d = 2)
were computed from sPLS (either method 1 or method 2). The clusters that were defined
according to the heights (h), are the following: 1 (2.0 ≤ h ≤ 4.3), 2 (4.3 < h ≤ 8.7), and 3
(8.7 < h ≤ 13). The number of nodes per cluster were 10, 5 and 6, respectively. Clusters 2
and 3 comprise of a vertical difference of 4.4 and 4.3 m, respectively, but this value is about
half (2.3 m) in cluster 1. This is not an ideal situation, but this criterion was adopted in
order to have a similar number of nodes per cluster.

LDA predicts the cluster most appropriate for each of sensor by using Bayes’ theorem,
which helps to compute the posterior probability P(y = k|x), for each cluster k, k = 1, 2, 3.
Suppose that a predictor x ∈ Rd and that the class conditional distribution P(x|y = k) is
modeled as a multivariate Gaussian distribution (with mean µk ∈ Rd and variance matrix
Σk ∈ Rd×d), where all clusters have the same covariance matrix Σ. Then, the log posterior
(δk(x)) is given by Equation (6), where D is the Mahalanobis distance between the data x
and the mean µk. LDA classifies a sensor in the cluster k, if the cluster maximizes the log
posterior probability δk(x) [89]. Thus, this method classifies a sensor, by accounting for the
cluster prior probabilities P(y = k), and the cluster whose mean is the closest to the data x,
according to Mahalanobis distance (D) [89].
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δk(x) = log P(y = k|x)

δk(x) =− 1
2

D + log P(y = k) + constant, where

D =(x− µk)
>Σ−1(x− µk)

(6)

Equation (6) can be written as indicated in Equation (7), which implies that this
method has a linear decision surface [89].

δk(x) = log P(y = k|x) =ωk0 + ω>k x + constant, where

ωk = Σ−1µk; ωk0 = −1
2

µ>k Σ−1µk + log P(y = k)
(7)

Figure 7 illustrates the boundary of decision, D(x) = δk=0(x) − δk=1(x) = 0, for
classifying one observation (blue point) from two clusters (K = 2). The first cluster has µ̂0
as the estimation of the mean, and the second one has µ̂1 as the mean. The blue point was
classified in cluster 0 because D(x) > 0.

Figure 7. The picture displays two clusters (cluster 0 and cluster 1). If D(x) is greater than 0, the blue
point is classified as cluster 0 and otherwise as cluster 1. The purple line corresponds to the boundary
of decision, D(x) = δk=0(x)− δk=1(x) = 0.

LDA can be carried out by first transforming the data in order to have an identity
covariance matrix. Next, LDA assigns x to a cluster k, taking into account prior probabilities
of the cluster and the cluster whose mean is the closest to the observation, according to
Euclidean distance [89]. Calculating Euclidean distances in d-dimensional space (µk ∈ Rd)
is equivalent to first projecting the data points into an affine subspace of the dimension at
a maximum of K− 1 [89]. Thus, in this case, LDA determines linear combinations of the
components from sPLS for predicting the clusters for the different sensors. This method
was run by using the function train (with method="lda") of the caret package [95], and
partimat of the klaR package [66] of R software.

In this study, the assumption that each component has a normal distribution for each
cluster was verified, as well as whether the variance of the components was the same in all
clusters. When the normal condition is not fulfilled, LDA loses accuracy but can still reach
a relatively good performance [71]. Results from the methodology proposed (sPLS with
LDA) were compared with the results from SPLSDA and sPLS-DA. The classification error
rates and number of selected variables from each method were compared. SPLSDA was
run by using the function cv.spls of the spls package [67], and sPLS-DA method was run
by using the functions perf and tune.splsda of the mixOmics package [65].

3. Results and Discussion

The values of T inside the church are influenced by the climatic conditions outside.
Figure 8 displays the trajectories of T (days) in the period from August 1st 2017 to February
28th 2018, outside and inside the church of Saint Thomas and Saint Philip Neri. The



Sensors 2021, 21, 6921 20 of 35

trajectories of T inside the building correspond to the 21 node sensors employed in this
study, while the trajectories of T outside correspond to the minimum and maximum daily
temperatures. The trajectories show a similar tendency, as the temperature decreases until
November, and T becomes stable after that day. The variability of T, from sensors inside
the building is obviously less pronounced than the variability of T outside the church.
The values of T inside the church are more influenced by the maximum temperature
outside. If the maximum daily temperature is smoothed, it can be observed that the values
are quite similar throughout the year to those registered inside the church. This fact is
striking, since it would be expected that the temperature inside the temple would be
intermediate between the maximum and minimum values of outside air conditions. The
main hypothesis is that the maximum outdoor temperature is measured in the shade and
under standardized conditions. However, the solar radiation incident on the roof of the
church reaches a temperature much higher than that of the surrounding air, which occurs
throughout the year because the weather in Valencia is very sunny. This heat is transmitted
inside the temple, and would affect the air temperature in the church. A detailed study of
heat transmission would be necessary to better study this issue, but it is out of the scope of
the present work.

