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Large-scale genomics analyses have grown by leaps and bounds with the rapid advances in high throughput
DNA sequencing and synthesis techniques. Nuclear receptor signaling is ideally suited to genomics studies
because receptors function as ligand-regulated gene switches. This review will survey the strengths and
limitations of three major classes of high throughput techniques widely used in the nuclear receptor field to
characterize ligand-dependent gene regulation: expression profiling studies (microarrays, SAGE and related
techniques), chromatin immunoprecipitation followed by microarray (ChIP-on-chip), and genome-wide in
silico hormone response element screens. We will discuss each technique, and how each has contributed to
our understanding of nuclear receptor signaling.
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Introduction

Given that they function as gene switches, signaling by
nuclear receptors is ideally suited to analyses using
genomics approaches. The last few years have seen the
development of a number of techniques for analysis of
gene expression and regulation on chromosome-wide or
genome-wide scales. We will assess below the strengths
and limitations and the complementarity of three general
approaches for genome-wide identification of nuclear
receptor target genes; expression profiling, ChIP-on-chip
experiments, and in silico identification and mapping of
hormone response elements, and discuss how these
techniques have dramatically enhanced our
understanding of the mechanisms and physiological
consequences of nuclear receptor signaling.

Genome-wide expression profiling of
nuclear receptor-regulated gene
expression

Microarray analysis

Microarray technology was developed in the early 1990s
to monitor the expression of many genes simultaneously
[Schena et al., 1995]. Since then, the use of microarrays
has become a powerful tool and a standard technique for
analyzing the expression and regulation of thousands of
genes in parallel. A DNA microarray consists of a glass
slide containing thousands of DNA sequences fixed to
the slide in a grid, each of which represents a portion of
a gene. RNA samples under analysis are converted to
cDNAs, labeled with fluorescent dyes, and hybridized to
the array. Since the location and the sequence of the
probe fixed in the array is known, the identity and relative
abundance of sequences hybridized to the array can be
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determined [Sellheyer and Belbin, 2004]. There are two
different types of DNA microarrays based on the types
of probes used: cDNA microarrays and oligonucleotide
microarrays. cDNA microarrays use probes generated
by amplified cDNA (either from plasmids or amplified by
RT-PCR). These probes are fixed on silane slides by
covalently UV cross-linking the thymidine residues of the
cDNA with the amine groups in the silane slide [Cheung
et al., 1999]. Oligonucleotide microarrays use ~25mer
oligonucleotides complementary to a selected gene or
EST sequence [Lipshutz et al., 1999]. The arrays are
designed in silico and placed in the slide. Array densities
have increased rapid over the last few years, driven in
part by rapid increases in genomic sequence and EST
databases. The most recent human and mouse Affymetrix
oligonucleotide arrays contain 47,000 and 37,000 gene
sequences, respectively.

Applications of microarrays to analysis of
nuclear receptor signaling

Microarrays have revolutionized the nuclear receptor field
by providing us with snapshots of receptor signaling on
genome-wide or near genome-wide scales, and the
technique is by far the most heavily used in the field for
large-scale studies of gene regulation. Microarrays have
been used to dissect nuclear receptor functions both in
normal and disease states, in tissues and in cell models.
Examples include: numerous studies on nuclear receptor
gene regulation for identification of downstream signaling
pathways [Lee et al., 2003; Quinn et al., 2005; White,
2004]; comparative analyses of gene expression in
nuclear receptor null versus wild type mice for several
receptors, including VDR, PPAR, and ERR [Carrier et al.,
2004; Lee et al., 2002; Li et al., 2003]; profiling of
drug-induced gene expression through studies of
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CAR-mediated gene regulation in response to
phenobarbital in the liver [Ueda et al., 2002]; identification
of PXR-regulated genes encoding phase I, Il and llI
xenobiotic metabolizing enzymes [Rosenfeld et al., 2003];
and comparison in PXR-regulated drug metabolism in
intestine and liver to understand and predict drug-drug
interactions [Hartley et al., 2004]. Analysis of PPAR
activation in a high cholesterol context followed by
microarray studies revealed potential target genes of
triglyceride-lowering drugs [Frederiksen et al., 2004].
Microarray technology has also been used to understand
the genome-wide effects of environmental estrogens
[Moggs, 2005]. Nuclear receptor signaling has been
analyzed in such diverse disease states as allograft
rejection [Amuchastegui et al., 2005] and inflammatory
bowel disease [Langmann et al., 2004]. Finally, gene
expression patterns have been profiled by microarrays
in several models of hormone-dependent cancer for
examination of hormonal signal transduction and
identification of biomarkers [Choi and Pinto, 2005;
Hanekamp et al., 2003; Helms et al., 2005; Kristensen et
al., 2005; Lee et al., 2005; Quinn et al., 2005], and
classification of different cancer types and prediction of
patient survival [Glinsky et al., 2004; Haqq et al., 2005;
Helms et al., 2005; Yoshida et al., 2004].

