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Mucins are a highly glycosylated protein family that are secreted by animals for adhesion,
hydration, lubrication, and other functions. Despite their ubiquity, animal mucins are largely
uncharacterized. Snails produce mucin proteins in their mucous for a wide array of
biological functions, including microbial protection, adhesion and lubrication. Recently,
snail mucins have also become a lucrative source of innovation with wide ranging
applications across chemistry, biology, biotechnology, and biomedicine. Specifically,
snail mucuses have been applied as skin care products, wound healing agents,
surgical glues, and to combat gastric ulcers. Recent advances in integrated omics
(genomic, transcriptomic, proteomic, glycomic) technologies have improved the
characterization of gastropod mucins, increasing the generation of novel biomaterials.
This perspective describes the current research on secreted snail mucus, highlighting the
potential of this biopolymer, and also outlines a research strategy to fulfill the unmet need of
examining the hierarchical structures that lead to the enormous biological and chemical
diversity of snail mucus genes.
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INTRODUCTION

Intrigue in the mucus slime trails left by snails and slugs date back to ancient Greece, where they
utilized the mucus for its ability to reduce inflammation and the signs of aging (Ekin, 2018). Today
snail mucus is still used in skin care products by various companies and is a growing market whose
value is expected to approach $770 million by 2025 (Coherent Market Inisghts, 2018). Despite its
commercial applications, the field of mucus research remains surprisingly underdeveloped. The
primary constituent that is responsible for the properties of mucus are secreted mucins, a family of
heavily glycosylated proteins produced in epithelial cells in most animals. Mucins are either bound to
the plasma membrane or secreted out of the cell, and each type has major differences in their
functions and capabilities (Dhanisha et al., 2018). Membrane-bound mucins are glycolipids that act
as markers for cell signaling and also protect the cell from extracellular affronts that might lead to
damage, such as infections and physical strain (Van Putten and Strijbis, 2017). Secreted mucins can
be either gel forming or non-gel forming biopolymers. Secreted biopolymers form mucous
membranes macroscopic scale. These mucosal membranes account for a large portion of the
surface area of multicellular organisms exposed to the environment. In humans, mucosal membranes
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account for 99% of the bodies surface area (Sompayrac, 2012; Ma
et al., 2018; Cerullo, 2020). Each snail species secretes multiple
distinct functional mucuses. Themucus produced by a snail’s foot
is used for adhesion and for lubrication, allowing the snail to stick
onto or walk across any surface, even while inverted.
Additionally, the mucus produced on the back of the snail is
used for microbial defense and tissue hydration. Certain snail
species have specialized uses for mucus. For example, Falsilunatia
eltanini (Moon Snail) uses mucus to protect their eggs, and
Tikoconus costarricanus (Costa Rican Land Snail), uses mucus
for load-bearing activities, such as to hide from the Sun on the
bottom of leaves during droughts (Gould et al., 2019; Barrientos,
2020). Recent advances in omics (genomic, transcriptomic,
proteomic, glycomics) technologies have expanded the

exploration of gastropod mucins as a scientific resource with
wide ranging applications across chemistry, biology,
biotechnology, and medicine. For example, the antimicrobial
properties of snail mucus are being used to combat disorders
seen in humans ranging from gastric ulcers, to post-surgical-
related infections (Amah et al., 2019; Gentili et al., 2020). Mucins
are also being coupled with approved therapeutics in order to
potentiate the drug’s abilities to cure diseases, such as diabetes
and ulcerative colitis (Gugu et al., 2020). Additionally, snail
mucins are being investigated in a vast array of other
biotechnical applications that exploit their surfactant-like
properties (Petrou and Crouzier, 2018). Despite their potential,
little is known about how the hierarchical mucin structures
account for their diverse functional properties. There is an

