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Center-surround interactions underlie bipo-
lar cellmotion sensitivity in themouse retina

Sarah Strauss1,2,3,6, Maria M. Korympidou1,2,6, Yanli Ran1,2, Katrin Franke 1,2,
TimmSchubert 1,2, TomBaden 1,4, PhilippBerens 1,2,3, Thomas Euler 1,2 &
Anna L. Vlasits 1,2,5

Motion sensing is a critical aspect of vision. We studied the representation of
motion in mouse retinal bipolar cells and found that some bipolar cells are
radially direction selective, preferring the origin of small object motion tra-
jectories. Using a glutamate sensor, we directly observed bipolar cells synaptic
output and found that there are radial direction selective and non-selective
bipolar cell types, the majority being selective, and that radial direction
selectivity relies on properties of the center-surround receptive field. We used
these bipolar cell receptive fields along with connectomics to design biophy-
sical models of downstream cells. The models and additional experiments
demonstrated that bipolar cells pass radial direction selective excitation to
starburst amacrine cells, which contributes to their directional tuning. As
bipolar cells provide excitation to most amacrine and ganglion cells, their
radial direction selectivity may contribute to motion processing throughout
the visual system.

Local motion sensing is of paramount importance for sighted animals,
enabling them to detect and capture prey1–4, as well as to avoid
predators5–9. In mammals, multiple features related to motion sensing
arefirst extracted fromthe visual sceneby the retina10,11. These features
include the direction of motion12,13, looming motion14, and differential
motion15, and can be used, for instance, to filter the local motion of
objects from the global motion caused by body, head, and eye
movements. The stages at which motion is extracted in the retinal
circuitry and the mechanisms of motion-related feature detection are
key to understanding these processes.

Motion features are most likely to be computed in the inner
retina. There, 14 types of bipolar cells (BCs,16–20) receive input from
photoreceptors. BCs provide excitatory glutamatergic input to a
large diversity of amacrine cells (ACs), which are a class of inhi-
bitory interneurons (reviewed in21), and retinal ganglion cells
(RGCs), which are the output neurons of the retina (reviewed in
refs. 22,23). Although BCs represent the first stage in the retina
where visual signals diverge into parallel channels, motion

detection has not yet been found to be widely implemented at the
BC level.

For instance, one well-studied motion detection circuit in the
retina is the direction selectivity (DS) circuit, where the BCs’ role in the
motion computation remains intensely debated. One key element in
this DS circuit is the starburst amacrine cell (SAC), which exhibits DS
for motion at the level of individual neurites24, providing asymmetric
inhibition to direction selective RGCs during motion in one
direction25–29. The role of BCs in this DS circuit has been a matter of
intense scrutiny, with a variety of studies providing evidence sup-
porting an important role for BCs in the motion computation by SACs
(refs. 19, 30, 31, but also see refs. 32, 33), or by direction selective
RGCs34,35.More specifically, it was suggested thatdistinct BC typeswith
different glutamate release kinetics16,36,37 provide spatially offset inputs
on postsynaptic SAC dendrites (“space-time” wiring,30), enhancing the
preferred direction response. While voltage-clamp recordings in the
rabbit retina indicate some directional tuning in BCs38–40, observations
of BC Ca2+ and glutamate release suggest that BCs respond
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symmetrically to motion stimuli41–44 (but see ref. 45). Therefore, BCs
have not been considered direction-tuned cells themselves and their
exact role in the DS circuit remains debated.

At the same time, BCs exhibit a receptive field (RF) feature that
could support another basic form of motion detection: their center-
surround antagonism46–49. A phenomenon of many sensory neu-
rons, center-surround antagonism refers to a preference for oppo-
site polarity stimuli in the center of the RF vs. the surround. For
instance, so-called On BCs depolarize and release more glutamate
to light increments in the center (a light turning “On”), while the
surround antagonistically inhibits the center to light increments.
Off BCs have the opposite preference. Antagonistic interactions
between RF center and surround enrich the BC types’ functional
diversity, as they possess differences in the size and strength of
center and surround as well as in the temporal relationship between
center and surround responses16,50. These interactions are partially
established by horizontal cells in the outer plexiform layer
(reviewed in ref. 51), but importantly shaped further by ACs16,52.
More than 50 years ago, it was hypothesized that the interplay
between spatially and temporally offset excitation and inhibition
establishes retinal motion detectors53. Yet, the role of BCs’ antag-
onistic center-surround interactions in motion detection has
received little attention54–56. Specifically, whether BCs respond dif-
ferently to motion originating in their center vs. in their surround
(“radial direction selectivity”, rDS) has not been explicitly explored.

Here, we studied the local motion sensing properties of BCs
throughout the inner retina by measuring BC output using a fluor-
escent glutamate sensor during visual stimulation. We found that
some BCs exhibit a sensitivity to the origin of a motion trajectory—rDS
with a preference for centrifugal, outward motion. To explore this
further, we characterized the center-surround RFs of BCs across the
inner plexiform layer (IPL) and uncovered diversity in their RF prop-
erties formotion sensing, which confers rDS and looming sensitivity to
a subpopulation of BC types. We explored the implications of this rDS
for downstream retinal processing by constructing biophysicalmodels
of SAC dendrites with anatomically and spatio-temporally precise
input from BCs. We found that the SAC inherits motion signals from
BCs and their DS is diminished by in-silico removal of the BCs’ RF
surrounds. Last, we verified our in-silico findings experimentally by
measuring Ca2+ dynamics in SAC dendrites. Our findings suggest that
BCs produce radial direction selective signals, and that these signals
can play a role in the computation of local motion direction in SACs.
Given the central role of BCs in retinal signaling, our findings suggest
that BCsmayplay a key role inmanymotion computations throughout
the retina.

Results
Bipolar cell glutamate release is sensitive to motion origin
To observe how BCs respond to small, locally moving stimuli, we
performed 2-photon imaging of a glutamate sensor, iGluSnFR16,44

expressed throughout the neurons of the IPL (Fig. 1a). We began by
imaging at relatively low spatial resolution to observe glutamate
release dynamics in the On layer of the IPL over a large field of view
(FOV,∼ 200μm2) during visual motion stimulation (Fig. 1b). We pre-
sented a small, bright moving bar (20 × 40μm) that traversed a dis-
tance of 100μm, corresponding to roughly 3.3∘ of visual angle57

spanning the width of 2–4 BC RFs, in two opposite directions. Gluta-
mate signals from this stimulus were complex, with changes in gluta-
mate release occurring throughout the FOV, well beyond the bounds
of the stimulus and its trajectory. We observed that the response
amplitude in some regions of the FOV depended on the direction of
stimuli. Specifically, BCs in areas where motion originated and termi-
nated appeared to release more glutamate when motion originated
nearby. In other regions, the glutamate release appeared symmetric
between motion directions.

Based on these observations, we sought to measure whether
individual BC terminals exhibit different responses to objects at dif-
ferent points on their motion trajectories. We performed iGluSnFR
imaging at higher spatial resolution in the On layer of the IPL (Fig. 1d)
and presented moving stimuli originating inside the FOV and moving
out (“originates”, green) or outside of the FOV and moving in (“ter-
minates”, cyan) or passing through the FOV in one of two directions
(“passes through”, black) (Fig. 1e). To better capture the activity of
small, noisy regions of interest (ROIs) that were the size of BC
terminals16 (see Methods for details), we used Gaussian Process mod-
eling to infer the mean and standard deviation (s.d.) of individual ROI
responses to each stimulus condition58 (Supplementary Fig. 1). We
observed that many ROIs exhibit strong glutamate release to motion
originating in the FOV, and that ROIs preferred this stimulus tomotion
that terminated in the FOVor passed through, whichwe termed “radial
direction selectivity” (rDS) (Fig. 1f). We calculated the extent of this
preference (d-prime, d’) to examine stimulus preference across the
FOV (Fig. 1g, h). We found that the preference for originating motion
was restricted to a small region of about the size of a BC’s RF center,
and that no such preference existed between stimuli passing through
in different directions (Fig. 1h, data from n = 4056 ROIs/ 7 fields/ 3
mice). This implies that BCs signal the location of motion origin with
high spatial precision. In addition, we found that within the area of the
FOV where the motion originated, the d’ across ROIs was significantly
shifted toward positive values, signifying rDS (Fig. 1i, j, 100μm,
d0 =41:0± 54:1; 150μm, d0 = � 2:4±26:7; 300μm, d0 =4:4±30:0;
p <0.01, Wilcoxon signed-rank test, n = 641 ROIs/ 7 fields/ 3 mice).
These results suggest that at least some BCs are highly sensitive to
motion radiating out from their RF centers.