While there are clearly a wide range of applications for
microarrays in studies of nuclear receptor signaling,
comparisons between different sets of experiments are
not straightforward. Handling the extensive amount of
information generated and sorting out the biologically
meaningful data from the background noise has been a
difficult challenge. MIAME (Minimum Information About
a Microarray Experiment [Brazma et al., 2001] focuses
on defining the content and structure of data presentation
rather than standardization techniques for data analysis.
Indeed, comparisons are complicated by differences in
sample labeling, hybridization conditions, and imaging
guantification techniques. Cut-offs of significant fold
regulation used in filtering microarray data, which are
often ‘noisy’ because of stochastic variations in gene
expression vary from one study to another. Early
experiments used microarrays with far fewer genes than
more recent analyses. Moreover, there are no standards
for determining statistically significant versus biologically
relevant ways to analyze and interpret raw microarray
data [van Bakel and Holstege, 2004].

Comparative analyses of microarray studies are further
complicated by the remarkably limited overlaps in nuclear
receptor target genes observed in different experimental
models. For example, the vitamin D field has taken full
advantage of microarray technology to identify a large
number of target genes. Besides its classical physiological
function in calcium homeostasis, the hormonal form of
vitamin D, 1,25-dihydroxyvitamin D3 (1,25D53), regulates
cellular proliferation, differentiation, apoptosis, survival,
and is a modulator of immune responses. Several studies
have shown that 1,25D; arrests cell proliferation at GO/G1
in a variety of models [Akutsu et al., 2001; Krishnan et
al., 2004; Lin et al., 2002; Lin and White, 2004; Swami et
al., 2003]. With such a plethora of biological effects,
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differences in the types of genes regulated are to be
expected between specialized cell types. Nonetheless,
apart from the cyp24 gene, which encodes the enzyme
regulating 1,25D5 catabolism, the lack of overlap of
regulated genes identified in different studies is striking
[Zhang et al., 2005]. Some differences are attributable to
differential regulation of target genes in different cells.
For example, the gene encoding the cyclin-dependent
kinase inhibitor p21"*“** is strongly induced by 1,25D4
in myelomonocytic cells [Liu et al., 1996; Munker et al.,
1996], but repressed in 1,25D5-sensitive squamous
carcinoma cells [Hershberger et al., 1999; Prudencio et
al., 2001]. However, while the specifics may vary,
comparisons of microarrays studies have revealed that
1,25D5 signaling regulates the expression of genes
controlling cell cycle arrest, DNA repair, markers of
cellular differentiation, calcium and redox homeostasis,
cell survival and immune responses [White, 2004]. The
relative lack of overlap of specific gene targets between
studies underlines the importance of carefully choosing
the cell model that will best represent the physiological
responses under investigation.
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Figure 1. Generation of tag-based libraries by SAGE and CAGE

Schematic representations of SAGE (left) and CAGE (right) techniques
for generation of tagged expression libraries. In SAGE, mRNA sequences
are captured on oligo(dT) magnetic beads (yellow spheres). In CAGE, 5’
ends of MRNAs are extracted from total or polyA+ RNA using the
CAP-trapper approach. See [Harbers, 2005] and [Porter, 2006] for details.