FIGURE 1 | (A) Applications of snail mucus. Snail mucus has been used for skin care, wound healing and rejuvenation, and drug delivery. Snail mucus is being
explored in food science, implant coatings, and other biotechnical sectors are currently researching mucins to be explored for potential use. (B) A 2-dimensional
representation of the mucin structures. Mucins are characterized by two parts of their structure, their protein core, and their glycan branching. The protein core is a
protein sequence of variable length depending on themucin gene, which has been further modified with glycosylation branches. The Protein structure, however has
multiple domains, and these domains vary depending on the function and the cellular location of the mucin. The glycan branches are sugar branches ranging from 3 to 18
sugars, and make up the majority of the mucin mass. Shown are 2 dimensional representations of the different types of mucins, and their stereotypical features. (C)
Applying an integrated omics approach to identify snail mucin sequence, structure, and function. Path 1(left) extract crude mucin proteins and separate from the cellular
debris to obtain sequence masses from spectroscopic and mass spectrometric analyses. Path 2(right) RNA extraction from mucus glands or whole animal followed by
de novo assembly of mucin gene sequences to generate a database to BLAST against by a comparison of assembled sequences to a knownmucin database, we obtain
putative mucin sequences. Combining the proteomic and RNA pipelines we confirm the native type mucin sequence for further analysis.
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unmet need to examine the biological and chemical diversity of
snail mucin genes to elucidate the guiding principles that
determine the diverse properties associated with each gene.
This perspective article will highlight current applications of
secreted snail mucus that demonstrate the potential of this
biopolymer as a resource for biotechnological and biomedical
advancements. We will also describe an integrated omics strategy
for investigating the biological and chemical diversity of snail
mucus genes (Figure 1).

Structural Variations of Mucins
Mucins contain several domains that contribute to their overall
function (Figure 1). The structural variation allows for their
extensive biological diversity and unique physical characteristics.
A tandem repeat domain located in the center of the protein
backbone, rich in serine, threonine, and proline, serves an as
anchor for glycosylation. Mucin glycans are predominantly
O-linked, but minor amounts of N-linked glycans can be
present (Corfield, 2015). The length of the glycosylation
domain and number of repeats differs between mucins and
imparts different chemical characteristics. Secreted mucins
have cysteine-rich regions on both ends of the tandem repeat
domain that are used for stabilization, providing disulfide bridge
points for both inter- and intramolecular bonding. Additionally,
these regions serve both to provide additional structural
diversification, and allow for multimerization of mucins and
other sulfur-rich biomolecules (Perez-Vilar and Hill, 1999).

Typically, N-acetylgalactosamine (GalNAc) is attached to the
protein core via O-glycosidic bonds between the monosaccharide
and either Ser or Thr residues (GalNAc[α1]-Ser/Thr). This forms
the TN Antigen, which is commonly found in humans to be
upregulated in certain cancers (Guillen-Poza et al., 2020). From
there, galactose is appended to the structure (Gal[β1-3]GalNAc
[α1]-Ser/Thr), forming the mucin core 1 O-glycan. O-glycans
vary in size, from 2 to 20 sugar residues, and in composition, as
other sugars such as N-acetylglucosamine (GlcNAc) and fucose
(Fuc) are appended sequentially (Brockhausen, 1999). Sialic acids
and mannose are also found in trace amounts. Sialic acids in
particular, have been to known to play a major role in the
immune properties of mucins. Sialic acid mediates cell-to-cell
interactions, along with being able to mask antigens from human
macrophages (Yan et al., 2020). Further, sialic acids are the major
binding points for lectins, a common protein family found in the
innate immune system (Bornhöfft et al., 2018). Additionally,
secreted mucins also exhibit C-mannosylation, where C1 of
mannose bonds with the indole ring in tryptophan, allowing
for greater variation of tertiary structure (Linden et al., 2008).

Subtle changes within the mucin structure, in particular the
amino acid sequence and glycosylation, can correspond to vastly
different biological function (Bansil and Turner, 2006). While
these proteins are predominantly carbohydrates by weight, up to
90%, both protein and glycan structures provide overall
functional characteristics to the mucin (Linden et al., 2008).
Additionally, individual mucins can have multiple glycoforms
in normal and diseased states, and different populations of a
single species can exhibit distinct glycoforms (Benktander et al.,
2019). This diversity allows for organisms to individualize each

mucin for specific physiological and environmental conditions.
Overall there is little known about the genotype-to-phenotype
connection of mucin genes that leads to the various functional
properties. Several human mucin genes have been identified and
there are at least 21 validated mucin coding genes, each with
different biological activities (Rose and Voynow, 2006). In
contrast, while many putative snail mucin genes have been
identified none been validated. However, the lack of robust
characterization of the genetics and structural differences
between snail mucuses has not precluded their application to
address pressing medical and biotechnological materials needs.