Figure 8. Trajectories of daily-mean temperature over time (days) in the period from August 1st 2017
to February 28th 2018. The green and brown trajectories correspond to the minimum and maximum
daily temperature, respectively, in the city of Valencia, Spain. The blue trajectories correspond to
temperatures recorded by the 21 sensor nodes inside the church of Saint Thomas and Saint Philip Neri.

3.1. Vertical Gradients of Temperature

The vertical gradient was estimated for each month by fitting a linear regression
model using height and hourly mean temperature as the predictor and response variables,
respectively (see Section 2.5.2). The target was to identify in which month the correlation
between both variables was statistically significant. It was found that vertical thermal
gradients in the church of Saint Thomas and Saint Philip Neri change throughout the year.
Figure 9a shows that the correlation between height and hourly values of T is around
r = 0.8 in August, but it decreases afterward, reaching a null value in October, and the
correlation becomes slightly negative in winter. Taking into account that July and August
are the hottest months of the year in Valencia, this observed correlation suggests that, in
summer, the temperature at the upper part of the central nave is higher than at lower
levels. The reason could be the hot temperatures reached during the day in summer in
the Mediterranean region [14]. By contrast, in winter, the correlation tends to be slightly
negative. However, such correlation is not statistically significant, as described below,
which implies that there is not enough evidence to affirm that temperatures in the lower
positions tend to be higher in winter. Results reveal that vertical gradients of T are not
stable throughout the year, and summer is the only period when vertical airflows might be
involved in the phenomenon of dust deposition on walls. For August and September, most
values of the correlation coefficient between sensor level and temperature were greater
than 0.20 (upper red line in Figure 9a). In fact, the maximum value of r = 0.80 was found
for August. For the period from August 10th at 8:00 AM to September 9th at 11:00 PM,
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most p-values were less than 0.05 (red line in Figure 9b), which implies that the correlation
between height and monthly mean T is statistically significant. Thus, it is possible to
establish a linear relationship between them. By contrast, from September 17th, most
p-values were greater than 0.05 (see Figure 9b). As a consequence, August and September
are the most relevant months for explaining the relationship between sensor levels and
temperature; in particular, the period from August 10th at 8:00 AM to September 9th at
11:00 PM.

(a)

(b)

Figure 9. (a) Evolution of the correlation coefficient (r) between sensor height and temperature, over
time (hour). Horizontal red lines correspond to values of −0.20 < r < 0.20. Dashed vertical lines
account for the different months. (b) p-value from the correlation test over time (hour). The red
horizontal line corresponds to a p-value = 0.05; for lower values, the correlation was regarded as
statistically significant. Purple vertical lines correspond to August 10th at 8:00 AM and September
9th at 11:00 PM. The blue line indicates September 17th at 9:00 PM.

For the period from August 10th at 8:00 AM to September 9th at 11:00 PM, the
difference between the mean temperature for the maximum sensor level (13 m) and the
minimum sensor level (2 m) was 0.39 ◦C. Furthermore, estimations of the intercept and
slope with their confidence intervals at 95% in the linear regression model using height
(predictor variable) and mean of temperatures (response) were 28.31 (28.207, 28.35) and
0.043 (0.030, 0.057), respectively. The coefficient of determination is R2 = 70.55%. In the
period mentioned, at the floor level (height = 0), the estimated mean of T is 28.31 ◦C.
Furthermore, if the height increases by 1 m, the mean of T will increase on average
approximately 0.043 ◦C/m, which implies 0.43 ◦C per 10 m. This result is consistent with
the difference previously calculated. In a vertical difference of 11 m, the model estimates
0.47 ◦C as the thermal difference. This linear increase can be seen in Figure 10. Given
that the gradient corresponds to the slope of the linear regression fitted to the data (mean
temperature per node vs. height), it is possible to compare the results from this study with
other works reporting differences of temperatures at different height levels.

The vertical thermal gradient quantified here is consistent with a similar study carried
out in the Duomo of Milan [9], where the vertical gradient was estimated as 0.033 ◦C/m.
This Cathedral does not have a heating or air conditioning system inside, which would
explain the linear gradient and the small variations of T. If the trajectories of T recorded
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in the Duomo are compared with those from the church of Saint Thomas and Saint Philip
Neri, their characteristics are rather similar (e.g., maximum, minimum, trend), probably
because the indoor microclimate in both churches is unheated (i.e., natural) without any
air conditioning system and the climate in Valencia and Milan is rather similar.