SAGE and related techniques

SAGE (serial analysis of gene expression), which was
developed in the mid-1990’s [Velculescu et al., 1995], is
a technique for gene expression profiling that entails the
generation, concatemerization and sequencing of
so-called short diagnostic sequence tags. Tags are
generated in part by cleavage of cDNA sequences with
class Il restriction enzymes such as Nlalll, which
recognizes frequently occurring CATG recognition
sequences and leave 4bp overhangs (Figure 1). SAGE
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and its variant longSAGE [Saha et al., 2002] have been
widely used to catalogue gene expression patterns in a
number of tissues. Similar to microarray analyses, SAGE
has been used to identify hormone-regulated genes in a
variety of experimental models [Datson et al., 2001,
Inadera et al., 2000; Robert-Nicoud et al., 2001; Seth et
al., 2002], as well for comparative studies of gene
expression profiles in hormone-dependent and
-independent cancers [Abba et al., 2005; Enerback et al.,
2002].

Although technically quite distinct, the use of SAGE
carries some of the same caveats associated with
microarray studies. As with microarrays, comparisons
between SAGE studies of hormone-regulated gene
expression in different tissues or cell types will likely
reveal relatively limited overlaps in gene expression
profiles. Comparisons between different SAGE studies
may be complicated by the number of different statistical
methods used to analyze expression patterns in SAGE
libraries [Ruijter et al., 2002], which, like microarrays,
must deal with ‘noise’ associated with stochastic
variations in gene expression. It should also be pointed
out that use of SAGE is also technically considerably
more demanding than microarrays, and unlike microarray
studies which are readily performed in triplicate or more,
comparative SAGE analyses are usually performed
between single libraries.

Apart from its relative technical complexity SAGE also
carries certain inherent drawbacks. Transcripts lacking
class Il restriction sites used to generate tags will not be
detected. In addition, some tags may identify several
genomic locations, and the technigue can generate
artifactual ‘orphan’ tags via a number of routes [Harbers
and Carninci, 2005]. On the other hand, SAGE does have
distinct advantages over microarrays [Porter et al., 2006].
Generation of SAGE libraries requires no a priori
knowledge mRNA sequences of the organism under
study.

As indicated above, transcripts identified microarray
analyses are limited by the number of sequences on the
chip, which is in part limited by knowledge of the
transcriptome under study. While this is becoming less
limiting for human studies, it is more problematic for
analyses of other model organisms with less well
characterized transcriptomes. Moreover, multiple
transcripts from the same gene can be identified by
SAGE, something that is only possible with specialized
microarrays bearing sequences of well-characterized
genes [Porter et al., 2006].

Along with ‘classical’ SAGE, several other tag-based
methods have been developed to profile gene expression
[Harbers and Carninci, 2005]. These include CAGE
(Figure 1), which generates tags from the 5’ ends of
transcripts by trapping the mRNA CAPs of full length
transcripts. In CAGE, tags are generated by cleavage
with Mme1, which is introduced in a ligated linker
sequence, thus circumventing the problem of elimination

www.nursa.org

Genome-wide approaches for identifying NR target genes

of messages that lack specific restriction enzyme
recognition sequences.

Another offshoot of SAGE of interest to nuclear receptor
researchers is the SACO (serial analysis of chromatin
occupancy) technique [Impey et al., 2004]. This technique
couples chromatin immunoprecipitation using an antibody
against a transcription factor (in the case of Impey et al,
against CREB) with longSAGE to generate so-called
genome signature tags (GSTs). Many of the sequences
identified by multiple GSTs in the Impey et al study lay
adjacent to known transcription start sites or CpG islands.
As SACO can be used to identify potential transcription
factor binding sites in addition to target genes, it bears
some relation to ChIP-on-chip studies, which is discussed
below.

ChlIP-on-chip analysis of nuclear
receptor binding sites
Overview of the technique

ChIP-on-chip or genome-wide localization analysis was
developed a few years ago [Ren et al., 2000] to identify
transcription factor target genes on a chromosome- or
genome-wide scale. The technique is a combination of
chromatin immunoprecipitation followed by microarray
analysis. Briefly, the transcriptional regulator is
cross-linked in vivo to DNA (chromatin), and the DNA is
sheared to ~300-500bp fragments. The transcription factor
is immunoprecipitated, and protein complexes are
de-crosslinked. The associated DNA is purified, converted
into fluorescent-labeled probe and hybridized to a
microarray. The advantage of ChIP-on-chip technique is
clear; after immunoprecipitation the nuclear receptor can
be unambiguously assigned to a specific chromosomal
region. There are four types of arrays [Blais and Dynlacht,
2005] used for ChlP-on-chip analysis: proximal promoter
arrays, where about ~1 kb PCR products encompassing
transcription start sites are used as probes; arrays
composed of CpG islands amplified by PCR; large
promoter arrays, which consist of tiling oligonucleotides
of promoter sequences extending up to several kb
upstream of the transcription start site; and, finally, the
genome tiling array, in which nonrepetive sequence from
entire chromosomes is reconstituted from
oligonucleotides. When chromosomal sequence is
densely covered, very high resolution can be achieved
with genome tiling microarrays [Blais and Dynlacht, 2005].