Snail Mucins as Antimicrobial Agents
Antibiotic-resistant bacteria are becoming an increasingly
prevalent issue without many viable solutions. Because
mollusks lack adaptive immunity, they depend on physical
barriers and innate immunity for protection against
pathogenic agents (Gerdol, 2017). For most snails, the foot has
the most contact with surfaces that are contaminated with
pathogens and parasites, and secretion of mucus along the feet
protects against such microbes. One of the earliest mucuses
evaluated for antimicrobial activity was that of Achatina fulica
(Giant African Land Snail) (Table 1) (Iguchi et al., 1982). Mucus
from A. fulica (Mumuni et al., 2020) demonstrated promising
antibacterial activity against the Gram-positive bacteria, Bacillus
subtilis and Staphylococcus aureus, and the Gram-negative
bacteria, Escherichia coli and Pseudomonas aeruginosa (Table
2). The mucus secretions of A. fulica inhibited the bacterial
growth of both S. aureus and S. epidermidis when applied via
wound dressing films on a mouse model (Santana et al., 2012).
The wound dressings improved the maturation of granulation
tissue and the rate of collagen deposition, which are known to
expedite the healing process (Martins et al., 2003). In a similar
study, the mucus of Helix aspersa demonstrated antimicrobial
activity against several strains of Pseudomonas aeruginosa (Pitt
et al., 2015). Further, the mucus of both A. marginata and A.
fulica, were utilized as wound dressinsg on 28 clinical wound
samples collected with known common infections (Etim et al.,
2016). The mucus showed anti-bacterial potency against
Staphylococcus, Streptococcus, and Pseudomonas isolated from
wounds. In the same study, when compared to seven common
antibiotics, including amoxicillin, streptomycin, and
chloramphenicol, some of the mucus secretions were more
inhibitory to infections than commercial antibiotics.
Understanding the antimicrobial properties of snail mucus is
an active and growing area of research.

Snail Mucins as Drug Delivery Vehicles
The adaptability of snail mucin biopolymers makes them
uniquely promising candidates for novel drug delivery systems
(Huckaby and Lai, 2018; Momoh et al., 2020). During mating,
male snails shoot a dart to deliver mucus containing accessory
proteins into the female, which in turn increases the fertility of the
female snail (Lodi et al., 2017). This process relies on a
multifunctional system, with each component playing a
defined role. The dart acts as a needle, piercing tissue and
injecting the mucus that carries the accessory proteins into the
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female snail. In a similar manner, mucus could be adapted to act
as a delivery vector for bioactive molecules. Snail mucus are
known to pair exceptionally well with any medication that is
absorbed via mucosal membranes because of their ability to
facilitate diffusion across membranes (Balabushevich et al.,

2019). For example, metformin hydrochloride, a diabetes
medication, was attached to Giant African Land Snail mucin
using polyethylene glycol (PEG) to increase bioavailability of the
drug (Momoh et al., 2014). PEGylation, is a commonly utilized
process where a therapeutic is surrounded by a matrix of

TABLE 1 | Mollusca species whose mucin have been applied in various sectors for biomedical or biotechnology applications.

Mollusca species Common name Applicable sectors Uses Development stage

Helix aspersa Garden Snail Cosmetics Skin Care Cancer Treatment Topical
Antibiotic

Commercially available(Benton, Mizon, Cos Rx,
Biopelle, Missha)

Archachatina marginata Banana Rasp
Snail

Antimicrobial Pharmacology
Wound Care

Antibiotic Drug Delivery & Medication
Wound Dressing

Patented for use (US patent #:
WO2000068258A2)

Achatina fulica Kalutara snail Antimicrobial Pharmacology
Wound Care

Antibiotic Drug Delivery Medication
Wound Dressing

Patented for use (US patent #:
WO2000068258A2)

Arion subfuscus Dusky Arion Medical equipment Surgical glue Active research (University of Pennsylvania
Lehigh University)

Helix pomatia Burgundy snail Personal care Shampoo Commercially available (Royer)

Tikoconus costarricanus T. costarricanus Biotech Adhesion and lubrication Reported in literature
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polymers predominately, polyethylene glycol. This matrix
advantageously affects the pharmacokinetics of the therapeutic,
extending the half-life, via protection from antibodies, and
allowing for variable control of biodistribution depending on
matrix composition. Snail mucin in particular shows promise as a
polymer, as they are highly hydrophilic, and also readily interact
with gastrointestinal mucosal membranes, a common drug
absorption location. Metformin-loaded PEGylated-mucin
improved pharmacokinetics and pharmacodynamics of the
normally poorly absorbed drug, increasing release to 92%
compared to the 81% currently used in market. In another
application, whole Costus afer (ginger lily) flowers combined
with snail mucus showed reduction of blood glucose levels in
diabetic Mus musculus (Swiss albino mice) in a dose-dependent
fashion, which showed the possible anti-diabetic potential of snail
mucin (Agu et al., 2018).

