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The key problem of computer-aided diagnosis (CAD) of lung cancer is to segment pathologically changed tissues fast and
accurately. As pulmonary nodules are potential manifestation of lung cancer, we propose a fast and self-adaptive pulmonary
nodules segmentationmethod based on a combination of FCMclustering and classification learning.The enhanced spatial function
considers contributions to fuzzy membership from both the grayscale similarity between central pixels and single neighboring
pixels and the spatial similarity between central pixels and neighborhood and improves effectively the convergence rate and self-
adaptivity of the algorithm. Experimental results show that the proposed method can achieve more accurate segmentation of
vascular adhesion, pleural adhesion, and ground glass opacity (GGO) pulmonary nodules than other typical algorithms.

1. Introduction

In recent years, morbidity andmortality rates of lung diseases
in China are growing annually, resulting from environmental
degradation induced by air pollution and increase of smoking
and passive smoking. As indicated by data provided by
National Cancer Institute, Ministry of Health, the mortality
rate of lung cancer in China increased by 465% and its
morbidity rate increased by 26.9% in the past 30 years, and
furthermore, rather than liver cancer, lung cancer has been
the prime cause of death due to malignant tumors, which
takes up 22.7% of all such deaths (morbidity and mortality
due to lung cancer increase drastically, http://health.sohu
.com/20121127/n358789664.shtml). Therefore, research of
computer-aided diagnosis on lung cancer has being increas-
ingly important.

Currently, as far as the characterization of lung diseases
is concerned, CT imaging is the best imageological means
to diagnose lung diseases among various medical imaging
types [1]. Since pulmonary nodules are the most commonly
seen symptoms in the early stage of lung cancer, automatic

extraction and assisted diagnosis of pulmonary nodules by
means of spiral CT play a significant role in the detection of
early lung cancer [2], which reduces effectively the errors in
interpreting images by eyeballs and the work load of image
reading. More importantly, it improves the repeatability of
diagnosis and consistency of image interpretation to some
extent by providing accurate quantitative analysis for doctors
by techniques such as image segmentation and quantification
of characteristics [3].

In the process of research, a series of characteristics of
pulmonary nodules such as size, form, density, and patterns
of strengthening and growth need to be analyzed compre-
hensively in order to provide a basis for identification
of benignity and malignancy of tumors [4]. For instance,
pulmonary nodules have clear edges and the form of edges
(smooth, lobulated, speculated protuberance, or burr) are key
indicators of benignity and malignancy of tumors. So it can-
not be more important to implement correct segmentations
of pulmonary nodules.

In recent years, a lot of pulmonary nodule segmentations
methods have been proposed, which can be categorized
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Figure 1: All kinds of pulmonary nodules: (a) vascular adhesion, (b) pleural adhesion, (c) ground glass opacity, and (d) cavitary nodule.

as threshold methods [5, 6], morphological methods [7],
variable model methods [8], clustering methods [9–11], and
image segmentation methods [12, 13]. Nevertheless, many
contemporary methods need human interventions and most
of them perform well only for isolated solid pulmonary
nodules.However, pulmonary nodules usually occur in forms
of vascular adhesion, pleural adhesion, ground glass opacity
(GGO), and cavitary pulmonary nodules, as demonstrated
in Figure 1. These types of nodules have higher probability
of malignancy than isolated ones. Obviously, because of
attachment of these nodules to surrounding tissues, fuzzy
edges, and similar gray scales, fast, correct, and automatic
segmentation of these nodules is still a difficult problem.

Fuzzy 𝐶-means (FCM) algorithm [14] is a popular algo-
rithm and has been widely used in image segmentation;
it applies fuzziness to the membership judgment of pixels,
which is consistent with human perception and convenient
for realization. However, conventional FCM algorithm does
not consider any spatial information and neighborhood cor-
relation, which makes it perform poor in low contrast, in-
homogeneity, and noisy images.

In order to overcome these problems, many researchers
have introduced spatial information through modifying the
objective function or altering the distance formmeasurement
between pixels and cluster centers. Fergus et al. proposed
a modified FCM algorithm (SFCMpq), which considers the
fact that the adjacent pixels will have similar characteristic
value and the probability that they belong to the same class
is very big. Chuang et al. [15] proposed a weighted FCM
integrating the spatial neighborhood information. Ahmed
et al. [16] proposed FCM S algorithm where the objective
function is modified by introducing a neigborhood term,
which is used to compensate the intensity inhomogeneity and
allow the labeling of a pixel to be influenced by the labels of its
immediate neighborhood. However, the execution efficiency
of FCM S is very low [17], since it needs to compute a
series of neighborhood labelings during each iteration. Two
improved variants, FCM S1 and FCM S2, of FCM S were
proposed with an intent to simplify the computation of
parameters and then Chen and Zhang [18] extend them
to the corresponding kernelized versions, KFCM S1 and
KFCM S2, by the kernel function substitution. An enhanced
FCM (EnFCM) algorithm [19] was proposed to speed up the