ChlIP-on-chip analysis of signaling by estrogen
receptor a

Two recent studies have used ChlIP-on-chip approaches
to identify ERa binding sites in estrogen-dependent
MCF-7 breast cancer cells. Both papers made substantial
contributions to understanding estrogen-dependent
signaling. However, the two studies are noteworthy for
both their similarities and their differences. Both analyzed
ERa binding in MCF-7 cells treated for 45 min. with 100
nM estradiol. One study used an Affymetrix tiling array
for chromosomes 21/22 [Carroll et al., 2005], and the
other used a promoter-specific array composed of 1kb
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fragments ranging from -800 to +200 bp relative to known
transcription start sites [Laganiere et al., 2005]. One
advantage of chromosomal tiling arrays is their design,
and the fact that the results obtained are not dependent
on the reliability of previous mapping studies to identify
promoter regions. Indeed, Carroll et al [Carroll et al., 2005]
cloned by RACE sequences lying several dozen kb
upstream of the known 5’ end of the gene encoding
RIP140 after identifying far upstream EREs on a tiling
array. Significantly, in addition to identifying numerous
ERa binding sites in vivo, both studies provided evidence
that the forkhead protein FoxAl contributes to
estrogen-dependent regulation of a number of ERa target
genes. Carroll et al [Carroll et al., 2005] reached this
conclusion after finding an enrichment of FoxA1l binding
sites in the vicinity of EREs characterized on the array.

As ChIP-on-chip approaches use microarrays, they carry
the same limitations as other microarray studies. Results
will be cell-model and -context specific, with the likelihood
of relatively limited overlap between studies performed
with different experimental models. Moreover, the number
and identity of binding sites will depend on those present
on the array. Notably, with the exception of trefoil factor
1 (TFF-1) there was no overlap between the two analyses
of ERa binding sites in the two studies cited above, in
spite of the use of the same estradiol-treated cell model.
Although the microarrays used were different
(chromosome 21/22 tiling arrays vs. a short
promoter-specific array), there were genes located on
chromosomes 21 and 22 identified on the
promoter-specific microarray that were not picked up on
the tiling array [Carroll et al., 2005; Laganiere et al., 2005].
The study by Carroll et al [Carroll et al., 2005] is
remarkable for having identified binding sites located
>100kb from the 5’ ends of estrogen target genes.
Function of a distal site in the gene encoding RIP140 as
an enhancer was verified by chromatin conformation
capture assay. Such sites could not have been identified
by Laganiere et al [Laganiere et al., 2005] because of the
use of proximal promoter sequences.

A high percentage of binding sites identified in both
studies corresponded to consensus palindromic EREs
[Carroll et al., 2005; Laganiere et al., 2005]. Although the
palindromic ERE in the TFF-1 gene contains two non
consensus substitutions, it represents a high affinity
binding site [Bourdeau et al., 2004]. It is not clear whether
the above studies identified only the most high affinity
binding sites, or whether the majority of bona fide EREs
in vivo are (near) consensus palindromic elements.
Several other studies based largely on reporter gene
assays of proximal promoter regions have shown that
estrogen responsive promoter elements can be composed
of ERE half-sites in association with binding sites for other
transcription factors, or that ERa can associate with
regulatory regions indirectly by interaction with other
DNA-bound proteins [Sanchez et al., 2002]. Moreover, it
is not clear whether the discrepancies in ERa binding
sites on chromosomes 21 and 22 of Carroll et al [Carroll
et al., 2005] and Laganiere et al [Laganiere et al., 2005]
can be attributed to differences in filtering algorithms used
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to eliminate false positives or other differences in
experimental protocols (such as different
immunoprecipitating antibodies).