Bipolar cells exhibit differing sensitivity to motion
Initial observations of responses to moving bar stimuli suggested that
not all BCs possess rDS (Supplementary Fig. 2). Previous measures of
BC response properties suggest that the 14 BC types differ in their
spatial and temporal response properties and kinetics16,37,59,60. These
differences could be important for rDS. In order to understand the
relationship betweenRFproperties and rDS of BCs, wemappedBCRFs
and measured the rDS of those RFs. We used 2-photon imaging
enabled by an electrically-tunable lens61. This allowed “axial” (x–z)
scans and, hence, imaging glutamate release across all IPL layers in a
single imaging frame.Wemeasured the RF properties of BC glutamate
releaseusing a “1Dnoise” stimulus,which captures the temporal aswell
as one spatial dimension of the RF, (Fig. 2a) and inferred smooth RFs
using a spline-based RF estimation method62. In this way, we could
observe center-surround RFs from ROIs near the size of individual BC
boutons (ROI sizes ~2μm2, see “Methods”), including clear On and Off
RFs from their respective IPL strata (Fig. 2b) for 3233 ROIs. We clus-
tered these RFs into groups using a Mixture of Gaussian (MoG) clus-
tering on features from the RFs as well as each ROI’s IPL depth, and
uncovered 13 clusters of BC RFs (Fig. 2c–e). Individual clusters con-
tained ROIs stratifying tightly in the IPL (Fig. 2f) and most clusters
exhibited stereotyped temporal properties of their centers and sur-
rounds within cluster (Supplementary Fig. 3). We computed the aver-
age RF for each cluster and observed that these average RFs had
distinct properties, most notably the temporal and spatial character-
istics of the surround (Fig. 2g, h, see also Fig. 3).

To evaluate the rDS of individual BC clusters, we modeled their
responses to a moving bar stimulus by convolving the average RF for
each cluster with a space-time stimulus image. We cross-validated this
method of modeling by comparing individual ROIs’ real moving bar
responses (as in Fig. 1) to model predictions of motion responses in
imaging fields presented with both the moving bar and noise stimuli.
We found that the linear convolution model predicts moving bar
responses with good accuracy (Supplementary Fig. 4, median Pearson
correlation for originating motion = 0.61, n = 878 ROIs). To test the
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Fig. 1 | Bipolar cell glutamate release is radially direction selective.
a Experimental setup showing objective, retina, visual stimulus (yellow), and
2-photon laser (red). Adapted from ref. 61. b Left: stimulus (20 × 40μm light rec-
tangle ondark background)moving at 500μm/s over 100μm, starting either in the
field of view (FOV) center or just outside the FOV. Right: montage of the average
z-scored fluorescence of glutamate sensor iGluSnFR during stimulation. Repre-
sentative example, experiment repeated in 3 retinas/2 animals. c Top: average
iGluSnFR fluorescence showing two regions of interest (ROIs). Bottom, mean bin-
ned fluorescence for the pixels in each ROI.d iGluSnFR is ubiquitously expressed in
retinal neurons, including in the cells of the inner plexiform layer (IPL, green
region). INL, inner nuclear layer; GCL, ganglion cell layer. e Moving bars
(20 × 40μm) presented to the retina originating in the FOV (green), terminating in
the FOV (cyan), or passing through in two directions (black). All objects to scale.
f Example ROIs (black regions, numbered) overlaid with s.d. of the imaged field and

their responses to the stimuli in (b) as predicted using Gaussian Process modeling.
Black, estimatedmean; gray shading, 3 s.d. Rightmost column: maximum response
amplitude for each stimulus condition. g Motion preference (d’) for all ROIs in
example field. The boxed region is the starting position of the “originates” condi-
tion and is analyzed in (i) and (j). h d’ for originating vs. terminating or passing
through stimuli as a function of location relative to the start position of originating
motion (“x” in e). Black:mean, gray band: s.d. Sample size is n = 4056ROIs/ 7 fields/
3mice. iCumulative histogram of d’ for ROIs located within 10μmon either side of
the “originates” stimulus start position (“x” in e; black rectangle in g). j d’ of each
ROI in the population. Black, mean values ± s.d.; gray, individual ROIs. These con-
ditions are significantly different (p = 1.53e − 61, two-sided Wilcoxon signed-rank
test). Sample size in (i, j) is 641 ROIs/ 7 fields/ 3mice. See also Supplementary Figs. 1
and 2.
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radial direction preference of BC RFs, we modeled the response to a
moving stimulus originating in the RF center (“originates”, green) or
terminating in the RF center (“terminates”, cyan) (Fig. 2i). We com-
pared this scenario to the case of a bar moving through the RF, from
surround to center and then surround again in one of two directions
(“left” vs. “right”). We found that some BC clusters exhibited a pre-
ference formotion originating in their RF centers,while others showed
no preference for originating vs. terminating motion (Fig. 2j, k). We
modeled these responses across a range of stimulus velocities and
measured rDS across velocities. Our modeling revealed that some BC
clusters in both On and Off layers exhibited rDS across a range of
velocities, while other clusters had no direction preference (Fig. 2k). A
similar diversity of rDS strength was obtained from an alternative
clustering that excluded anatomical IPL depth as a feature for

clustering (Supplementary Fig. 5). We also found that rDS was not
limited to the moving bar stimulus, but that motion-sensitive BCs also
preferred looming stimuli to receding stimuli (Supplementary Fig. 6).
This suggests that specific BC types might be important for several
types of motion sensing tasks that are known to be performed within
the retina4,6,10.

Layer-specific radial direction selectivity depends onbipolar cell
surround
To determine which features of the BC RFs are important to establish
rDS, we measured several properties of the cluster RFs and found that
longer center-surround latency and stronger surround strength were
correlated with increased rDS (Fig. 3a, center-surround latency vs.
rDS preference, Spearman correlation ρ = −0.89, p <0.01; surround
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cluster for the originating vs. terminating (black) or passing through to the left or
right (gray) conditions. See also Supplementary Figs. 3–6.

Article https://doi.org/10.1038/s41467-022-32762-7

Nature Communications |         (2022) 13:5574 4



strength vs. origin preference, ρ = 0.72, p <0.01), while properties of
the center were not (biphasic index vs. rDS preference, ρ =0.38,
p =0.19; center full-width half-max (FWHM) vs. rDS preference,
ρ = −0.32, p =0.28). We confirmed the critical role of the BC RFs’ sur-
round in the modeled rDS preferences by decreasing the strength of
the surround artificially (Supplementary Fig. 7). Then, by decomposing
the modeled responses into contributions from the center and sur-
round, we observed that the inhibition from the surround is more
temporally-offset from the excitatory center during outward motion
compared to inward motion (Supplementary Fig. 7).

We next asked how the BC clusters grouped by their RF features
correspond to known anatomical BC types. We compared the dis-
tribution of IPL depths for ROIs within each cluster to the distribution
of BC axonal stratification for types identified from electron micro-
scopy (EM, data from refs. 18, 19, 30) and found that the number and
extent of co-stratifying clusters was correlated with the number and
extent of anatomical BC types (Fig. 3b). For instance, we observed
three clusters co-stratifying with the stratification band for the three
BC types 3a, 3b, and 4. In addition, some of our BC clusters showed a
strong correlation with single EM clusters (type 6, type 7). Thus, we
argue that these clusters represent distinct types of BCs.