clustering process on the basis of the gray level histogram
instead of pixels, and it uses a linearly weighted sum image
formed from both original image and each pixel’s local neigh-
borhood average gray level. Hence, the computational time of
EnFCMalgorithm is reduced greatly since the number of gray
levels in an image is much smaller than that of pixels. Fast
generalized FCM (FGFCM) algorithm [20] introduces the
spatial information combining the intensity of the local pixel
neighborhood and the number of gray levels in an image.
The quality of segmentation result is well enhanced, and the
computational time of FGFCM algorithm is small similarly.
Krinidis and Chatzis proposed a novel robust fuzzy local
information 𝐶-means clustering (FLICM) algorithm [21] by
incorporating the local spatial and gray level information,
which is free of the empirically adjusted parameters and
enhances the clustering performance.

Although the above-modified FCM algorithms have
improved the performance of conventional FCM and seg-
mented different types of images to some extent, they still
have the following disadvantages: (1) they require a large
number of iterations to achieve the convergence; (2) they have
the worst performance in segmenting CT images of lungs
with complicated features; for example, the blood vessels have
similar grayscales to pulmonary nodules, GGO pulmonary
nodules have low contrast to backgrounds, and so forth.

Discussing these issues, this paper presents a pulmonary
nodule segmentation method combining fast self-adaptive
FCM and classification. The improved spatial function will
calculate the cluster centers adaptive by both grayscale
similarity and spatial similarity of pixels neighborhood space
and update the fuzzy membership degree of center pixel
during each iteration, obtaining the cluster centers at a faster
rate. Afterward, we can construct the classifier based on the
clustering results according to the labeled information.

2. Modified Fast Self-Adaptive
FCM Segmentation

In addition to lung tissues, a typical CT image of chest section
includes other organs, skeletons, and trachea. To increase
the accuracy of CAD detection to lesion tissues and image
processing speed, the primary mission of this paper is to
remove these irrelevant items in images and extract images
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of pulmonary parenchyma by means of global binarization
of threshold, detecting boundaries of trunks, removing back-
ground noises, and inpainting lung areas.Thereafter, nodules
in lungs as well as blood vessels and bronchi which have sim-
ilar characteristics with pulmonary nodules can be analyzed.
CT images of pulmonary nodules are generally bright in
center and dark in peripheral area so that points mapped into
the joint characteristic space of brightness and greyscales are
dense in center and scattered in peripheral. Considering the
diversity of types of pulmonary nodule density distribution,
weak edge distribution of peripheral tissues, and robustness
of algorithm to noise, the following modifications of tradi-
tional FCM algorithm are proposed in this paper: the new
spatial function considers the contributions to fuzzy mem-
bership from both the grayscale similarity between central
pixels and single neighboring pixels and the spatial similarity
between central pixels and neighborhood.Themodified algo-
rithm improves effectively the convergence rate and adaptiv-
ity to spatial characteristics of pulmonary nodule edges.

2.1. The Traditional FCM Algorithm. As a clustering algo-
rithm based on division, the traditional FCM algorithm
divides 𝑁 pixels into 𝐶 fuzzy groups, searches the clustering
center of each group, and updates the clustering centers
through updating fuzzy membership of the pixels relative to
each clustering.Theupdate is implemented bymeans ofmini-
mizing the objective function, which is defined as
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where 𝐶 is the amount of clusters, 𝑁 is the amount of pixels
in the image, 𝜇𝑖𝑗

𝑚
is the fuzzymembership of the 𝑗th pixel with

respect to the 𝑖th pixel,𝑚 is the weight exponent acting on the
fuzzy membership, and V𝑖 is the center of the 𝑖th clustering.
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This algorithm minimizes the objective function by
assigning higher fuzzy membership to pixels whose grey-
scales are close to those of specific clustering centers and
assigning lower fuzzy membership to pixels whose greyscales
are distinct from those of specific clustering centers.

Nonetheless, the traditional FCM algorithm calculates
the fuzzy membership of each pixel based on the distance of

the pixel and clustering centers, resulting in the fact that it
is not suitable to pulmonary nodule images in which charac-
teristics of forms and distributions are complex and diverse
because it is difficult to obtain smooth segmentation edges
and closed segmentation intervals. In addition, the executive
efficiency of the FCM algorithm is low since it needs multiple
iterations to converge. Existing modified FCM algorithms,
such as FCM S, FCM S1, FCM S2, FGFCM, and EnFCM,
take into account information of pixels in neighborhoods of
central pixels and introduce a parameter 𝛼 or 𝜆𝑔 that controls
the intensity of neighborhood information. This parameter
is important because its selection influences directly the per-
formance of algorithm. However, this parameter cannot vary
self-adaptively; that is, its value maintains unchanged during
the whole process of segmentation for an image. Obviously,
the selection of 𝛼 does not reflect the characteristics of the
neighborhood of the pixels.