Drug-binding polymer matrix and mucin-containing vaterite
crystals have been used as drug delivery carriers for effective
loading and controlled release of small anti-cancer drugs and
protein-based therapeutics (Balabushevich et al., 2019). Vaterite
microcrystals, when crystallized in mucin concentrations ranging
between 1 and 6 mg/ml, have better retention of cationic
bioactivities and stability in physiological conditions
Additionally, mucins have been coupled with photosensitizers
in order to enhance targeting and optimize control of delivery
into cancerous cells (Dutta et al., 2019). Self-assembled mucin

multilayer capsules and mucin-containing microparticles are of
particular interest for future studies of controlled release drug
delivery mechanisms, particularly to overcome challenges of
biocompatibility, biodegradability, and mucoadhesion
(Balabushevich et al., 2018).

Snail Mucins as Anti-Tumor Agents
Snail mucin has shown therapeutic potential against melanoma,
one of the most dangerous skin cancers (Ellijimi et al., 2018).
While new developments in cancer therapy have resulted in
greater remission rates and longer life expectancies for those
afflicted, these developments have not shown similar yields for
melanoma (Rutkowski and Kozak, 2017). As treatment resistance
is common for this cancer, there is an urgent need to find effective
novel approaches for treating melanoma. A study of H. apersa
mucus on melanoma cell lines reported that snail mucous
decreased the viability and inhibited the metastasis of
melanoma cells (Ellijimi et al., 2018). The decrease in viability
of the cells was attributed to an apoptotic event related to cleavage
of the Poly (ADP-ribose) polymerase (PARP). Additionally the
inhibition of metastasis was achieved by blocking integrin
function and expression, and thus inhibiting the cancer from
being able to grow (Premi, 2020). In another study, H. aspersa
mucin directly inhibited the growth of two human melanoma cell
lines, by increasing expression of the cytokine TNFα, and
inhibiting NF-κB, a transcription process that in proper

TABLE 2 | Molluscan mucin applied as antimicrobials to inhibit pathogens.

Mollusca species Mucin tissue type Dose Bacteria References

Achatina fulica Foot 10 uL S. aureus Mumuni et al. (2020)
Santana et al. (2012)
Etim et al. (2016)

10 uL S. epidermidis
350 Ug/cm3 B. subtilis
350 Ug/cm3 E. coli
350 Ug/cm3 P. aeruginosa
4 mg/ml S. aureus
4 mg/ml S. pyogenes
4 mg/ml P. aeruginosa

Helix aspersa Foot 4.8 mg/ml P. aeruginosa Pitt et al. (2015)

Archachatina marginata Foot 40% mucin/water mixture S. aureus Etim et al. (2016)
S. pyogenes
P. aeruginosa
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regulation has been linked to cancer progression, the growth of
these cell lines was decreased, demonstrating its anti-melanogenic
properties (Domínguez-Martín et al., 2020). While still in the
early stages of development, the application of snail mucins as
anti-tumor agents is of growing interest in the biomedical
community.

Snail Mucins Facilitate Wound Healing
Snail mucus can facilitate healing and has become an important
resource in wound research (Michael, 2012; Etim et al., 2016).
Mucins from the Helix aspersa (Garden Snail) have been shown
to help with skin regeneration after acute radiodermatitis, a
common side effect from radiotherapy (Hymes et al., 2006).
Garden snail mucus reportedly increased healing rates through
antioxidant and free radical regulation (Nguyen et al., 2020).
Mucus from garden improved erythema in rat models, and, the
same rats showed reduction of photoaging as well (Lim et al.,
2020). As well as being able to treat superficial injuries, mucins
have shown the ability to be used on internal wounds. Mucins
have been incorporated alongside oral non-steroidal anti-
inflammatory drugs (NSAIDs), to reduce or eliminate gastric
mucosal injury (Abdulla et al., 2013). NSAIDs reduce
inflammation, but have adverse side effects related to
gastrointestinal injury and liver damage. Many companies
have turned to natural products to counteract these side effect,
and Mucin have been shown to treat peptic ulcers, a side effects
caused by NSAIDs (Drina, 2017). A combination of the
antibiotic, clarithromycin, and A. fulica mucin has shown
positive results in treatment of peptic ulcer disease (Mu et al.,
2008; Kabakambira et al., 2018). In addition to anti-ulcer
properties, the healing rate of ulcers increased with
concentration of mucin and was faster than clarithromycin alone.