Figure 10. Plot of fitted linear model for mean temperature in the period from August 10th at 8:00 AM
to September 9th at 11:00 PM, from each node (codes as in Figure 4) versus height. Prediction limits
(in purple) correspond to 95% confidence level. The vertical gradient estimated from 0 to 11 m is
about 0.47 ◦C.

In the Basilica di Santa Maria Maggiore, in Rome, a study of temperature gradients
was carried out at heights of 3, 7, and 11 m [96]. A greater vertical gradient was identified
in August than in September and December. In August, most time series of temperature un-
derwent an increase by 0.05 ◦C/m approximately. Regarding the trajectories of T recorded
in the church of Santa Maria Maggiore [96], which is relevant for the case of Saint Thomas
and Saint Philip Neri, in August and September, higher temperatures were recorded at the
maximum height, while the lower ones were found for the minimum height. By contrast,
in December, the phenomenon changed, so that lower temperatures were recorded at the
maximum height while the opposite occurred near the floor level. The difference between
maximum and minimum heights for the sensors were similar in both studies (i.e., 8 and
11 m, for the Basilica in Rome and for the church in Valencia, respectively). Furthermore,
the gradient found for August at the Basilica of Santa Maria Maggiore was 0.05 ◦C/m,
which is consistent with the confidence interval of 95%, (0.030, 0.057), for the gradient esti-
mated for the period from August 10th to September 9th in the church of Saint Thomas and
Saint Philip Neri. However, in other periods such as May, in Santa Maria Maggiore [96], the
increment of temperature per meter was at least 0.25 ◦C/m. The main reason could be the
hot air that came in through the front door of the church [96]. According to reported results
and the fact that some studies have displayed the effect of temperature gradient on the
dust accumulation process under different temperatures [96,97], an important conclusion
of both works is that the ventilation of churches can be very important for discussing
temperature gradient in height. The ventilation rate should be studied and quantified, as it
contributes to the deposition of dust on art works. This issue is discussed in Section 3.2.

Although many studies have analyzed time series of T in the context of art conser-
vation, their focus has not been on comparing parameters (e.g., mean, maximum and
minimum) of temperature at different height levels. For example, Merello et al. [31]
compared estimation of parameters such as the minimum and maximum of T in distinct
positions in a building instead of different height levels of the sensors. Furthermore, they
studied the performance of the mean T by using contour plots, which helped to analyze
the change of T at different height levels in the building. However, it is not possible to
estimate the vertical gradient from this reported study. The methodology proposed by
Merello et al. [31] based on ANOVA could be employed to compare the series of T at dif-
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ferent levels in the building. However, this method cannot help to discriminate according
to the different characteristics of series of T.

In order to study the temperature gradient and identify the best function that explains
the changes of temperature according to the height variable (i.e., linear, quadratic or further
polynomial orders), it is necessary to employ temperature measures at distinct height
levels. In the case of a linear gradient, using a linear regression model seems better than
computing the differences between temperatures measured at two levels. The estimation
of the model provides a better interpretation of the results. Although linear regression
was used in this study, other methods based on smoothing techniques and nonparametric
regression [89,98], which relax the usual assumption in several standard models such as
the one used here, could be employed. These models are more flexible and they can fit a
wide range of structures in the data, e.g., observations from buildings that employed an air
conditioning system.