We acclaim that the value of 𝛼 should be chosen based
on (1) similarity of local greyscales; that is, 𝛼 should depend
on the difference between the greyscales of central pixels and
neighboring pixels in order to suppress noise and speed con-
vergence; (2) local spatial similarity; that is, 𝛼 also depends
on the size of neighborhoods and the difference between
greyscales of neighborhood average and central pixels so that
the adaptivity of algorithm is enhanced.

2.2. 2D Vector Representation of the Spatial Relationship
between a Pixel and Its Neighborhood. For an extracted
pulmonary parenchyma image, the amount of pixels is
denoted as 𝑁 and greyscale lies in the interval [0, 𝐿 − 1],
the neighborhood of a pixel 𝑥𝑗, 𝑗 ∈ [0,𝑁], is 𝑁𝑟, and 𝑥𝑟

is a pixel in the neighborhood. Denote the greyscale at the
central pixel 𝑥

𝑗
as 𝑓(𝑥

𝑗
) ∈ [𝑥, 𝐿 − 1] and the average value

in a neighborhood centered at this pixel with the size (2𝑟 +

1) × (2𝑟 + 1) as 𝑔(𝑥
𝑗
), where the parameter 𝑟 is determined

based on image resolution and noise. The 2-dimensional
vector [𝑓(𝑥

𝑖
), 𝑔(𝑥
𝑗
)] represents the greyscale at 𝑥

𝑗
and that

of its neighborhood; it will have 𝑀
∗ different values in the

whole lung parenchyma. The algorithm segments the image
by sampling the above 2D vector instead of the traditional
greyscale.

To analyze the statistical rules of the correspondence
between 2D vectors and various tissues in pulmonary
parenchyma, a 2D greyscale matrix is defined and con-
structed, in which the abscissa represents the greyscales at
pixels and the ordinate represents the average in their neigh-
borhoods.The frequency 𝑝𝑗 of the vector value [𝑓(𝑥𝑗), 𝑔(𝑥𝑗)]
is

𝑝
𝑗
=
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𝑁
,
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𝑝
𝑗
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where 𝑛𝑗 means the number of times that the vector value
[𝑓(𝑥𝑗), 𝑔(𝑥𝑗)] occurs.

Figure 2(b) shows the distribution of greyscales and
neighborhood averages of pixels corresponding to pul-
monary parenchyma shown in Figure 2(a), for which 𝑟 is
chosen as 2. By statistical analysis from the 2D vector dis-
tributions at all pixels, since pulmonary parenchyma is the
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Figure 2:Greyscale andneighborhood average: (a) a pulmonary parenchyma image and (b) 2Dvector distribution; regions 1 and 3 correspond
to the smooth area, region 4 corresponds to the edges of nodules, tracheas, great blood vessels, and so forth.

background in images, the greyscale values at corresponding
pixels are close to their neighborhood averages, which is
indicated by points around the diagonal in region 1 in Figure
2(b); greyscale values at pixels inside tracheas, blood vessels,
and pulmonary nodules are also close to their neighborhood
averages, indicated by points around the diagonal in region 3
in Figure 2(b); amount of pixels at edges of nodules, tracheas,
and great blood vessels is relatively large and greyscales at
these areas are significantly different from neighborhood
averages, shown by points densely distributed in region 4.
In addition, discrete points showing low frequency of occur-
rence and huge difference between local greyscale values and
neighborhood averages correspond to pixels at tiny blood
vessel edges and lung wall edges.

From above, for a pixel, the size of its neighborhood, the
difference between local greyscale and neighborhood aver-
age, and its frequency 𝑝 can provide local pattern features of
the neighborhood around the central pixel for the algorithm
updating fuzzy membership.

2.3. FCM Algorithm Based on Weighted Spatial Information
and Greyscale Information. To improve the traditional FCM
algorithm, this paper introduces a new spatial functionwhich
includes the spatial features and greyscale information of the
neighborhood around the central pixel. The spatial function
is defined as

ℎ𝑖𝑗 = ∑
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𝑟
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where 𝜆
𝑗
is equivalent to the parameter 𝛼 in other classical

algorithms. But 𝜆
𝑗
is able to adjust the difference between

greyscales at central pixels and their neighborhoods accord-
ing to the degree of importance of the 2D vector in local
pattern space. Consider
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(8)

which shows that 𝜆𝑗 is variable and enhances the self-
adaptivity of pixels to their neighborhoods.

It can be seen that formula (7) combines the greyscales
at central pixels and pixels in their neighborhoods and adjust
dynamically the brightness around central pixels depending
on the sizes of neighborhoods and mean square deviation in
neighborhoods. This practice protects the pixels in smooth
areas, magnifies the differences in edges, and eliminates noise
and edges of tiny suspect objects in the fuzzy membership
matrix.