Snail Mucus Used for Bioinspired Materials
Studying naturally occurring substances as a platform to build
new materials has resulted in multiple revolutionary products,
such as Lipitor, Penicillin, and Morphine. Similarly, mucins have
been used as a biomaterial coating in order to reduce rejection of
inorganic implants. Rejection of surgical implants due to
infection results in over 1 million medical cases per year with
the cost of the original surgery only being a fraction of the cost of
treating the corresponding infection (Darouiche, 2004). Applying
mucin-based films to polyethylene terephthalate, a common
material used in medical implants, greatly reduced the
immune response triggered by IgG and IgM absorption into
the plastic (Sandberg et al., 2009; Galo Silva et al., 2019). The same
study also showed that it reduced the activation of fibrinogen, a
known inflammatory agent, when contacting the mucin coating
as compared to the uncoated plastic. Mucins have been shown in
other studies to reduce microbe reproduction on implanted
devices (Co et al., 2015). Mucin-based technologies show
immense promise for advancements in the field of biomaterials.

An example of mucins being used as biomaterials is the
application of mucins in the synthesis of water-soluble
hydrocarbons. By ligating mucin and/or mucin-mimicking
compounds with a hydrophobic lipid chain, the hydrocarbon
complex remained suspended in aqueous conditions, even after

several months, while the non-complexed hydrocarbon would
precipitate rapidly from solution (Chen et al., 2004). In another
related study conducted by Combaa’s group, this property was
applied to enhance glucose detection by creating a stabilized
suspension of carbon nanotube-mucin complex for a sandwich-
type glucose biosensor. The resulting bioanalytical device is 20%
more sensitive and 40% faster than conventional devices that do
not include this sensor design matrix (Comba et al., 2018).

Mucins, which come into contact with medications absorbed
through mucosal membranes, can also be used in
chromatography to assist in determining bioavailability and
absorption through the membrane (Gargano et al., 2014).
Porcine gastric mucin, bound to the silica column via amino
propyl linkers, allowed for separation of drug molecules by the
drug’s mucus membrane binding affinity. In another study mucin
was anchored to a column using an ion-exchange with calcium-
alginate, the mucin is immobilized, mimicking biological mucus
membranes. Longer retention time of the molecule within the
mucin column indicated high drug-mucin interaction, which is
correlated to delayed bioavailability in vivo (Bhat, 1995). This
adds another dimension to evaluate medications used in specific
diseases that affect mucin production, such as cystic fibrosis
(Abdullah et al., 2018).

The same porcine gastric mucin column has been used to
evaluate flavor retention by the food industry. The mucin column
was shown to mimic a bovine tongue for flavor retention, which
reduces the need for and could potentially eliminate animal
testing (Dinu et al., 2019). Mucins have been extensively
studied in their role with flavor perception (Çelebioğlu et al.,
2020). The presence of mucins within the oral cavity has been
directly correlated to increased sedimentation of flavor-
producing compounds, which in turn increases flavor
perception (Dinu et al., 2020). This phenomenon is also being
examinned as the cause for the loss of taste in old age (Pushpass
et al., 2019a). Decreased levels of MUC7 in saliva has been noted
in older individuals decreased taste (Pushpass et al., 2019b). This
downregulation is believed to reduce mucoadhesion of the flavor
molecules, leading to attenuated taste perception.

A Snail’s Pace to Characterization of Mucin
Molecules
Despite growing interest in the field, there are still many obstacles
that prevent advancements in snail mucin research. Many snail
species that have the potential for novel mucin discovery are often
inaccessible because of their habitat. The lack of readily accessible
biological material samples and difficulty in identifying mucin
structures prevents the reliable synthesis of mucins in quantities
sufficient for repeated experimentation. Several groups are
investigating sustainable, scalable approaches to producing
synthetic mucins, however the field is in its infancy (Petrou
and Crouzier, 2018) While mucins that have been isolated
from the A. fulica have been extensively studied, other species
remain neglected (Park, 2011).