Next, we explored how RF features and rDS map onto IPL strati-
fication and anatomical type (Fig. 3c–e). Within groups of co-

stratifying BC types, we found a diversity of RF properties and rDS.
Notably, we observed that at least one type within each sublamina of
the IPL exhibited rDS (Fig. 3e), suggesting that this functional response
property is accessible to post-synaptic partners throughout the IPL.

Bipolar cells prefer motion to non-motion stimuli
Our results indicate that the relative strength and timing of the sur-
round vs. the center are correlated with stronger rDS in BCs. We pro-
pose that the BC center-surround RF acts as a Barlow-Levick motion
detector53, in which spatial and temporal offset of the inhibitory sur-
round and excitatory center establish selectivity for outward radial
motion (Fig. 4a). Given this property,wewonderedwhether BCswould
have a more general preference for motion compared to non-motion
stimuli, a preference previously observed in downstream neurons in
the retina using stimuli that compare sequential presentation of
adjacent bars (apparent “motion”) to the same bars presented in ran-
dom order (“random”, refs. 54, 63, Fig. 4c). We imaged glutamate
release in the IPL in response to these stimuli and characterized the
same ROIs’ RFs using the “1-d noise” stimulus (Fig. 4b, d).

First, we modeled responses to motion vs. random stimuli using
RFs obtained from noise stimulation and our linear convolution
approach (Fig. 4e). In all On BC clusters, we found that responses to
apparent motion were stronger than responses to random sequences
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(Fig. 4f). This preference was most pronounced at velocities below
1000μm/s (Fig. 4g). Interestingly, we observed a difference in the
predicted responses to the two random sequences. To understand the
relationship between the stimulus sequences and responses, we
simulated an additional 200 random sequences. We observed that
stimuli that produced large amplitude responses tended to contain
more coherent motion than stimuli producing small amplitude
responses (Fig. 4h).We calculated ameasure ofmotion coherence (see
Methods) and examined the relationship with the modeled response
amplitude. We found that there is a strong positive relationship
between motion coherence and predicted response amplitude.

We confirmed these predictions experimentally by examining
single ROI responses to motion vs. random stimuli (Fig. 4i). We found
that our model predictions matched the experimental responses, with
a preference for coherent motion stimuli compared to the least

coherent stimulus at the velocity we tested (~600μm/s; 2-way repe-
ated measures ANOVA: p < 0.01 for the effect of stimulus, but not
cluster or their interaction; Bonferroni post-hoc comparisons: p < 0.01
for each stimulus comparison) (Fig. 4j). Together, these results suggest
that one important role for BCs is the separation of motion vs. non-
motion signals, a phenomenon observed throughout the mammalian
visual system (i.e., in mouse64–66).

Radial direction selectivity is shaped by GABAergic signaling in
some bipolar cell clusters
BC motion-related surround properties might be shaped at several
stages in the retinal circuit via feedback and feedforward signaling
from horizontal cells and amacrine cells. Given the diversity of sur-
round features we observed in our RF mapping, we hypothesized that
rDS is shaped in a type-specific manner by AC inputs. We tested the
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effects of two blockers of inhibition in the retina, (1,2,5,6-Tetra-
hydropyridin-4-yl)methylphosphinic acid (TPMPA) to block GABAC

receptors, which are commonly found on BCs67,68, and strychnine to
block glycinergic signaling, which have been shown to change BC RF
properties16. We measured BC glutamate release during stimulation
with both noise andmoving bars (Fig. 5a) to obtain RFs and responses
to motion. We used the RFs obtained from noise in control conditions
to assign ROIs to the clusters identified in Fig. 2. We observed several
effects of TPMPA on the cluster average RFs, including changes in the
strength of the surround (Fig. 5b, e) and widening of the center
(Fig. 5c), a phenomenon that was previously observed16. We modeled
responses to originating and terminating motion and observed that
several clusters exhibited large changes in their rDS across velocities in
control compared to drug conditions (Fig. 5d). The changes were
correlated with changes in surround strength (Fig. 5e). Next, we
examined the responses to moving bars and found that two clusters
that our simulations had predicted to lose their rDS indeed exhibited
reduced rDS in TPMPA. A similar analysis of the strychnine data
revealed no effect on rDS, although someRF featureswere altered (see
Supplementary Fig. 8). Thus, GABAergic signaling mediated by GABAC

receptors appears to boost rDS of some bipolar cell clusters but not
others.

Starburst amacrine cells inherit bipolar cell motion information
Given the presence of radially direction selective BCs throughout the
IPL, we wondered whether BCs’ post-synaptic partners use this infor-
mation for motion-related computations. To explore this issue, we
studied whether SACs in the direction selective circuit, which were
shown to display a preference for motion from their somas to their
distal dendrites24,69, inherit motion information from BCs. First, we
confirmed that BC inputs onto SACs are radially direction selective by
imaging glutamate release onto On layer SAC dendrites through tar-
geted expressionofflex-iGluSnFRunder control of theChATpromoter
(Fig. 6a). We measured iGluSnFR signals in response to moving bar
(Supplementary Fig. 9) and noise stimuli (Supplementary Fig. 10). We
observed a similar pattern of rDS as we described for iGluSnFR
expressed throughout the IPL (Fig. 6b). In addition, we observed a
preference for looming motion compared to receding motion in SAC-
layer glutamate release (Supplementary Fig. 6). Finally, we measured
and clustered the RFs of BCs releasing glutamate onto the dendrites of
On layer SACs and uncovered five clusters of RFs, which exhibited a
mixture of radial direction selective and non-selective types predicted
from linear convolution models (Fig. 6c). These clusters’ velocity
tuning covered a similar range of rDS as the tuning of On BC clusters
revealed in Fig. 2. All together, these results indicate that BC glutamate
release onto SACs is radially direction selective, and that in some sti-
mulus conditions, this asymmetric glutamate release could contribute
to motion computations in this AC type.

Next, we explored how BC motion information is integrated by
SACs by constructing biophysicalmodels of On andOff SACdendrites.
Our models were based on previous SAC models and used published
connectomic and physiological data about the BC types and locations
of BC inputs on SAC dendrites32,57. We omitted inhibitory connections
to SACs in order to highlight the specific role played by BCs. Where
previous models included none of the center-surround dynamics of
the BC RFs, we modeled these spatio-temporal dynamics using RFs
derived from specific BC clusters (Fig. 2). We selected cluster RFs that
were likely matches with BC types known to provide input to SACs
(Fig. 6d, e) (see Supplementary Figs. 7 and 10 for details).We observed
that many of the BC types chosen for model input were radially
direction selective in our simulations.

To examine the direction selectivity of our SAC models, we
simulated a moving bar stimulus that traversed the length of the
dendrite in the centrifugal (from soma to distal dendrite, CF) or cen-
tripetal (fromdistal dendrite to soma,CP) direction.Wemonitored the

voltage along the entire model dendrite and found that the model
responded with asymmetric depolarization with a preference for CF
motion (Fig. 6f). In distalmodel compartments, where SACs have their
output synapses, the difference between CF and CP motion was par-
ticularly pronounced, and we observed DS across a wide range of
physiologically- and behaviorally-relevant velocities (Fig. 6g)3,4,64,66,70,71.
Thus, the anatomical wiring between BCs and the SAC dendrite,
together with the BC RF properties, enable stronger activation of BCs
along the SAC dendrite during CF motion compared to CP motion in
our model (Fig. 6h). Previous research on connectomic reconstruc-
tions of the SAC has suggested that the gradient of BC types along the
SAC dendrite plays a role in their DS19,30,31. We explored this issue by
changingwhich functionalRF clusters provide input to ourmodels.We
found that some BC cluster RFs led to stronger DS in the SAC model,
while others produced weaker DS (Fig. 6i and Supplementary Fig. 10).
Our results suggest that the Off SAC model is more sensitive to
changes in the BC distribution, as all alternative distributions resulted
in a reduction of the DS compared to the original one. In the On SAC
model, on the other hand, the modifications of the BC distributions
resulted in differential changes in the strength of the direction pre-
ference (direction selectivity index, DSI). These results reflect the dif-
ferences in the BC RF properties and anatomical wiring between the
On and Off pathways19,30,57. Thus, BC RFs appear to contribute to SAC
DS, and this contribution depends on BC input identity and RF
properties.