There are several European Standards [15,99–106] for providing guidelines for mon-
itoring, elaboration and study of the microclimatic conditions inside heritage buildings,
aimed at art conservation [16–18]. According to European Standards EN 15757, variables
such as annual average, seasonal variation, short-term fluctuations, and 7th and 93rd
percentiles of short-term fluctuations, can be used as reference for specifying the levels of T
or RH in order to avoid physical damage in organic and hygroscopic materials. Seasonal
variations are computed by using moving average of 30 days, and short-term fluctuations
are calculated by using the difference between the instantaneous measures and a moving
average [15,107]. Short-term fluctuations are used instead of seasonal cycles because build-
ings located in cold climates are expected to be equipped with heating systems, which
helps to provide more stable seasonal cycles. As a consequence, the indoor conditions
are less dependent on the external conditions. However, there is not a complete study
on the application of the EN 15757 in all types of climates; thus, it is necessary to assess
its methodology in temperate climates and suggested changes, if required [19]. Silva and
Henriques [19] carried out a microclimatic study of the Church of St. Christopher in Lisbon
(Portugal) with records from November 2011 to August 2013. They analyzed T and RH
from 17 thermocouples or portables sensors located in the church in a vertical profile
(5 levels: 0.15, 1.50, 3.90, 7.50, and 10 m), in horizontal profiles (4 profiles at different posi-
tions), and some surface points of on wall, among others. They studied indoor conditions
as indicated by references such as the EN 15757:2010 [15], the Italian National Unification
UNI 10829 [108] and the American Society of Heating, Refrigerating and Air-Conditioning
Engineers ASHRAE specification [107]. This research is of interest because studies about
indoor air conditions in historical buildings in temperate climates are scarce [19]. Although
Portugal has a Mediterranean climate, due to its proximity to the Atlantic Ocean, it has a
particular climate with winters less cold and summers less warm than climates of other
countries in southern Europe. Silva and Henriques [19] define an interval for short-term
fluctuations of T of 0.8 ◦C. This interval or target band was limited by the 7th and 93rd
percentiles of T. They suggested following a target band for T in the future as a preventive
measure. Furthermore, they found, for example, that the maximum temperature from the
sensor at level 3.90 m was 24.9 ◦C and the temperature minimum was 13.2 ◦C. Although the
trend of the temperature trajectory found for the Church of St. Christopher may coincide
with other temperature trajectories for other buildings in Mediterranean countries, the
band, minimum and maximum temperatures can be very different. For example, in this
study, both the minimum and maximum temperatures were higher than those determined
in the Church of St. Christopher. Regarding the previous ideas, it is necessary to evaluate
the climatic conditions in buildings located in the Mediterranean climate in order to have
reference values for monitoring indoor conditions. Thus, the methodology proposed in
the present work for estimating the temperature gradient, could be useful in order to
determine reference measures for historical buildings. Furthermore, for buildings located
in Mediterranean countries, the confidence interval (95%) of the vertical gradient reported
here (0.030 ◦C/m, 0.057 ◦C/m) could be considered as a reference measure in summer.



Sensors 2021, 21, 6921 24 of 35

Functions to estimate risk damage in cultural heritage are a permanent subject of study
and investigation [109,110]. In [110], a detailed review of such risk damage can be found.
However, the quantification of vertical thermal gradients has not received much attention
yet regarding the study of risk damage in cultural heritage, though it is well established
that T gradients affect dust deposition on walls and works of art [96]. One reason for this
can be the difficulty of measuring the speed of the movement of air within the building,
which is a consequence of thermal currents dragging particles. Air speed is not easily
quantified since it is necessary to model the speed value at each point [111–113]. The
techniques related to Computational Fluid Dynamics (CFD) analyze physical parameters
at each point by using finite elements of volume, mainly T, RH and wind speed. Although
these techniques use a computer system for their calculations, they need real measurements
to indicate the boundary or input conditions of the problem and, secondly, to verify and
validate the results. Therefore, a technique that is capable of quantifying a gradient, such
as the one described in the present work, might be useful in a CFD study [111–113].

3.2. Ventilation of the Church of Saint Thomas and Saint Philip Neri

It has been estimated that the total volume of the church of Saint Thomas and Saint
Philip Neri is about 18,000 m3, including the side chapels and the Chapel of the Holy
Communion, which is separated from the main nave by a door that always remains open,
except in winter. In this chapel there are two tilt-and-turn windows of 1× 1.5 m, almost
always opened vertically. The Sacrist has ventilation to the outside, but the door that
connects the main nave with the sacristy remains closed most of the time. The temple has
multiple windows in the upper area, but they do not have openings for ventilation. The
main source of ventilation is the large front door, which is rarely fully opened. Ordinarily,
the main door gives access to the nartex, which is a wooden structure that serves as a
transition between the exterior and interior environment. This nartex has two 2.4× 0.9 m
doors, which must be pushed to open by the churchgoers. They close automatically by
means of springs.

Through the website https://datosclima.es/Aemethistorico/Vientostad.php (accessed
on 13 October 2021 ) it has been found that in Valencia, between August and December
2017, the average wind speed was about 1.4 m/s, which, multiplied by the section of the
narthex door (2.2 m2), is equivalent to an average air flow of about 3.08 m3/s. Assuming
that during work days this door is open for a total of 200 s (taking into account that the
temple can be visited for 6.5 h a day), this equates to an average air volume of 616 m3. Thus,
under these conditions, 29 days would be necessary to renew 18,000 m3 of the total volume.

Assuming that on Sundays the attendance of parishioners is much higher, up to
perhaps 10 times, it would take about 3 days to renew the total air volume. In any case,
these preliminary calculations show that the ventilation rate of the temple is very low. Air
renewal rate is an important aspect to consider in the present study. Actually, the fact that
the vertical thermal gradient was basically observed in August, could be related to the
low ventilation rate during this month. Perhaps a much higher ventilation rate could have
homogenized the vertical profile of temperatures and could have altered the results.