In silico hormone response element
analyses
Overview of the technique

For the purpose of this review, we will refer to in silico
binding site analysis as the computational techniques
used to map consensus or near consensus hormone
response elements on a genome wide scale with the aim
of identifying potential target genes of the nuclear receptor
of interest (as opposed to analysis of a particular promoter
for different binding sites to identify regulatory factors).
Such approaches have come to the fore with the
availability of an increasing number of genome
sequences. They have the advantage that they identify
response elements at a genome-wide level, whereas
microarray or ChlP-on-chip approaches are limited by
the number of genes screened and are highly cell context
specific. Algorithms are designed with specific “cut-offs”
that limit sequences screened to defined distances from
known 5’ ends of genes. These approaches are powerful
and have identified numerous response elements in
nuclear receptor target genes, as well as novel target
genes (see below). However, the mapping of response
elements is limited by the reliability of data used to identify
the 5’ end(s) of a given gene. Transcription start sites will
be thus better defined for genes whose mRNAs have
been characterized using techniques to define 5’ ends
(e.g. 5" RACE, RNase protection). The approach is thus
less reliable for genes whose existence is inferred from
sequence analysis only.

In silico screening for hormone response
elements

The nuclear receptor field has used this type of mapping
approach to identify hormone response elements for ERs
[Bourdeau et al., 2004; Jin et al., 2004; Jin et al., 2005;
Kamalakaran et al., 2005; Tang et al., 2004], the AR
[Horie-Inoue et al., 2004; Masuda et al., 2005], and the
VDR [Wang et al., 2005]. One issue that must be
addressed in setting up such a screen for response
elements is how to define a response element consensus.
The most rigorous definition of a consensus estrogen
response element (ERE) is a palindromic sequence of
PuGGTCA half-sites separated by 3 bp [Sanchez et al.,
2002]. However, different in silico studies defined EREs
slightly differently. Most used GGTCA as a consensus
sequence half-site [Jin et al., 2004; Kamalakaran et al.,
2005; Tang et al., 2004], one defined it as PUGGTC [Lin
et al., 2004], and only one study used PUGGTCA
[Bourdeau et al., 2004].

The study by Bourdeau et al [Bourdeau et al., 2004]
screened the human and mouse genomes from -10 to
+5kb of 5’ ends for consensus and near consensus EREs
based on PUuGGTCA motifs and identified conserved and
non-conserved elements, often in multiple occurrences,
in more than 230 estrogen-regulated human genes
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previously identified from microarray studies. Significantly,
the screen identified distal consensus or near-consensus
EREs in genes with previously characterized more
degenerate promoter-proximal elements, suggesting that
the latter may not be of primary importance in driving the
hormonal response. The study showed that a number of
distal EREs represented functional binding sites in vivo
by ChIP assay. A similar screen for VDRES assigned
response elements to several hundred 1,25D; target
genes identified from microarrays [Wang et al., 2005], as
well as to responsive genes not picked up on arrays. For
example, consensus VDREs were found in two genes
encoding antimicrobial peptides, defB4 and camp, which
led to the discovery that 1,25D5 is a direct regulator of
antimicrobial innate immunity [Wang et al., 2004; Wang
et al., 2005].

Another issue to be addressed in setting up in silico
screens concerns which non-consensus nucleotide
substitutions to include in response element sequences
selected for in silico screening. Approaches based on
nucleotide frequency matrices constructed via compilation
of the relatively small number of known natural response
elements can identify many variant sequences [Bajic et
al., 2003; Podvinec et al., 2002]. For example, a number
of putative VDRESs containing multiple non-consensus
nucleotides have been identified in vitamin D target genes
[Toell et al., 2000]. Many of these sequences were
identified in transient expression experiments with
overexpressed VDR and reporter plasmids containing
limited proximal promoter fragments. While matrix-based
algorithms may appropriate for screening defined
stretches of promoter regions, screening for numerous
highly degenerate elements is impractical as it is difficult
to define which elements will be functional.

Systematic mutagenesis coupled to electrophoretic
mobility shift assays with response element-containing
oligonucleotides could be used to identify sequences that
bind receptors at levels greater than an arbitrary cut-off
(e.g. 25% of a consensus control element). These
approaches are reliable for identifying high affinity binding
sites in vitro. However, Wang et al [Wang et al., 2005]
found that single nucleotide substitutions that disrupted
binding in vitro were present in VDREs that functioned in
vivo, as determined by positive results of ChlIP assays in
many instances, and response element function in
reporter gene assays in another. It is likely that receptor
affinity for a given response element sequence differs
between naked and nucleosomal DNA. Alternatively,
affinity of a receptor for a given binding site in vivo may
be enhanced by association with other transcription
factors bound to adjacent sites.