Computational and Mathematical Methods in Medicine 5

The spatial function ℎ
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where parameters 𝑝 and 𝑞 control the relative significance of
the two functions.

Based on the above descriptions, the self-adaptive FCM
algorithm for training is as follows:

Algorithm 1 (fast self-adaptive FCM). Consider the following.

Input. Extract CT image of pulmonary parenchyma.

Output. Segment pulmonary nodules.

Initializations. Choose the amount of clustering centers 𝐶 =

2, the maximum number of iterations 𝐿max = 100, fuzzy
weight exponent 𝑚 = 2, size parameter of neighborhoods
𝑟 = 2, parameters that control the relative significance of the
two functions 𝑝 = 1 and 𝑞 = 2, and termination threshold
𝜀 = 0.001; set counter for iteration 𝑙0; initialize randomly a
clustering prototypematrix𝑉(0) and normalize this matrix so
that it satisfies constraint (2); finally, obtain clustering centers
V(0)
𝑖

using formulas (3) and (4).

Step 1. Calculate and plot the 2D histogram for the pulmonary
parenchyma image and obtain frequencies of occurrence 𝑝

𝑗

of all 2D vectors.

Step 2. Calculate fuzzy membership 𝜇
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Step 3. Update fuzzymemberships according to formulae (7)–
(9) and obtain new fuzzy memberships 𝜇(𝑙)

𝑖𝑗
.

Step 4. Update clustering prototypemodes𝑉(𝑙); that is, update
clustering centers V(𝑙+1)

𝑖
using new memberships 𝜇(𝑙)

𝑖𝑗
:
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Step 5. If ‖𝑉(𝑙+1)−𝑉
(𝑙)
‖ < 𝜀 or themaximum count of iteration

𝐿max is reached, enter Step 6; otherwise, return to Step 3.

Step 6. Deblur using the method of maximum membership
function.The type of clustering that the pixel 𝑥

𝑗
belongs to is

represented by 𝑐
𝑗
:

𝑐
𝑗
= arg
𝑖

{max (𝜇
𝑖𝑗
)} ∀𝑖, ∀𝑘. (12)

In the algorithm, the fuzzy weight exponent 𝑚 is a
parameter introduced to generalize fuzzy clustering objective
functions by Bezdek, which plays a role in suppressing noise
and smoothing membership functions. The empirical range
of𝑚 given by Bezdek is 1.1 ≤ 𝑚 ≤ 5. Later, the most suitable
physical interpretation was obtained for 𝑚 = 2 [22]. Thus 𝑚
is chosen as 2 in this paper.

Now, let us analyze the number of iterations and run-
ning time of the algorithm for image processing. Since the
iterations loop over each pixel, the time complexity of the
algorithm depends closely on amount of pixels and number
of iterations, that is,𝑂(𝑁𝑐𝐿), where𝑁 is the amount of pixels,
𝑐 is the number of clusters, and 𝐿 is the number of iterations.
The operational speed of the algorithm in this paper is
significantly improved because the number of iterations
of this algorithm is much less than traditional FCM and
FCM S algorithms. Besides, EnFCM and FGFCM algorithms
transform segmentation based on pixels into segmentation
based on greyscale (0–255) levels. Due to the fact that the
number of greyscale levels is much less than amount of pixels,
the speed of algorithm becomes much faster.

Figure 3 demonstrates the results of fuzzy memberships
of pixels at pulmonary parenchyma, edges, and pulmonary
nodules given by the above algorithm applied to an image
of blood vessel adhesion pulmonary nodules. The yellow
rectangular area in Figure 3(a) is the area to be analyzed.
Figure 3(b) shows the distribution of greyscales at pixels in
the rectangular area in the form of level sets. Figure 3(c)
indicates the results of fuzzy memberships at the pixels in
the interesting area relative to the foreground clustering 𝑐𝐹

calculated by using the new spatial function. To make the
demonstration of results more visually sense-making, the
values shown in the figure are the results that actual values
are multiplied by 100 and rounded. Black arrows point to
the evolutionary directions of fuzzy memberships. Pixels in
shadow areas represent segmented boundaries based on the
membership threshold.

Let us elaborate the effectiveness of the new spatial
function by taking the pulmonary parenchyma shown in
Figure 4, for instance. The positions that arrows point to can
be regarded as noise.The frequency 𝑝 that the corresponding
2D vector occurs is extremely small and its greyscale differs
significantly frommost neighboring pixels. Thereafter, in the
initial stage, 𝜇

𝑖𝑗
is relatively small while 𝜇

𝑖𝑟
is large, which lead

to the result that ℎ
𝑖𝑗
given by the algorithm through the spatial

function (6) is large and the new fuzzy memberships 𝜇
𝑖𝑗
by

substituting ℎ𝑖𝑗 into formula (9) is also relatively large. After
each iteration, the probability that this pixel enters the 𝑖th
clustering increases until the termination of the algorithm.
Thus, this pixel will be finally categorized into the 𝑖th
clustering where its neighboring pixels belong to, although its
greyscale is distinct from the center of the 𝑖th clustering V

𝑖
. It is
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Figure 3: Greyscale map and memberships at pixels in local segmentation area of blood vessel adhesion nodules: (a) pulmonary nodules to
be segmented, (b) distribution of grayscales, and (c) the membership change trend of boundary pixels.