Next, we explored the influence of the BC RF properties on the DS
of our SAC models by testing variations in BC surround strength and
different spatial stimulation. We tested both weaker and stronger sur-
rounds, particularly because our method of obtaining RFs likely
underestimates surround strength (see ref. 72 and “Methods”) and
because surround strength can be dynamically altered by environ-
mental conditions73. First, we changed the strength of the surround
component of the BC cluster RFs (Supplementary Fig. 7). We observed
that the model responses to motion were strongly influenced by sur-
round strength, especially in the CP motion direction, presenting a
marked surround strength dependence of DS tuning across stimulus
velocities (Fig. 7a–c). In addition,we found that theRF surroundwas the
dominant feature conferring DS to the SAC models (Supplementary
Fig. 10). We then evaluated how this surround dependence affects SAC
model responses to stimuli traversing different spatial locations and
distances relative to the dendrite. In particular, we tested if stimulating
the proximal BC RF inputs more symmetrically using stimuli that pass
through rather than originate over their RF centers (Fig. 1) produce less
DS in the SAC (“Cell diameter”). Also, we tested if stimuli that activate
more of the surround of the distal BC inputs (“Cell surround”) produce
stronger DS (Fig. 7d). We found that spatial stimulation indeed pro-
duced these effects in the model SAC dendrites, especially at high
velocities (Fig. 7e). In the On SAC model, we found that the “Cell dia-
meter”motion trajectory evenproduced negativeDSI values, indicating
a preference for CPmotion. Proximal BCs were activated symmetrically
in this simulation, while distal BCs favored CP motion due to their
position. The overall input was larger during CP motion, resulting in a
negative DSI in SACs, which is opposite to experimentally observed
motion preference. Importantly, other network mechanisms57 and SAC
intrinsic mechanisms74,75 have been shown to contribute to the com-
putation of CF motion preference in SACs. Those mechanisms could
ensure a preference for CFmotion in SACs duringmotion that does not
originate in the SAC center. Thus, BC type-specific surround properties,
and by extension their rDS, play a role in establishing directional tuning
and spatial RF properties of SACs in our model.

Starburst amacrine cells respond strongly to motion restricted
to short distances
Our SAC dendrite model demonstrates a preference for motion
restricted to short distances due to the center-surround interactions at
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the level of the BC inputs (Figs. 6 and 7). We sought to confirm this
stimulus preference through RF mapping of the SAC dendrites. We
performed 2-photon Ca2+ imaging in a mouse expressing the fluor-
escent Ca2+ sensor flex-GCaMP6f or flex-GCaMP8f under the control of
the ChAT promoter and presented a noise stimulus to map the RF
along one axis (Fig. 8a). We uncovered RFs of small, varicosity-sized
ROIs, some of which exhibited a marked motion preference, and
clustered these RFs from each scan field into groups using MoG clus-
tering (Fig. 8b). These clusters contained ROIs from areas throughout
the FOV, and some clusters appeared to contain ROIs from single
dendrites (Fig. 8c). The average RFs from these clusters revealed three
patterns: preferring leftwardmotion, preferring rightwardmotion and
no motion preference (Fig. 8d). These patterns were expected based
on the known distribution and outward motion preference of SAC

dendrites in the retina24: the population of ROIs exhibiting no motion
preference were likely dendrites stimulated off of the axis of their
preferred direction, whereas dendrites on the axis of our stimulus
exhibited direction preferences. To examine motion preferences
across the population, we measured the motion trajectory of each
ROI’s RF and used this to estimate the preferredmotion distance (delta
distance) and velocity (Fig. 8e, f). We found that many ROIs did not
exhibit a motion preference (delta distance near zero) most likely
because these ROIs’ dendrites were pointing orthogonal to our sti-
mulus. Among motion-preferring ROIs, the preferred motion travel
distance peaked at about 70–100μm, similar to the size of the SAC
excitatory RF radius32 and the estimated motion distance preference
fromourmodel (Fig. 7).We confirmed that SACs respond ina direction
selective manner to a stimulus traveling 100μm by measuring Ca2+
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responses in their dendrites to moving bars, and found reliable
direction selective responses to this stimulus (Fig. 8g–h) with a pre-
ference for motion into the FOV (in), as we would expect given the
stimulus (Fig. 8g). Thus, SAC RFs and DS are consistent with the rDS
of BCs.

Discussion
In this study, we addressed the question of how BCs in the mouse
retina respond to localmotion stimulation.We found that somemouse
BC axon terminals are sensitive to local motion, responding more
strongly to motion originating in their RF center compared to motion
originating in their RF surround and traveling to the center, which we
call ‘radial direction selectivity’ (rDS, Fig. 1). Notably, some BCs exhibit
rDS, while others do not (Fig. 2), and the level of rDS depends on the
BCs’ surround strength and timing (Fig. 3a). At every depth of the IPL,
at least some terminals exhibited radial direction selective RFs
(Fig. 3b–e), suggesting that motion origin information is available to
many different circuits. We further studied the properties of BC
responses to motion and found that BCs exhibit a preference for
motion compared to non-motion stimuli (Fig. 4) and that for two BC
clusters rDS depends on GABAergic input (Fig. 5). To determine how
BC motion signals are integrated by their postsynaptic partners, we
confirmed that SACs receive radially direction selective BC input and
modeled how this input is integrated. We found that SACs inherit BC
motion signals and this information can be used for direction selective
computations (Figs. 6 and 7).We then showed that SACRFs are shaped
by the rDS of BCs (Fig. 8). Our findings suggest that motion signaling
arises earlier in the retina than previously thought and that radial
direction selective vs. non-selective is an important functional dis-
tinction between BC types that informs their contributions to retinal
processing.

We found that some types of BCs are capable of signaling
information about the origin of moving objects as well as whether
objects are looming or receding. Whether or not BCs transmit this
information is highly sensitive to the location of the stimulus
relative to the BC’s RF, as well as the cell’s RF properties. Most
studies that have previously examined the responses of BCs to
moving stimuli did not observe any direction selective tuning in

BC membrane potential76, intracellular Ca2+43, or glutamate
responses41,42 (but see ref. 45). All of these studies used global
motion stimuli, like gratings or widemoving bars, that originated in
the RF surround or outside of the RF of the recorded BCs. Under
those stimulus conditions, our modeling predicts that BCs respond
symmetrically to stimulation (Fig. 2), just as those studies
observed. There is one recent study, however, that does not fit into
this pattern: using glutamate imaging, the authors provided evi-
dence for a specialized circuit that bestows “true” DS on a subset of
axon terminals in type 2 and 7 BCs45. Critically, that study found a
contribution fromwide-field ACs; thus, themechanism is likely only
engaged for large moving stimuli. We found that surround prop-
erties were equivalent on two sides of the BC RFs (Fig. 3), sug-
gesting that the BC center-surround motion detector operates
symmetrically, conferring rDS. Thus, the motion detectors descri-
bed here are not cardinally direction selective per se, but they can
provide direction information by virtue of their perspective on a
motion stimulus.

Our results show that BC terminals havediverseRFproperties that
may map onto distinct BC types, including striking differences in the
strength and temporal properties of the RF surround that contribute
to different strengths of rDS (Fig. 3). Many studies have described
differences between the RFs of distinct BC types, including differences
in the extent and strength of the BC surround16,43,50. RF features are
tuned bymultiplemechanisms in both the outer and inner retina, with
differences in dendritic and axonal spread18, cone inputs77, horizontal
cell influence78–80, connectivity to ACs18, inhibitory receptor
complement52,68,81, and susceptibility to neuromodulators73 all playing
a role. Here we found that two putative BC types lose their rDS in the
presence of a GABAC receptor antagonist, suggesting that some BC RF
modulation takes place through interactionswithACs (Fig. 5), however
other types retained their rDS. Thus, other factors, such as horizontal
cell signaling, likely play an important role in establishing the RF
properties of at least some BC types. Indeed, a study published in
parallel to ours found a strong role for horizontal cell signaling in
establishing rDS82. One key feature aligned with rDS is a surround that
is temporally offset (and slower) than the RF center (Figs. 3 and 4).
Thus, it is possible that an initial center-surround structure established
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in the outer retina is further fine-tuned in the inner retina, utilizing BC
type-specific slow AC contributions (i.e., through feedback) to estab-
lish strong rDS.