It should also be noted that, apart from the problems
associated with identifying the sequences of all potential
hormone response elements that are functional in vivo,
in silico screens are limited by the fact that they focus on
classical response element-mediated pathways of nuclear
receptor regulated gene expression. However, it is now
well established that nuclear receptors regulate gene
expression by diverse mechanisms [Dostert and Heinzel,
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2004; Sanchez et al., 2002], including recognition of
non-canonical response elements in vivo, activation or
repression of gene expression through interaction with
other classes of transcription factors, and various
non-genomic mechanisms.

Another limitation of in silico response element screens
is the high rates of identification of false positives; i.e.,
nonregulated genes containing response element
sequences. However, these are not easy to identify
reliably. Lack of regulation of a gene in a given cell type
is not sufficient to eliminate it as a potential target.
Although many receptors are widely expressed, many of
their target genes are regulated in a cell-specific manner.
For example, promoters of the camp and defB4
antimicrobial peptide genes contain proximal, consensus
VDRESs [Wang et al., 2004]. Whereas expression of both
defB4 and camp was induced by vitamin D in cells of
epithelial origin, only camp expression was regulated in
nonepithelial cells such as monocytes and neutrophils.
An analysis of defB4 regulation in monocytes, would
therefore have concluded that the gene represented a
false positive. In addition, expression of several nuclear
receptor target genes is only modestly affected by ligand
treatment. Because expression of many genes is
controlled by multiple signal transduction pathways, the
effect of ligand may be amplified in the presence of other
transducers. These effects could thus be missed if target
gene expression is analyzed in the presence of ligand
only.

Data generated from an in silico screen should be
complemented by data from other types of screening
techniques, bearing in mind the limitations of each
technique. Experimental approaches to verify which sites
are functional could include ChIP assays, RT/PCR,
microarrays, ChlP-on-chip, with the caveat that these
techniques will detect genes regulated in a given
tissue/cell type, and should be interpreted in that relatively
narrow context. The number of in silico hits, including
consensus sequences, will generally far out number the
number of elements detected in a ChlIP-on-chip analysis,
and together the two techniques would provide an
indication of which regions of chromatin are in a
transcriptionally ‘open’ state.

Support for the potential functionality of a response
element identified in an in silico screen can be also
provided by phylogenetic analysis and demonstration of
conservation of element sequence (and location) broadly
across species. Certainly, demonstration of broad
conservation of a given element is strong evidence for
function. However, lack of conservation is not necessarily
evidence against function. For example, neither the
regulation by 1,25D4, nor the consensus VDRE in the
human camp gene are conserved in rodents, the element
having been transposed into the gene on an Alu repeat
sometime during primate evolution [Gombart et al., 2005;
Wang et al., 2004], emphasizing the importance of
performing phylogenetic screens as broadly as possible,
and not just in species of experimental interest.
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Concluding remarks

The rapid evolution of techniques for large-scale
genomics studies, such as microarrays and tag-based
expression screens, ChIP-on-chip, and in silico response
element screens, has dramatically advanced our
understanding of global gene regulation by nuclear
receptors. We have moved from identification of target
genes on a gene-by-gene basis to identification of several
tens or hundreds of target genes in a single experiment.
These approaches have uncovered new physiological
actions of nuclear receptors and have revealed the
pleiotropic nature of nuclear receptor signaling. However,
each technique has its intrinsic strengths and limitations,
and different studies are characterized by a remarkably
limited overlap in experimental findings. Comparisons of
results obtained for signaling by a given receptor using
the same technique or across techniques are complicated
by the use of different cell/tissue models, platforms, and/or
different experimental or bioinformatic protocols. While
standardization of protocols (both experimental and
bioinformatic) for each technique will minimize to some
degree the apparent discrepancies between experiments,
the wide variability in experimental results underlines the
importance of choosing the appropriate cell/tissue model
for analysis of genomic responses underlying the
physiological model under scrutiny. Ideally, any rigorous
genome-wide analysis of hormone-regulated gene
expression in a given experimental system would exploit
multiple techniques to generate the most complete and
extensively validated data set possible.
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