(a) (b)

Figure 4: Example to be analyzed: (a) noise of tiny blood vessels; (b) connection between nodule and pleura.
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right opposite to the case of pleural adhesion nodules shown
in Figure 4(b), in which the area of pulmonary nodules
extends until being connected to pleura that shows higher
greyscale levels. Though greyscale levels at the connections
are low, they transit gradually so that the difference of
greyscales at central pixels and neighborhoods is relatively
small. The factor 𝜆𝑗 in formula (8) adjusts self-adaptively the
brightness around pixels in the connection area by increasing
the weight of 𝜇𝑖𝑗, which also increases the spatial function ℎ𝑖𝑗.
After one iteration, fuzzy membership changes significantly.

(1) The central pixel is a point of noise and pixels in its
neighborhood are homogeneous in greyscale. Let us
take a point of tiny blood vessel noise shown in Figure
4(a) as an example, in which the size parameter of
neighborhood 𝑟 = 1. Greyscales and initial fuzzy
memberships of the pixels in this area are listed in
Table 1(a). Tables 2(a), 2(b), and 2(c) demonstrate
the memberships 𝜇

𝑖𝑗
and clustering centers V𝑖 of the

pixels in this area after 1, 4, and 7 iterations. In Table
2, the upper and lower parts show results given by
formula (1) and Step 3 in Algorithm 1, respectively. By
comparing the memberships and clustering centers
before and after updating, it can be seen that cluster-
ing centers after each iteration are rarely influenced
by central pixels, speed of convergence is improved
significantly, and fuzzy memberships of pixels in
neighborhoods tend to be consistent. Thus the noise
of tiny blood vessels is correctly categorized into the
background clustering 𝑐

𝐵
.

(2) The central pixel is not a point of noise but is homo-
geneous in greyscale with pixels in its neighborhood.
Table 3 demonstrates thememberships and clustering
centers of the pixels in the neighborhood of the
example pixel shown in Table 1(b) after 1, 4, and
7 iterations. It can be seen that since the central
pixel of the neighborhood is not noise, only the
greyscales at diagonal pixels are relatively dark and
the greyscales in the neighborhood show smooth
transitions. Through comparing the memberships 𝜇

𝑖𝑗

and clustering centers V𝑖 before and after updating as
listed in Tables 3(a), 3(b), and 3(c), it is observed that
after one iteration in the algorithm proposed by this
paper, memberships 𝜇

𝑖𝑗
at pixels in the neighborhood

are lower than those computed by Step 2 of Algorithm
1 and membership values tend to be consistent after
several iterations. The central pixel is correctly cate-
gorized into the foreground clustering 𝑐

𝐹
.

The above two examples provide theoretical explanations
about the robustness of the algorithm. From the point of
view of localized methods, formula (6) fully combines the
local spatial information and greyscales of the image, which
enhances the robustness of the algorithm to noise or outliers
and the self-adaptivity to homogenous neighborhoods. In the
meantime, it can change the fuzzy memberships of central
pixels significantly and improve the executive efficiency of the
algorithm.

Table 1: Greyscales and initial memberships in the neighborhood
of pixel 𝑥

𝑗
in Figure 6.

(a) Central pixel 𝑥𝑗 is the noise of tiny blood vessel in Figure 7(a)

Greyscale Initial membership
78 53 53 0.22 0.11 0.39
60 142 52 0.82 0.13 0.25
60 59 56 0.42 0.54 0.25

(b) Central pixel 𝑥𝑗 is connection of nodule and lung wall in
Figure 7(b)

Greyscale Initial membership
132 142 162 0.27 0.89 0.78
140 135 168 0.55 0.18 0.44
153 156 138 0.54 0.84 0.42

Table 2: Values of memberships and clustering centers (V
1
and V

2
)

in the neighborhood shown in Figures 4(a) and 4(b) after 1, 4, and 7
iterations.