3.3. Application of sPLS to Identify Key Features Correlated with Height

Next, sPLS was employed to identify the main features from the time series that are
correlated with sensor height in the church, which is of interest particularly for those
periods where the vertical gradient was not statistically significant. When applying sPLS,
as described in Section 2.5.4, according to criteria of RMSEP and R2, two components
seem to be enough, both when using variables from method 1 and method 2. The total
number of selected variables for methods 1 and 2 were 7 and 13, respectively. Variables are
sorted in Table 2 by decreasing value of VIPj [93], which was computed for determining
the overall importance of each predictor variable on the response, cumulatively over the
total components. The values of VIPj for variables in Table 2 are greater than 1, which
are the most important ones in the model. Regarding method 1, the variables selected by
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sPLS correspond to the stages: 1 (mean.ts and mean.mr), 3 (pacf4), 4 (pacf4), 5 (pacf3 and
pacf4), and 7 (pacf3). The relevance of pacf3 and pacf4 is difficult to interpret, because
these variables imply that the time series are autocorrelated with the values observed 3
or 4 h before. Nevertheless, the most relevant information is the fact that, in August, both
mean.ts (mean temperature) and mean.mr (mean moving range with order 24) present
nearly the same degree of correlation (r = 0.67) with sensor height. Thus, not only the
mean temperature tends to be higher at the upper position, but also the daily variability.
The reason might be the high temperatures reached in Valencia in August during the day,
but they become mild at night.

Table 2. Results from sPLS: variables selected (V), ordered from top to bottom according to VIPj. The
monthly stage is indicated as Stg1 (August) to Stg7 (February). Correlation coefficients (r) of each
selected variable vs. sensor height, and the corresponding p-values of the correlation test. Results are
presented in accordance with the variables used in sPLS: (a) Method 1 and (b) Method 2.

(a) (b)

Stage V r p-Value Stage V r p-Value

1 Stg1 mean.ts 0.86 0.000 Stg4 a −0.33 0.138
2 Stg5 pacf4 0.28 0.217 Stg1 s7 0.83 0.000
3 Stg4 pacf4 0.36 0.108 Stg1 s8 0.79 0.000
4 Stg7 pacf3 0.51 0.019 Stg1 s6 0.80 0.000
5 Stg3 pacf4 0.43 0.054 Stg1 s19 −0.77 0.000
6 Stg1 mean.mr −0.65 0.001 Stg5 a −0.31 0.178
7 Stg5 pacf3 0.31 0.167 Stg4 s12 0.74 0.000
8 Stg1 s18 −0.75 0.000
9 Stg4 s6 −0.23 0.319
10 Stg1 a 0.77 0.000
11 Stg7 s20 −0.41 0.065
12 Stg7 s16 0.70 0.000
13 Stg4 s23 −0.69 0.001

The most relevant stages were 1 and 4, which correspond to August and November.
For both methods, August was the most important month. The mean temperature was
important for this month, because the overall mean temperature (mean.ts) was selected
for method 1 and, moreover, the local mean at the last instance of time (a, i.e., level) was
chosen for method 2. The feature mean.ts was the most important, according to the VIPJ
for method 1 (see Table 2a) and the level was the 10th variable among the selected ones
for method 2 (see Table 2b). Regarding the selected variables from sPLS, mean.ts and
mean.mr were the only ones with a statistically significant correlation at α = 1% (r = 0.86,
p-value < 0.001 and r = −0.65, p-value = 0.001).

In fact, the period from August 10th to September 9th was the most important period
for explaining the vertical gradient of temperature. Furthermore, August was the most
relevant month for discriminating the temperature according to height. In the same manner,
research of the time series of T recorded at the archaeological site of L’Almoina in Valencia
found that the most important fluctuations occurred during summer [33], due to the
greenhouse effect caused by a skylight that covers part of the ruins. Results reported here
are consistent with a similar work that found summer as the most important period for
explaining the gradient of T, probably because outdoor temperatures in the Mediterranean
region are greater in summer [14].

For method 2, the estimated value for the level (a) was found as relevant in stages
1, 4 and 5. However, the correlation between the level and height was only statistically
significant for August (r = 0.77, p-value < 0.001). In fact, August was the unique month
with a pronounced correlation (r = 0.78, p-value < 0.001) between the level and the
mean temperature (mean.ts), which is strongly correlated with the height (r = 0.86,
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p-value < 0.001). By taking a look at the coefficients r in Table 2b, the highest values
corresponds to s6, s7 and s8 (stage 1), which implies a seasonality every 7 h approximately.
Furthermore, in this stage, s18 and s19 are relevant.