We found that differences in spatio-temporal RF properties are
capable of supporting BC feature selectivity with regard to motion
stimuli. Importantly, we found this to be the case while modeling the
BC responses using linearmodels based on their measured RFs, which
already revealed complex and diverse motion processing across BC
clusters (Fig. 2). Increasing evidence suggests that BCs respond in a
nonlinear manner to some types of stimuli36,54,55,63,83–86, and essentially
linearly to other types87. Our direct observations of motion responses
in BCsfitwell to our responsepredictions from linearmodeling (Figs. 1,
2 and Supplementary Fig. 4). This could be due to the fact that we
model responses based on the full spatio-temporal RFs, which are not
space-time separable. In some cases, it is possible that observed non-
linearities in retinal neurons may be the result of either assuming that
space and time RFs are separable or taking only space or time com-
ponents of RFs into account in predictions. It will be interesting to
further investigate motion processing in a nonlinear context, which
might be particularly important for understanding neuronal responses
to natural stimuli. Indeed, the study published in parallel to ours has
found that the center-surround RFs of BCs supports novel object
detection in natural contexts82.

Although few studies have observed BC rDS, evidence of this
feature of BCs is pervasive in the literature in the form of voltage-
clamp recordings of glutamatergic synaptic input to RGCs and ACs.
In the mouse retina, the glutamatergic input to both SACs and
VGluT3 ACs recorded in response to looming vs. receding stimuli
exhibited a strong looming preference6,31,46, and apparent motion
stimuli elicited asymmetric glutamatergic inputs in RGCs54. In the
primate retina, glutamatergic inputs to several types of RGCs were
demonstrated to exhibit motion sensitivity63,88. And in the rabbit
retina, local apparent motion elicited asymmetric glutamatergic
inputs to direction selective RGCs39. In some cases, these results
have been attributed to voltage clamp errors89, while in others, they
have been attributed to gap junctional interactions between
BCs54,63. Here, we observed rDS and a preference for motion over
random stimuli both experimentally and in models lacking gap
junction interactions at the level of BCs. Thus it appears that this
preference for motion sequences over random sequences is inher-
ent in the space-time structure of the BC RF, which contains space-
time inseparable elements that specifically favormotion stimuli. We
propose that, in some cases at least, these many observations of
motion sensitivity in downstream cells reflect the rDS we found in
subsets of BCs, and that BC RFs play an important role in generating
cardinal DS, looming sensitivity, and other types of local motion
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Fig. 8 | Starburst amacrine cells respond strongly tomotion restricted to short
distances. a Left: for starburst amacrine cell (SAC) specific labeling, flex-GCaMP6f
and ChAT-cre mice were crossed or ChAT-cre mice were injected with AAV
encoding flex-GCaMP8f. Data from both sensors are included. Right: “1D noise”
stimulus. b Clustering ROIs into groups based on their RFs. Left: example RF with
leftward direction preference. Dotted line is cropped region used for clustering.
Middle: Reconstructed components of the sparse PCA. Right: Plot of BIC for dif-
ferent number of clusters using Mixture of Gaussian clustering. Arrow: chosen
number of clusters (8). c Left: example scan field (s.d. image) showing GCaMP6f
expression in SACs. Right: ROIs color-coded by clusters determined in (b). d ROIs
within each cluster with their average RFs. e Left: example ROI RF showing esti-
mated motion trajectory (blue line). Right: motion trajectories for all ROIs color-
coded by cluster (n = 2164 ROIs, 5 scan fields, 4 mice). f Left: histogram of the

change in center position over time (delta distance) for ROIs from (e). Right: his-
togram of the RF velocity measured from line slopes in (e). gMoving bar stimulus
(20 × 30μm moving at 500μm/s) traveling in two directions, either into (“in”) or
out of (''out'') the field of view (FOV) and traversing a distance of 150μm. Positions
of different SACs diagrammed over the stimulus (green dendrites and somas),
demonstrating that SACs on the left of the FOV will be better stimulated compared
to SACs on the right. h Left: example scan field (s.d. image) showing GCaMP6f
expression and example ROI (green). Right: Gaussian Process prediction for the
response to eachmotion direction for the example ROI. i Direction preference (d')
estimated from Gaussian Process predictions for all ROIs in example field in (h).
j Additional fields in this dataset showing each ROIs' direction preference.
kHistogramof d' for all ROIs (6237ROIs/ 7fields/ 5mice). Significantwithp <0.001,
one sample t-test.
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sensitivity through the collection of information from rDS BC inputs
by diverse downstream neurons.

We explored how BC rDS contributes to one downstreammotion
computation, DS in SACs. In our measurements of BC glutamate
release onto SAC dendrites, we observed clear DS in the input when
our stimulus began in many of the model BCs’ RF centers. Our mod-
eling suggests that these radial direction selective inputs are inte-
grated to support SAC DS, and are in line with SACs’ selectivity for
motion towards their dendritic tips24. Many studies that have pre-
viously evaluated SAC DS used stimuli that activate BC RFs’ center-
surround rDS detector, including local moving bars32, differential
motion stimuli90, and expanding rings24,69,75,91. We argue that this sti-
mulus dependence is not a bug but a feature of SAC RFs, tuning them
to prefer local motion starting close to the SAC soma. Stimulus-
dependentmotionprocessing haspreviously beendescribed inmouse
VGluT3-expressing ACs92, W3 RGCs70, and rabbit On-Off direction
selective RGCs93, all of which show preferences for local motion. In
addition, directional tuning in someOn-Off direction selective RGCs in
mouse is stronger for local drifting gratings compared to global ones90

and in rabbit directional tuning in direction selective RGCs is observed
for stimuli traveling distances shorter than the spacing between
photoreceptors94. On the other hand, direction selective RGCs are
known to play important roles in brain functions and behaviors
involving global motion information64,95,96. Previous studies have also
suggested that BCs participate in direction detection via other
mechanisms (for example see refs. 19, 30, 31, 34, 45, 57, but also
refs. 32, 33, 41) which raises the question of how these mechanisms
work together. Given the diverse stimuli often used to probe motion
processing, it is possible that distinct mechanisms of direction detec-
tion are engaged under different environmental conditions (as pre-
viously suggested in refs. 97, 98), which could ensure robust DS. Thus,
studying the role of BCmotion signals during local motion processing
in SACs and direction selective RGCs could provide important insights
to understand the role of BCs in this circuit. Notably, themechanismof
signal suppression during null direction motion that we report here
has long been described53 and has also been observed in the fly visual
system (reviewed in ref. 99) and in the rodent whisker system100.

Beyond the DS circuit, there aremany other RGC types that could
rely on BC rDS. In mammals, several RGC and AC types are object
motion sensitive, responding specifically to localmotion or differential
motion4,6,15,70,76,87,92,101–103, including several prominent primate RGC
types, such as parasol RGCs63,88. In salamander, a large class of Off
ganglion cells prefersmotion originating in the RF center compared to
motion passing through, which was termed an “alert response to
motion onset” and whose responses are best predicted when
accounting for the space-time RFs of BCs56. In general, RGCs and ACs
must fulfill a few requirements to be capable of integrating BCmotion
information into their computations. The first requirement is that
downstream cells receive input from radial direction selective BC
types. It will be interesting to explore the wiring of BCs to their post-
synaptic partners in this context. The second requirement is that
downstream cells should employ post-synaptic integration that allows
for motion-related information to be preserved in the cell’s output.
RGCs are capable of retaining RF structure fromBCs104; indeed, center-
surround interactions at the level of BCs contribute to RGC encoding
of spatial features55,56,84. A mechanism for local motion integration is
hinted at by a recent study that found that the dendrites of some
mouse RGC types perform less spatial averaging than others105. Since
spatial averaging would likely blur spatially-restricted local motion
signals (Fig. 1), this integration feature could allow for integration of
motion information from BCs. Combining connectomic information
about wiring with functional and modeling explorations of RGC and
AC responses that take BC RF properties into account, such aswe have
done here, will thus provide a fruitful avenue for understanding
motion processing in the retina.