(a) After 1 iteration

0.4753 0.4727 0.4712
0.4717 0.4723 0.4753
0.4721 0.4736 0.4722

V
1
= 80.54 V

2
= 37.46

0.5031 0.5122 0.5124
0.5112 0.53031 0.5042
0.5121 0.5063 0.5066

V
1
= 83.55 V

2
= 42.68

(b) After 4 iterations

0.7564 0.7562 0.7601
0.7537 0.7523 0.7564
0.8120 0.7611 0.7589

V
1
= 52.44 V

2
= 63.27

0.7781 0.7881 0.7689
0.7833 0.7682 0.7596
0.7681 0.8195 0.7764

V
1
= 36.88 V

2
= 81.67

(c) After 7 iterations

0.9687 0.9311 0.9714
0.9658 0.9602 0.9596
0.9709 0.9673 0.9598

V
1
= 20.74 V

2
= 98.65

0.9868 0.9727 0.9943
0.9907 0.9739 0.9763
0.9960 0.9902 0.9856

V
1
= 7.29 V

2
= 118.69

3. Experimental Results and Analysis

This paper uses experimental data from whole lung image
series provided by the Lung Image Database Consortium
(LIDC (USA Lung Image Database Consortium (LIDC),
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Table 3: Values of memberships and clustering centers (V
1
and V

2
)

in the neighborhood shown in Figure 7(b) after 1, 4, and 7 iterations.

(a) After 1 iteration

0.6007 0.5507 0.5677
0.5236 0.5712 0.5178
0.5807 0.5008 0.5438

V
1
= 82.25 V

2
= 30.58

0.4922 0.4993 0.4892
0.5934 0.4993 0.5372
0.4993 0.4898 0.5192

V
1
= 71.45 V

2
= 44.86

(b) After 4 iterations

0.3446 0.3247 0.3251
0.4024 0.3512 0.3415
0.3515 0.3861 0.3488

V
1
= 46.28 V

2
= 76.55

0.2452 0.3412 0.2944
0.3544 0.2586 0.3589
0.2881 0.3245 0.2292

V
1
= 34.62 V

2
= 82.54

(c) After 7 iterations

0.0278 0.0852 0.0353
0.0267 0.0497 0.0318
0.0795 0.0278 0.0519

V
1
= 20.48 V

2
= 100.56

0.0105 0.0084 0.0068
0.0097 0.0092 0.0087
0.0082 0.0081 0.0051

V
1
= 5.33 V

2
= 118.36

https://public.cancerimagingarchive.net/ncia/login.jsf)) [23],
USA, and the lung CT image database of Qianfoshan Hos-
pital, Shandong Province. Table 4 describes the two sets of
experimental data, 2D CT images selected for experiments,
and information about pulmonary nodules. The experimen-
tal images contain labels of pulmonary nodules provided by
clinical experts.

To verify the effectiveness of the newly proposed algo-
rithm, the new algorithm is compared with 5 existing typical
algorithms (FCM, FCM S, EnFCM, FGFCM, and FLICM)
about effect of segmentation, operational efficiency, and error
rate. In the whole experiment, parameters involved in the
above 5 algorithms are as follows:𝑚 = 2, 𝛼 = 0.85, 𝜀 = 0.001,
𝜆
𝑔
= 6, and𝑁

𝑅
= 9; that is, local neighborhoods are 3 × 3 in

size.

3.1. Effect of Pulmonary Nodule Segmentations. Segmenta-
tions to isolated, blood vessel adhesion, pleural adhesion,
and ground glass opacity pulmonary nodules are imple-
mented and compared in order to verify and compare the
performance of the above algorithms on removing noise and
treating tiny tissues, objects with fuzzy edges, and objects
with similar greyscales.

Table 4: Databases used in the experiment.

LIDC Qianfoshan Hospital,
Shandong Province

Average number of sections
in each set 100 150

Number of 2D CT images for
experiment 48 67

Image resolution 512 × 512 512 × 512
Thickness of sections 2∼3mm 1∼3mm
Diameter of pulmonary
nodules 8–30mm 7–30mm

Number of pulmonary
nodules
Isolated 64 98
Blood vessel adhesion 41 56
Pleural adhesion 19 39
ground glass opacity 25 21

Figure 5 demonstrates the image of an isolated pul-
monary nodule, the image of pulmonary parenchyma with
salt and pepper noise, and images of locally zoomed-in seg-
mentation results obtained by the above six algorithms and
bymanual segmenting.Through analysis of the segmentation
results shown in Figures 5(c)–5(h), it can be found that
the performances of FCM and FGFCM are influenced by
noise so severely that they cannot separate objectives from
background. A large amount of noise still exists in the result
of background segmentation and even tiny blood vessels are
segmented as objectives. FCM S and EnFCM perform better
than above algorithms, although the segmentation effects of
objectives and tiny blood vessels aremuch less than ideal.The
algorithm proposed by this paper can remove the influence of
noise satisfactorily and successfully separate objectives from
background.

Figure 6(a) shows the CT image of a blood vessel adhe-
sion pulmonary nodule.The segmentation results of this nod-
ule by the above six algorithms are demonstrated by Figures
6(b)–6(g). It is observed that, among all these algorithms,
FCM yields a result that differs the most from that given by
manual segmentation because it only extracts the brightest
region in the center of the nodule and loses all informa-
tion about nodule boundaries. Segmentations provided by
FCM S, EnFCM, FGFCM, and FLICMshow errors of bound-
ary leakage at the connections of nodules and blood vessels,
and all of these four algorithms make more or less wrong
segmentations to left lung walls connected to blood vessels.
The method proposed by this paper overcomes these prob-
lems and performs well in segmenting blood vessel adhesion
pulmonary nodules.