In simple regression, Y = f (X), so that Y depends on the values of X. In the observed
correlation between mean temperature and sensor height, the temperature varies according
to the sensor height and, hence, temperature should be regarded as the dependent variable
(Y) and height as the predictor (X). In this linear model, the slope can be interpreted as the
gradient, as discussed above. Nonetheless, in order to better understand the differences in
the time series recorded at the lower vs. the upper positions, multiple linear regression
(MLR) was used to fit sensor height (Y) as a function of variables selected from sPLS
from method 1. Using these variables in the regression model leads to a high degree of
multicollinearity; thus, only two variables were considered in the final model as predictors:
mean of T and mean of MR (i.e., moving range of order 24), both from stage 1 (August). The
estimation of the height is given by ŷi = 0.36 + 3.24·mean.ts-1.72·mean.mr, i = 1, . . . , 21.
Thus, sensor height can be fitted according to the average temperature in August and a
measure of daily variability. The R2 for the model was 87%; p-values (from F-test and
t-tests) were less than 0.0001 for determining whether the independent variables in the
model are statistically significant. The residual analysis showed that the assumptions of
the linear regression model were fulfilled.

Regarding the sPLS results from both methods, Figure 11 shows the projection of
sensors over the two relevant components (PLS1 and PLS2) on the subspace spanned by
the regressor data sets from sPLS. The projections of sensors were colored according to
their height levels (one color per height: 3.0 m in red, 12.1 m in pink, 8.7 m in gray, 5.0 m in
blue, 4.3 m in green, 4.0 m in purple, 3.9 m in cyan, 2.5 m in brown, and 2.0 m in orange).
According to the tilted solid lines represented in Figure 11, it is possible to establish five
classes of sensor nodes according to both methods. It is noteworthy that the solid lines are
markedly tilted, which implies that both the first and second components are necessary to
achieve a reasonable discrimination of nodes according to height. These classes are adjacent
and appear ordered in the plots. Lines in Figure 11a,b separate the different groups, which
were denoted as 1 (2.0 ≤ h ≤ 2.5) in blue, 2 (3.9 ≤ h ≤ 4.3) in pink, 3 (5.0 ≤ h ≤ 8.7) in
gray, 4 (h = 12.1) in purple, and 5 (h = 13.0) in green. The tilted solid lines were drawn
by visually checking the positions of points, taking into account similar height levels of
the sensors. For method 1, node E was classified incorrectly. Nodes T and B are located
in the limit of classes 1 and 2, while J appears in the boundary of groups 4 and 5. By
contrast, for method 2, all nodes were classified correctly according to the lines drawn in
the plot. However, U was located in the limit between class 1 and 2. This classification
can be improved by utilizing LDA, which maximizes the differences between the clusters,
being the two first components (LDA1 and LDA2) linear combinations of PLS1 and PLS2
components, which in turn are linear combinations of predictor variables from methods
1 and 2. The most important variables per method and component were the following:
for method 1, PLS1 was mainly determined by mean.ts and mean.mr, while PLS2 was
basically computed by pacf3 and pacf4. For method 2, PLS 1 was determined by the
variables a, s6, and s7, while PLS2 was calculated by using s8, s12, s16, s18, s19, s20, and
s23. These results suggest that for method 1, the first component explained the level and
changes of the levels of the time series of T, while the second explained the autocorrelation
of time series. Furthermore, for method 2, the first component explained the level of the last
observation of the time series of T, while the second component explained the prediction of
the last observation of series at 7, 15, and 24 h past the time of the last observation.
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(a)

(b)

Figure 11. Projection of sensors over the two relevant components (PLS1 and PLS2) on the subspace
spanned by the regressor data sets from sPLS; (a) using variables from Method 1 and (b) Method 2.
Sensor codes, represented by letters, as in Figure 4, which were colored according to their height:
13.0 m in red, 12.1 m in pink, 8.7 m in gray, 5.0 m in blue, 4.3 m in green, 4.0 m in purple, 3.9 m
in cyan, 2.5 m in brown, and 2.0 m in orange. Solid tilted lines were inserted to better reflect the
distribution of nodes in both plots according to height.

3.4. Discrimination of Sensors in Three Categories by Means of LDA

By considering those variables found as relevant from sPLS with two components,
LDA was applied in order to check if is possible to discriminate sensors according to their
height, and to better understand the variables most relevant for such discrimination. Three
categories were established: low, medium, and high elevation.

Figure 12 displays how the sensors are discriminated in three clusters (i.e., blue for
cluster 1, red for cluster 2, and gray for cluster 3) by applying LDA. The plot outputs show
the projection of sensors over the two relevant components (LDA1 and LDA2). The three
lines in the pictures, which separate the three clusters, were determined according to the
boundary of decisions from LDA (see Section 2.5.5). By considering variables from method
1, the nodes E, M and O, were incorrectly classified. Nonetheless, nodes E and O are
located close the limit of the correct class. Figure 12b shows results from method 2. Only
node P was wrongly classified. Although four sensors were classified incorrectly, their
projection on LDA1 vs LDA2 appear very close to the boundary of decisions. Therefore,
the incorrectly classified sensors do not depart too much from the expected performance.