The most viable method for commercial mucin production
remains extraction and isolation from animals, which does not
allow for substantial yields for application without abundant
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animal capital and generally involves invasive methods. The
complexity, abundance, and localization of glycosylation
patterns on each mucin, in addition to various mucin
glycoforms cause difficulty in employing common
separation methods to purify, synthesize, and analyze mucin
samples (Navarro et al., 2018). Mucins often undergo
posttranslational modifications, such as O-sulfation,
N-sulfation, and N-deacetylation that differentiate function
between proteins (Krasnova and Wong, 2016). These
posttranslational glycan modifications are a hurdle to mucin
sample purification, characterization, and synthesis. A
promising synthetic approach involves using recombinant
bacteria, glycosyltransferase(GT)-mediated polymerization,
and trans-glycosylation (Krasnova and Wong, 2016).
However, these methods are insufficient to achieve
industrially practical yields and will fail to generate the
exhaustive set of glycoforms that comprise natural mucus
gels. There is still difficulty in creating the O-glycosylation
in yeast, and there are challenges involved in transferring
glycosylation branches to chosen protein residues. These
issues present a need for developing viable and high yield
methods for synthesizing mucins using scalable chemistries,
which would be the first step in using mucins as targeted
therapies or treatments (Kwan et al., 2020).

Recent years have seen the emergence of -omic technologies
(genomics, transcriptomics, proteomics, glycomics) that require
minimal amounts of samples, allowing for the characterization of
rare or poorly accessible snail samples (Gorson et al., 2015). A
similar strategy to what has been done with snail venoms using
venomics (Holford et al., 2018; Anand et al., 2019; Fassio et al.,
2019), which pairs transcriptomic and proteomic methods with
de novo sequence bioinformatic assembly programs to identify
the genetic structure of snail venom putative peptide toxins, can
be applied to characterize mucin genes and mucus proteins
(Figure 1). Specifically, by taking the nucleotide sequences of
assembled exomes, and then pairing that with proteomic mass
values, we can confirm linear mucin protein structures. In this
approach we extract mRNA from mucus glands or whole animal
and through a bioinformatic pipeline, identify mucin genes and
primary mucin protein sequences. A new initiative, the
Comparative Animal Mucomics Project (CAMP) will apply a
systematic comparative analyses of mucin genes and mucus
hydrogels to determine the hierarchical structures and
properties of distinct mucuses (Cerullo, 2020).

Despite the promise of omic methods for producing robust
databases of mucins, major hurdles still remain for their study.
One such hurdle are the algorithms used to assemble
sequenced genes. De Bruijn graphs, which is the algorithm
sequence most assemblers use, have difficulty mapping the
repeated domains due to the multiplicity of similar overlapped
sequences (Mikheenko et al., 2020). Multiple tools are
currently being developed to overcome this problem (Jain
et al., 2020). Each program changes the weighting of the
k-mers that are used to construct the De Bruijn graphs in
order to accommodate for the tandem repeats. For mucin
proteomic study, the intermolecular interactions of mucins
with other mucins causes an additional degree of difficulty.

Mucins naturally will create multimers of themselves,
connecting multiple proteins together in order to form a
larger structure, which is regularly observed in nature
(Javitt et al., 2019). In order to then obtain a single protein,
the cojoined bonds must be broken, without also breaking the
bonds of the single protein. However, mucin multimer bonds
are difficult to reduce without also having an effect on the rest
of a single mucin chain’s secondary structure. A trial and error
procedure is currently used in mucin proteomic studies to
generate single protein masses. New characterization and
synthesis techniques will need to be established to
accurately identify and fabricate snail mucins, and with an
omics approach we may be able to determine the genotype to
phenotype mapping necessary to understand and decipher the
functionality differences found in each mucin sample.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Snails are found in nearly every biome, and environmental
conditions appear to drive the diversity of mucin genes and
versatility of mucus functions (Lang et al., 2007; Lang et al., 2016).
Snail mucins have demonstrated biomedical and biotechnology
potential, and are a bioinspired resource of significant promise
(Figure 1). Characterization of snail mucins are limited not by
their inherent value, but by access and the complexity of the
molecule’s identification, purification and investigation. There
are still several questions left to be answered about the properties
of mucins and mucuses in relation to the applicable uses. This
prospective demonstrates the high yield potential of snail mucins,
and by utilizing an adaptable comparative omics pipeline, we can
better understand these unique proteins, and their advantageous
biological and chemical properties.
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