Figure 7(a) shows the CT image of a pleura adhesion
pulmonary nodule. The segmentation results of this nodule
by the above six algorithms are demonstrated for comparison
by Figures 7(b)–7(g). The shape of pulmonary nodule edges
segmented by our method are the closest to those provided
by experts’ manual segmentations. The connections between
nodules and pleura are especially delicate, indicated by the
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(a) Original image (b) Pulmonary parenchyma with noise

(c) FCM (d) FCM S (e) EnFCM (f) FGFCM (g) FLICM (h) Our method (i) Manual seg-
mentation

Figure 5: Segmentation results of isolated pulmonary nodules with salt and pepper noise.

(a) Original image (b) Pulmonary parenchyma

(c) FCM (d) FCM S (e) EnFCM (f) FGFCM (g) FLICM (h) Our method (i) Manual seg-
mentation

Figure 6: Segmentation results of blood vessel adhesion pulmonary nodules.
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(a) Original image (b) Pulmonary parenchyma

(c) FCM (d) FCM S (e) EnFCM (f) FGFCM (g) FLICM (h) Our method (i) Manual seg-
mentation

Figure 7: Segmentation results of pleura adhesion pulmonary nodules.

(a) Original image (b) Pulmonary parenchyma

(c) FCM (d) FCM S (e) EnFCM (f) FGFCM (g) FLICM (h) Our method (i) Manual seg-
mentation

Figure 8: Segmentation results of ground glass opacity pulmonary nodules.
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Figure 9: Examples of pulmonary nodule segmentations by our algorithm compared with manual segmentations. For each case, four images
are shown.They are, from left to right, the original CT slice, segmentation result with 𝑟 = 1 and 𝑟 = 2, respectively, and manual segmentation
result.

fact the extended area of nodules and background areas of
pulmonary parenchyma are distinguished.

Figure 8(a) shows the CT image of a ground glass opacity
pulmonary nodule, which is indicated by a red arrow. The
segmentation results of this nodule by the above six algo-
rithms are demonstrated for comparison by Figures 8(b)–
8(g). It can be seen that FCM hardly segments pulmonary
nodules. FCM S, EnFCM, and FGFCM perform less than

satisfactorily on segmentations of nodules and tiny blood ves-
sels. Segmentations by FLICMare good and ourmethod gives
segmentations that are closer to edges expected by experts.

Generally, blood vessels have similar grayscales to pul-
monary nodules; GGO pulmonary nodules have low contrast
to backgrounds; grayscales at connections between pleura
and pulmonary nodules transit smoothly, but the contrast is
also very low, compared to the grayscales of backgrounds.
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Table 5: Comparison of executive efficiencies of the six algorithms.

Algorithm
Number of iterations

Legend
Figure 5 (noise added) Figure 6 Figure 7 Figure 8

FCM 69 50 35 68
FCM S 36 14 22 63
EnFCM 11 28 13 56
FGFCM 11 27 14 47
FLICM 18 33 13 15
Algorithm in this paper 6 8 5 9

Running time (s)
FCM 12.8605 12.4230 9.8213 17.2120
FCM S 10.9752 9.1020 8.3464 14.3180
EnFCM 7.2450 8.3830 8.1840 12.3040
FGFCM 9.2880 7.4350 6.1859 9.3020
FLICM 6.2450 9.3020 6.1826 7.7290
Algorithm in this paper 5.3614 4.6481 4.4618 5.7344

The traditional FCM algorithm implements segmentations of
images by clustering similar data points in the characteristic
space and does not include interactions between neighboring
pixels, which yields the worst performance in segmenting
CT images of lungs with complicated features. Improvements
by introducing neighborhood information and methods to
measure distances and correcting memberships are made
by all other four typical algorithms, which remove the
influence of image noise. However, more or less defects exist
in considering spatial similarities and grayscale similarities
of pixels in neighborhoods so that these algorithms show
problems of falling into local extrema and being sensitive to
initial values.

To illustrate more results of segmentations of pulmonary
nodules, Figure 9 demonstrates several typical pulmonary
nodules, including isolated, adhesion, and GGO nodules.
Column 1 shows locally zoomed-in images of original pul-
monary parenchyma; column 2 shows segmentation results
given by using the neighborhood size parameter 𝑟 = 1, that
is, using 3 × 3 neighborhoods; column 3 shows segmentation
results given by using the neighborhood size parameter 𝑟 = 2,
that is, using 5 × 5 neighborhoods; column 4 shows manual
segmentation results provided by experts for reference.