BC rDS may be relevant in a wide variety of natural conditions
important for behavior. Detection of the origin of moving objects
and looming detection are highly relevant to animals (reviewed in
refs. 106, 107) and are highly salient to humans108–110. In the case of
the mouse, they represent prey and predators, respectively3–6. The
BC radial direction detector is particularly primed to detect moving
objects that are initially occluded in a scene, such as a grasshopper
jumping out of the grass or a hawk diving from a great distance. At
the same time, the BC radial direction detector is rather insensitive
to the type of scene motion that occurs when the body, head and
eyes smoothly move. This dichotomy allows for detection of
behaviorally-relevant moving objects15. It is striking that this
essential visual information for animal survival is detected already
in bipolar cells.

Methods
Animal and tissue preparation
All animal procedures were approved by the governmental review
board (Regierungspräsidium Tübingen, Baden-Württemberg,
Konrad-Adenauer-Str. 20, 72072 Tübingen, Germany) and performed
according to the laws governing animal experimentation issued by
the German Government. For measuring glutamate release in the IPL,
we used either the ChAT-cre transgenic line (n = 3; JAX 006410, The
Jackson Laboratory111) or C57Bl/6 J (n = 7, JAX 000664) mice. For Ca2+

imaging in SACs, the ChAT-cre transgenic line was crossbred with the
Cre-dependent green fluorescent reporter line Ai59D (n = 3; JAX
024105112) or the ChAT-cre transgenic line (n = 3; JAX 006410, The
Jackson Laboratory111) was injected with a virus for expression of
GCaMP8f. We used adult mice greater than 6 weeks old of either sex.
Owing to the exploratory nature of our study, we did not use ran-
domization and blinding. No statistical methods were used to pre-
determine sample size.

Animals were housed under a standard 12 h day/night rhythm at
22∘ and 55% humidity. For activity recordings, animals were dark-
adapted for >1 h, then anesthetized with isoflurane (Baxter) and
euthanized by cervical dislocation. The eyes were enucleated and
hemisected in carboxygenated (95% O2, 5% CO2) artificial cere-
brospinal fluid (ACSF) solution containing (in mM): 125 NaCl, 2.5 KCl, 2
CaCl2, 1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, 20 glucose, and 0.5
L-glutamine (pH 7.4). Throughout the experiments, the tissue was
continuously perfused with carboxygenated ACSF at∼ 36 ∘C, contain-
ing∼0.1μM Sulforhodamine-101 (SR101, Invitrogen) to reveal blood
vessels and any damaged cells in the red fluorescence channel113. All
procedures were carried out under very dim red (>650nm) light. The
positions of the fields relative to the optic nerve were not taken into
account in this study. In some cases the retina was cut into pieces and
each piece was mounted and imaged separately to prolong the light
sensitivity of the tissue.

Virus injection
For iGluSnFR imaging, we injected the viral constructs AAV2.7m8.h-
Syn.iGluSnFR (generated in the Dalkara lab - for details, see ref. 114; the
plasmid construct was provided by J. Marvin and L. Looger (Janelia
Research Campus, USA)) or AAV9.CAG.Flex.iGluSnFR.WPRE.SV40
(Penn Vector Core) into C57Bl/6 J and ChAT-cre mouse lines, respec-
tively. For Ca2+ imaging in SACs, we injected the viral construct
AAV2.7m8.CAG.Flex.GCaMP8f.WPRE.SV40 (PennVector Core) into the
ChAT-cre mouse line. A volume of 1μL of the viral construct was
injected into the vitreous humor of 4 to 6-week-old mice anesthetized
with 10% ketamine (Bela–Pharm GmbH & Co. KG) and 2% xylazine
(Rompun, Bayer Vital GmbH) in 0.9% NaCl (Fresenius). For the injec-
tions, we used a micromanipulator (World Precision Instruments) and
a Hamilton injection system (syringe: 7634-01, needles: 207434, point
style 3, length 51mm, Hamilton Messtechnik GmbH). Imaging experi-
ments were performed 3-4 weeks after injection.
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Two-photon imaging
We used a MOM-type two-photonmicroscope (designed byW. Denk,
MPI, Heidelberg; purchased from Sutter Instruments/Science
Products113). The system was equipped with a mode-locked Ti:Sap-
phire laser tuned to 927 nm (MaiTai-HP DeepSee, Newport Spectra-
Physics), two fluorescence detection channels for iGluSnFR/
GCaMP6f (HQ 510/84, AHF/Chroma) and SR101 (HQ 610/75, AHF),
and a water immersion objective (W Plan-Apochromat × 20 /1.0 DIC
M27, Zeiss). For image acquisition, we used custom-made software
(ScanM by M. Müller and T.E.) running under IGOR Pro 6.37 for
Windows (Wavemetrics), taking time-lapsed 64 × 64 pixel image
scans (at 9.766 Hz) or 128 × 32 pixel image scans (at 15.625 Hz). For
vertical glutamate imaging in the IPL, we recorded time-lapsed
64 × 56 pixel image scans (at 11.16 Hz) using an electrically tunable
lens (ETL; for details, see ref. 61).

Light stimulation
A DLP projector (lightcrafter (LCr), DPM-E4500UVBGMKII, EKB Tech-
nologies Ltd) with internal UV and green light-emitting diodes (LEDs)
was focused through the objective. The LEDs were band-pass filtered
(390/576 Dualband, F59-003, AHF/Chroma), for spectral separation of
the mouse M- and S-opsins, and synchronized with the microscope’s
scan retrace.

In our experiments, photoisomerization rates ranged from ~0.5
(black image) to ∼20 × 103 P* per s per cone for M- and S-opsins,
respectively (for details, see ref. 115). Two-photon excitation of pho-
topigments caused additional steady illumination of ~104 P* per s per
cone (discussed in ref. 113, 116, 117). The center of the light stimulus
was adjusted tobeon the center of the recordingfield, andwas verified
post-hoc either using the receptivefields (RFs)measured fromnoiseor
by estimating the location at which the stimulus response onset was
fastest formoving bar stimuli. Analysiswas adjusted if the stimuluswas
determined to be off center. For all experiments, the tissue was kept at
a constantmean stimulator intensity level for at least 15 s after the laser
scanning started and before light stimuli were presented. Stimuli were
presented using custom Python software (QDSpy, https://github.com/
eulerlab/QDSpy).

Four types of light stimuli were used: (i) small, positive contrast
moving bar (20 × 40μm for iGluSnFR, 20 × 30μm for GCaMP)
appearing in different locations relative to the FOV and moving at
500μm/s over varying distances (appearance locations, motion
directions, and distances specified in Figs. 1, 4, 5, 8, Supplementary
Figs. 8 and 9 with 2–3 s between each stimulus presentation; (ii) “1-d
noise stimulus” consisting of 20 adjacent rectangles (20 × 50μm for
iGluSnFR, 25 × 100 μm for GCaMP), with each rectangle independently
presenting a random black and white (100% contrast) sequence at
20Hz for 2.5–5.0 s (Figs. 2–5, Supplementary Figs. 8 and 10). (iii) a
white looming and receding stimuli consisting of a white spot on black
background that appeared and then expanded or retracted at a velo-
city of 800μm/s. For looming, the spot started at 10μmand expanded
to 600μm (Supplementary Fig. 6). (iv) a stimulus to measure “motion
vs. random” sequences (Fig. 4, with trials of either apparent motion or
random sequences of objects interleaved. This was achieved by pre-
senting 7 rectangles (each rectangle: 20 × 50μm) in spatial sequence to
originate or terminate in the FOV or presenting the 7 rectangles in two
distinct random orders. Each rectangle appeared for 33.3ms, achiev-
ing an apparent velocity of 600μm/s. All stimuli were presented at
100% contrast, were presented in the same pseudo-random order for
each imaging field, and were achromatic, with matched photo-
isomerization rates for mouse M- and S-opsins.