The discriminant approach used here is based on two steps; firstly, sPLS is applied to
identify the most relevant variables and, next, LDA is used for the discrimination. Hence,
this procedure was referred to as sPLS with LDA. In order to further discuss the results,
two additional discriminant methodologies based on a single step were applied: sPLS-DA
and SPLSDA. When comparing the results from the three methods, sPLS with LDA led to
the minimum error rates, 14.28% and 4.76% for method 1 and 2, respectively (see Table 3).
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Using variables from method 1, sPLS-DA selected 10 variables, while sPLS with LDA
used 15 (see Table 3a). For method 2, SPLSDA selected 11 variables, less than the other
two methods, both of which used 15 (see Table 3b). Computational experiments carried
out by Chung and Keles [51] suggested that variable selection performance of SPLSDA
improves when the sample sizes increase. However, in the context of art conservation,
the number of sensors installed is usually rather small due to restrictions in heritage
buildings. Then, a combination of sPLS with LDA can be useful to discriminate the time
series according to different levels and zones in this type of building.

(a)

(b)

Figure 12. Projection of sensors over the two relevant components (LDA1 and LDA2) from LDA;
(a) using variables from Method 1, (b) Method 2. Three classes were considered according to sensor
height (h): class 1 (2.0 ≤ h ≤ 4.3), class 2 (4.3 < h ≤ 8.7), and class 3 (8.7 < h ≤ 13). Red numbers
correspond to sensors wrongly classified.

Table 3. Classification error rate and number of selected variables (N) using sPLS-DA, SPLSDA, and
sPLS with LDA. Results are presented according to the method used for computing the features from
the time series: (a) Method 1 and (b) Method 2.

(a) (b)

Classification Method Error Rate (%) N Error Rate (%) N

sPLS-DA 35.06 10 18.75 15
SPLSDA 19.04 42 19.04 11

sPLS [85] with LDA 14.28 15 4.76 15

For the three classification methods applied, the classification error rates using vari-
ables from method 2 were lower or equal to the rates obtained for method 1. In a similar
study carried out in Valencia Cathedral [28] and L’Almoina museum [94], sPLS-DA for
method 2 obtained the second best results (lower error rate) when comparing with method
1 and other approaches such as ARIMA, ARIMA-GARCH or Wold decomposition. The
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authors concluded that parameters extracted by applying SH-W has a good performance
for a wide range of series [94].

In this study, features defined using quantiles [50] were employed. These variables
were not computed in previous studies [28,94] when sPLS-DA was carried out using input
features from original time series. Regarding this type of variables, sPLS-DA selected
f.p.r.m35 (for stage 5), f.p.r.m80 (for stage 2), and p.d.f.p (for stage 1). Furthermore,
SPLSDA selected f.p.r.m20 and f.p.r.m35 (for stages 1, 2, and 5), f.p.r.m50 (for
stages 1, 5, and 7), f.p.r.m80 (for stages 1 and 2), as well as p.d.f.p (for stages 1, 2 and
6). However, the classification method based on sPLS with LDA did not select any of these
features. In summary, having a variety of time series characteristics can help improve
results of the classification of sensors and comparisons of results from different classification
methods. Furthermore, finding a common subset of variables was the most important
outcome in this case for the classification methods, while other variables improved the
results. Different studies have shown efficient results using features from the SH-W method.

sPLS-DA is a one-stage approach that performs, in one step, dimension reduction
and selects variables for obtaining the lowest classification error rate. The other methods
are two-stage approaches (i.e., SPLSDA, and sPLS with LDA), which only maximize the
separation between clusters in the second step. One assumption is that employing two
steps instead of one might prevent from obtaining the important variables for classifying
the time series. However, the results show that using sPLS with LDA provides the best
classification error rates.

Elorrieta et al. [55] proposed a new methodology for classifying time series in the
field of astronomy by capturing their peaks. The methodology was based on different
classification methods (e.g., Lasso regression, random forest, support vector machine,
logistic regression, CART algorithm, boosting, and artificial neural network) and on certain
features from the field of astronomy. Furthermore, they proposed two new features to
be used as input for the different classification methods [55,56]. The new methodology
proposed by Elorrieta et al. [55] shares a common aspect with the approach used here. Both
employed a classification algorithm using different characteristics from time series as input.
Notwithstanding, the features extracted from time series and classification algorithms
are different. Time series from the art conservation field hold different characteristics
from the ones in time series from astronomy research. Furthermore, the main goal is to
classify stars and results do not need to be interpreted. Nonetheless, some features and all
algorithms proposed by Elorrieta et al. [55] can be employed for analyzing the data from
art conservation when the aim is to classify time series.