Analysis of experimental results demonstrates the fol-
lowing: (1) to some extent, the segmentation obtained by
our method is close to the manual references, especially at
nodule edges where burrs are obvious. (2) Images in the same
group can be referred to each other and those in different
groups cannot be compared because different CT images
are distinct in doses, resolutions, and quality, especially
grayscale, and in the process of implementation the algorithm
adjusts the parameter 𝜆𝑗 self-adaptively according to the
grayscale features of the current image. (3) Neighborhood
size influences the segmentation significantly. Nodule edges
which resulted from 𝑟 = 1 are relatively fine, especially
where nodules are adhered to blood vessels or lung walls, as
shown in the 5th and 6th images; however oversegmentations

and wrong segmentations to tiny blood vessels are easy to
occur, as shown in the 4th and 5th images. Comparatively,
neighborhoods when 𝑟 = 2 are larger and the difference
between grayscales at edges and the neighborhood averages
increases. Parts of segmentation results are close to manual
segmentations, like the 2nd and 6th images. However, under-
segmentations occur sometimes, as shown in the 5th and 8th
images, and it is also possible to segment nodules that are
tightly adhered, as the 3rd image.

3.2. Executive Efficiencies of Algorithms. In order to further
demonstrate the performance of the algorithm proposed
by this paper, Table 5 shows average numbers of iterations
(maximum number of iterations 𝐿max = 100) and running
time (seconds) to obtain segmentation results in Figures 5–8
by the above five typical algorithms and our algorithm.

Table 5 indicates that when the FCM algorithm is
employed to segment images, the more the iterations are
needed to satisfy the convergence threshold value 𝜀, the
longer the program runs. Other algorithms (FCM S, EnFCM,
FGFCM, and FLICM) can converge with less iterations and
have higher efficiencies.The algorithmproposed in this paper
needs the least number of iterations and has the shortest run-
ning time, which is consistent with the observation described
in Section 2.3 that fuzzy memberships change considerably
after one iteration. In the meantime, prior knowledge plays a
role in supervising unlabeled or sparsely labeled data, which
speeds up the convergence of the objective function when
improving the effect of clustering.

3.3. Error Rate of Segmentation. Figure 10 demonstrates the
comparison between boundaries of all types of pulmonary
nodules by our algorithm 𝑒

𝑎
and those obtained by manual

segmentations of experts 𝑒
𝑚
. Figures 10(a), 10(b), 10(c), and

10(d) correspond to four types of pulmonary nodules in test
samples with different amounts. In each plot of Figure 10,
the ordinate represents number of pulmonary nodules and
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Figure 10: Histogram for comparison between our method and manual segmentation.

the abscissa represents rate of wrong segmentations (𝑒
𝑚

−

𝑒
𝑎
)/𝑒
𝑚
(%). A positive rate of wrong segmentations means

undersegmentation resulting from the algorithmwith respect
tomanual segmentations. Otherwise, a negative rate of wrong
segmentations means oversegmentation resulting from the
algorithm with respect to manual segmentations.

It is seen from Figure 10 that the algorithm performs the
worst for GGO nodules. The proportion of GGO nodules
whose rates of wrong segmentations lie in the interval
[−50%, +50%] is less than 70%.This proportion for any of the
other three types of nodules reaches 85%. It is also noticeable
that the rates of wrong segmentations for some nodules
approach −200 or 100.

4. Conclusions

In this paper, a fast and self-adaptive FCMpulmonary nodule
segmentation method combining clustering and classifica-
tion learning is proposed in order to obtain satisfactory
segmentations for blood vessel adhesion, pleura adhesion,
and GGO pulmonary nodules. The new method improves
the traditional FCM algorithm according to features of the
above pulmonary nodules. It updates fuzzy memberships
of central pixels based on grayscale similarities and spatial
similarities of neighborhoods, so that clustering centers can
be obtained quickly. The new method solves the problems
of traditional segmentation methods such as the reliance on
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the contrast between objectives and backgrounds, difficulty
to obtain weak edges of pulmonary nodules and attached
tissues, slow convergence of objective functions, and so forth.
In the meantime, according to the artificial labeled data, we
can realize the aided supervision for pulmonary nodule seg-
mentation missing classification information. Experimental
results indicate that the newly proposed algorithm can seg-
ment blood vessel adhesion, pleura adhesion, and GGO
pulmonary nodules fast and exactly and performs better than
traditional FCM, FCM S, EnFCM, FGFCM, and FLICM in
segmentation effects, executive efficiencies, and rates of error.

However, there are still some disadvantages about the new
method. For example, it does not work well for segmenting
tiny nodules (diameter < 1 cm) and segmentations of GGO
nodules and tightly adhered nodules are unstable. In future
research, we will solve these problems by extracting more
characteristics of pulmonary nodules and deep learning
method. We will also analyze the symptoms of benign and
malignant nodules comprehensively and provide real aided
diagnosis for early detection and screening of lung cancer.
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