Pharmacology
TPMPA (Tocris Bioscience cat no. 1040) and strychnine (Sigma-Aldrich
cat no. S0532) were used at concentrations of 75 and 0.5μM, respec-
tively. Each drug solution was carboxygenated before application. For

pharmacology experiments, we cut the retina into pieces in order to
expose each retina piece to the drug only once.We recorded in control
conditions and thenbath applied thedrugs for 15minbefore recording
in drug conditions.

Data analysis
Data analysis was performed using Python 3 and IGOR Pro. Data were
organized in a custom-written database schema using DataJoint for
Python framework (https://datajoint.io/, version 0.12.8)118.

Pre-processing
Pre-processingwasperformedusing customscripts in IGORPro (version
8.0.4.2) and Python 3. First, we measured the s.d. of each pixel and
discarded the bottom 50–90% from further analysis. The threshold
depended on the experiment: for ubiquitously expressing iGluSnFR,
50–70% of pixels were discarded; for ChAT-cre restricted imaging,
70–90% were discarded because fewer pixels in the imaging field
exhibited fluorescence. Traces for each remaining pixel were imported
into DataJoint, then high-pass filtered using a Butter filter (0.2Hz,
order = 5) and z-normalized by subtracting each traces’ mean and
dividing by its s.d. A stimulus time marker embedded in the recorded
data served toaligneachpixel’s trace to thevisual stimuluswith 1.6–2ms
precision. For this, the timing for each pixel relative to the stimulus was
corrected for sub-frame time-offsets related to the scanning.

Radial direction selectivity estimation
Tomeasure average responses of ROIs during low resolution iGluSnFR
imaging (Fig. 1c and Supplementary Fig. 6), we drew manual rectan-
gular ROIs at different locations relative to the stimulus position and
calculated a binned average of the ROIs’ pixels’ responses, resampling
the response times of each pixel to 63Hz. This allowed us to resolve
higher time resolution than the frame frequency of our imaging and
retain the precise alignment to the stimulus timing.

To obtain Gaussian Process (GP) estimates for BC glutamate
release and SACdendritic Ca2+, we followed themethods in ref. 58. First,
pixel response quality was assessed by calculating the response quality
index (as in ref. 16) for each stimulus condition separately. Pixels were
discarded if the stimulus condition with the largest quality index value
fell below 0.35. Then, ROIs were built automatically from each high
quality pixel to include neighboring high quality pixels and to have
dimensions around 2μm (3–9 pixels, average ROI diameter in Fig. 1:
2.29 ±0.28μm; in Supplementary Fig. 9: 2.03 ±0.34μm; in Fig. 8i–k:
1.69 ±0.38μm; in Fig. 5: 1.49 ±0.01μm; in Fig. 5: 1.49 ±0.01μm; in
Supplementary Fig. 8: 1.49 ±0.01μm), which is the estimated size of BC
boutons16 and near the resolution limit of our imaging. ROIs were
allowed to have some overlap with one another, which improved the
signal to noise of our models and made no assumptions about the
resolution of our imaging. Because of this, maps of d-prime (d’) in
Figs. 1d and 8i–j report the measured value only at the center pixel of a
ROI. The average response of a ROI’s pixels was obtained by resampling
the response times at 125Hz and averaging within time bins.

Then, for each ROI, we created a GP estimate of the response
trace using the GPy toolbox (https://sheffieldml.github.io/GPy,
version 1.9.9) at 50 Hz, with warping of the time resolution during
the period when the moving bar was presented to capture fast
response kinetics58. For a given ROI, all stimulus conditions were
included in the model. We used the Sparse Gaussian Process
Regression algorithm with the Radial Basis Function kernel (with
parameters with kernel variance = 1.1 and kernel lengthscale = 0.05),
and then themodel prediction was stored in DataJoint. GP estimates
whose mean activity had an s.d. below 0.1 across time for all sti-
mulus conditions were discarded from further analysis, as these
regions were considered non-responsive.

d0 was estimated for each ROI’s GP estimate as follows: the peak
response (μ) and the s.d. at this peak (σ) during the time of bar
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presentation was measured. For each pair of opposite directions, d0

was calculated as:

d0 =
μ1 � μ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5ðσ2
1 + σ

2
2Þ

q ð1Þ

For each imaging field, the location of the FOV relative to the stimulus
was assessed based on RF mapping (see below), if available, or based
on the relative response timing of stimuli in opposite directions.

Receptive field mapping and clustering
RFs were obtained using a modified spike-triggered averaging method
that employs a spline basis to estimate smooth RFs (RFEst toolbox:
https://github.com/berenslab/RFEst,62, v.2). First, traces for each pixel
and the stimulus tracewere up-sampled to the scan line precision (1.6–2
ms) using linear interpolation to align stimuli and responses. The sti-
mulus trace was then mean subtracted so that 50% contrast was set to
zero. Then, we formed ROIs using the same method as described for
Gaussian Process ROIs (above) except that we did not discard low
quality pixels before creating ROIs. ROI diameters in Fig. 2:
2.04 ±0.07μm; in Supplementary Fig. 10: 2.69 ±0.33μm; in Fig. 8b–f:
1.79 ±0.21μm. To restrict ROIs to the IPL in X-Z recordings using the
ETL, the border lines of the IPL were manually determined using an s.d.
image. Then, we utilized the splineLG function fromRFest to obtain the
smoothed spike-triggered average for each ROI over a time lag of 0.5 s.

To cluster RFs, we performed sparse principal components analy-
sis (PCA) and mixture of Gaussian (MoG) clustering using libraries and
custom scripts in Python as follows: First, we aligned the RF center for
each ROI to the same spatial position. Due to the noisy nature of the
individual ROI RFs, we accomplished this by first clustering the ROIs
within a field using a hierarchical clustering algorithm (SciPy clus-
ter.hierarchy.linkage in Python, https://www.scipy.org, refs. 119, 120,
version 1.5.4) and grouping ROIs into clusters using a fixed distance
criterion (0.05). This allowed us to obtain average RFs for ROIs with
similar RFswithin a field, which had the sameRF center andpolarity.We
measured the maximum in these cluster averages (or minimum for Off
layer ROIs) and defined this as the RF center for all ROIs in the cluster.

Next, RFs for all ROIs were flattened to one dimension (space-
time) and cropped to include the regionof theRF thatwas available for
all ROIs. At the precision of our stimulus alignment, it was possible for
the stimulus to be off-center of the imaging FOV by up to 100μm,
resulting in a shift of the mapped RFs and, in our data set, an over-
representation of one half of the RF (see Fig. 2 and Supplementary
Fig. 3). Thus, clustering was performed on just half of the RF. Next
sparse principal components (PCs) of the flattened RFs were deter-
mined using the sparsePCA function121 from scikit-learn (https://scikit-
learn.org, ref. 122, version 0.21.3). We also determined the depth of
each ROI’s center in the IPL using the manually-determined IPL
boundaries to find the percentage of the IPL thickness at the ROI’s
center. Together, the RF sparse PCs and IPL depth constituted the
feature weights for MoG clustering, which was performed using the
scikit-learn mixture.GaussianMixture toolkit122. To determine the best
number of clusters,we varied the targeted number of clusters between
3 and 19 and estimated the Bayesian information criterion (BIC). We
additionally performed an alternative clustering without including IPL
depth as a feature (Supplementary Fig. 5). Next, we calculated the
average RF for each cluster and estimated the temporal kernels for
center and surround indistinct spatial regions from these averages.We
defined the center and surround regions by eye and used the same
spatial regions across all clusters. We measured several parameters
from these temporal kernels: (i) latencywas the time between the peak
of the center and peak of the surround response; (ii) surround strength
was measured as the ratio of the surround peak and center peak; (iii)
biphasic index wasmeasured by finding the ratio of themaximum and
minimum of the center’s temporal kernel; (iv) center full-width half

maximum (FWHM) was determined by calculating the mean spatial
kernel during the time of the center response, fitting this to a Gaussian
and finding the FWHM of that Gaussian. The clustering procedure was
performed separately for each of the data sets in Figs. 2, 8 and Sup-
plementary Fig. 10. Anatomical correlation between the clusters found
in Fig. 2 and BC types identified from previously published electron
microscopy (EM) reconstructions18 was performed by obtaining the
kernel density estimation using Gaussian kernels (KDE, scipy.s-
tats.gaussian_kde) of the IPL depth of the ROIs in each cluster.
These KDE curves were correlated with each BC type from EM to
determine the stratification overlap (Fig. 3).