In the field of art conservation, high-dimensional real-world data sets were analyzed
to classify time series by using PCA with raw data as input by Zarzo et al. [30] and García-
Diego and Zarzo [29]. The relevant principal components were calculated to identify the
patterns encoding the highest variance in time series of T and RH. Although PCA does
not maximize the separation between clusters for the different time series, it was found
that PC1 and PC2 discriminated several clusters from each other, when applying PCA to
different time series. Despite the success of PCA in this context, LDA can improve the
results because this method maximizes the separation among clusters of time series.

The three methodologies (i.e., sPLS-DA, SPLSDA, and sPLS with LDA) were efficient
for classifying time series, as they separate the time series clusters. It should be remarked
that these methodologies were numerically stable and competitive in terms of computa-
tional efficiency. Consistent results were obtained when the processes were repeated, and
the time running was alike and little. In addition, using linear combinations of variables
extracted from time series can greatly improve their classification.

In order to study the vertical gradient of T and to characterize the temperature at high,
medium and low heights, it would have been more convenient to decide the position of
sensors according to a statistical design of experiments considering the same number of
sensors at the different levels and different positions in the church. A proper statistical
design is important to improve the results and conclusions. However, it is not always
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possible to use the ideal statistical design because there may be some restrictions in the
buildings, such as the characteristics of the building itself, the maximum number of nodes
available, and the need to prevent problems derived by the movement of people, among
other factors. Nonetheless, results reported here will be helpful for encouraging further
studies using an adequate statistical design that can be adapted to these restrictions.

According to the result, the different height levels of sensors can explain the vertical
thermal pattern in August. In the other months, the factors that might affect the temper-
ature, are the following: some sensors are located close to windows that were exposed
to direct sunlight for a continued period of the day, some sensors are positioned close to
halogen lamps reaching a high temperature, among other factors. Work in progress is
currently being carried out to study these factors in detail.

4. Conclusions

With the goal of proposing a methodology for the multisensor microclimate monitor-
ing in the church of Saint Thomas and Saint Philip Neri (Valencia, Spain), two methodolo-
gies were put forward for estimating the vertical gradient of temperature and characterizing
the differences between time series at high, medium and low heights.

1. This research reports a microclimatic study in the church of Saint Thomas and Saint
Philip Neri in Valencia for the first time, which is of relevant interest because inap-
propriate conditions of temperature can affect the valuable artworks. The results
suggest that temperature gradients in this church were comparable to those estimated
at the Duomo in Milan and Santa Maria Maggiore in Rome, Italy. Moreover, it turned
out that the identification of such gradients was restricted to a very limited period
(August–September) during summertime. Furthermore, the results found in this
study might provide guidelines for establishing a plan for thermal monitoring and
preventive conservation in similar churches.

2. The first methodology is based on Pearson’s correlation coefficient and linear regres-
sion. This methodology, which could help to determine reference thermal gradients
for art conservation, could be improved using smoothing techniques and nonpara-
metric regression. Furthermore, taking into account that datasets about indoor air
conditions in historical buildings in Mediterranean climates are scarce, the confidence
interval (95%) of the vertical gradient found in summer (0.030 ◦C/m, 0.057 ◦C/m),
could be considered as a reference for further similar studies. Results obtained can be
extrapolated to similar scenarios, whether in a heritage building or others, such as
an industrial building, warehouse or farm of similar volume and height, with little
ventilation, in a similar climate, according to some climate classification criteria (e.g.,
Köppen [114] and Trewartha [115]).

3. The second methodology proposed here combines sPLS [85] and LDA. Furthermore,
it employs variables computed from the seasonal H-W method, or functions that
are applied to time series. This methodology helped to obtain parsimonious models
with a small subset of variables, leading to satisfactory discrimination and easy
interpretation of the different clusters of the time series. Furthermore, it was useful
for identifying the most important variables for classifying time series. The variables
computed from the seasonal H-W method yielded better results. In other studies,
SH-W has also been shown to provide efficient results. This method was more flexible
for fitting the distinct time series and obtaining low values of the classification error
rate. The new methodology proposed allowed an efficient characterization of T at
high, medium and low altitude levels. This approach had the best results according
to the classification error rate and number of selected variables, when compared to
results from SPLSDA [87] and sPLS-DA [35]. When using variables from seasonal
H-W as input for either sPLS with LDA, sPLS-DA, or SPLSDA, both the error rate
and the number of selected variables were better.
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