In order to examine the effect of pharmacological manipulations
andmotion vs. random stimulation on specific BC clusters (Figs. 4 and
5), we collected an additional data set of ROIs thatwere presentedwith
noise and motion stimuli in both control and drug conditions. We
obtained their RFs and predicted their cluster membership in the
original MoG model fit from the dataset in Figure 2 using only the RFs
in control conditions. Then, we examined the features of the cluster
average RFs andmotion responses of ROIs from the additional data set
for both control and drug conditions to measure how RFs, predicted
motion responses, and real motion responses change in the presence
of drugs and/or apparent motion stimuli.

To measure the motion trajectory and preferred velocity of SAC
RFs (Fig. 8),we found thepeak responseduring a set early and late time
window of each ROI’s RF and used these two points to determine the
delta distance (x2 − x1) and the velocity (slope: (x2 − x1)/(t2 − t1)).

Statistical testing
Statistical testing was performed using Python packages pingouin
version 0.3.8123 for Wilcoxon test (Figs. 1 and Supplementary Fig. 9),
2-way repeated measures ANOVA (Figs. 4 and 5), and post-hoc t-tests
with Bonferroni correction; we used SciPy’s stats package119 for 1 sam-
ple t-test (Fig. 8), Spearman correlation coefficient (Fig. 3), and paired
t-test (Supplementary Fig. 2). To test whether the mean correlations
between predictions and motion responses in Supplementary Fig. 4
were significant, we performed a permutation test by shuffling the real
responses across ROIs and recalculating the correlations and the
resulting mean of the population distribution over 1000 iterations. All
statistical tests were performed across populations of ROIs.

Modeling bipolar cell responses from receptive fields
To predict BC responses to moving stimuli from their RFs, we per-
formed convolution between the RFs and stimulus images. The RFs
were cropped to center the RF or just contain half of the RF to model
responses to different stimulation in space. Convolution was per-
formed at each spatial location of the images independently, and then
summed across space to obtain the final temporal predictions of the
responses. We validated this convolution modeling method by
obtaining predicted responses from the RFs of single ROIs and calcu-
lating the Pearson correlation between the predictions and the real
motion responses described by the Gaussian Process predictions (as in
Fig. 1) for the same ROIs (Supplementary Fig. 4).

We determined a preference index between paired stimuli,
including originating vs. terminating motion, left vs. right motion,
looming vs. receding motion, motion vs. random, and cardinal DS by
measuring the peak response to each stimulus and calculating a pre-
ference index:

pref erence=
peak1 � peak2

peak1 +peak2
ð2Þ

To explore the relationship between motion coherence of random
sequences of rectangles and response amplitude predicted from our
models, we calculated the motion coherence of each random
sequence as an index based on the spatial distance between bars
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appearing in sequence.

k =
∑∣xj � xi∣� smax

smin � smax
ð3Þ

where xi and xj are the spatial positions of rectangles in the stimulus
adjacent in time, and smin and smax are the maximum and minimum
possible spatial sums. This results in a coherence index in which an
apparent motion stimulus has k = 1 and the least coherent possible
stimulus has k =0.

To prepare cluster RFs for use in the SAC biophysical model, we
increased the RF resolution in both space and time, denoised the RFs,
and used only half of the RF, reflected, to create BC model inputs
(Supplementary Fig. 7). Tomaintain the space-time structure of the RF
during interpolation, we performed singular value decomposition
(SVD), performed linear interpolation to increase the resolution of the
space and time components by 20x and 1.6x, respectively, and then
reconstructed the space-time RFs from the first three components.
This denoised the RFs while increasing their resolution. Finally, we
mirrored the RF to create a full (symmetrical) spatial RF.

To manipulate the strength of the surround in Fig. 7, Supple-
mentary Figs. 6 and 7 we selected values of opposite polarity to the RF
center (negative values for On, positive values for Off) in the surround.
These values were multiplied by a scalar (0.01, 0.5, 2, 3) to increase or
decrease the strength of the surround. For Off RFs, we found that the
surround was generally weaker. This could be due to two features of
our “1D noise” stimulus: first, that the background on which the row of
rectangles was presented was dark, suppressing the surround of Off
BCs, and second, that the individual rectangles of the stimulus were
small, leading to low total contrast of the stimulus, which has been
demonstrated to cause underestimates of surround strength72. Thus,
we tested the larger increase in surround strength of 300% specifically
for Off RFs. In contrast, with 300% surround, On BC cluster surrounds
were so strong that resulting model responses were completely sup-
pressed (data not shown).

Starburst amacrine cell model
To design the anatomical distribution of BC input to the SAC model
dendrite, we calculated the number of BC synapses in 10μmdendritic
segments from glutamatergic input labeling in SAC dendrites32 and
assigned them to BC types according to anatomical data about BC
type-specific wiring to SAC dendrites57. The Off model included ana-
tomical types 1 and 3a, the Onmodel included anatomical type 7 and a
generic type 5 (by merging types 5o, 5t and 5i into one). The BCs’ RFs
were represented by the functional RFs at their respective locations
(Figs. 2 and 3). Wheremultiple BC clusters overlapped, we tested each
possible RF cluster (Supplementary Fig. 10).Moving bar stimuli and BC
responses were calculated as described above. We included a spon-
taneous baseline BC activity, which could be regulated up or down by
stimulation of the BC center and surround, respectively. BC activity
was rectified by clipping values below zero. The BC activation across
time became the current injection input to the SAC model dendrite at
the respective synapse locations of each BC. The input to each model
was scaled such that the maximum depolarization in the most distal
model compartment would reach approximately -35 mV at the lowest
stimulus velocity. The biophysical SAC ball-and-stick model was
implemented in Brian2 version 2.4.2 (https://brian2.readthedocs.io,124)
running in Python version 3.7.5. The multicompartment model con-
sisted of an iso-potential soma (diameter: 7μm) and a 150μm long
dendrite. The initial 10μm of the dendrite had a diameter of 0.4μm,
the remaining dendrite hada diameter of 0.2μm32. In addition to a leak
current, the model included Ca2+ channels in the distal third of the
dendrite74. The Ca2+ current was translated to a change in the Ca2+

concentration via γCa2+ and the Ca2+ concentration in each compart-
ment decayed according to an exponential model125,126 with time

constant τCa2 + (See Table 1). The strength of tuning in the SAC was
measured in thedistal thirdof thedendrite.Wecalculated theDSI from
the membrane potential for each compartment in the distal dendrite
from the response to centrifugal (CF) and centripetal (CP) motion as

DSI =
CF � CP
CF +CP

ð4Þ

and reported the averageof those compartments in the velocity tuning
curves (Figs. 6, 7 and Supplementary Fig. 10).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data is available from http://retinal-functomics.net/data/.

Code availability
Custom code is available from our GitHub repository: https://github.
com/eulerlab/bc-motion for this paper. Software for generating sti-
muli is available from https://github.com/eulerlab/QDSpy.
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