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	 Background:	 The purpose of this study was to explore the immune mechanism of dendritic cells (DCs) against measles vi-
rus (MV), and to identify potential biomarkers to improve measles prevention and treatment.

	 Material/Methods:	 The gene expression profile of GSE980, which comprised 10 DC samples from human blood infected with MV 
(RNA was isolated at 3, 6, 12, and 24 h post-infection) and 4 normal DC control samples, was obtained from 
the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between the MV-infected DC 
samples and the control samples were screened using Genevestigator software. Gene ontology (GO) and Kyoto 
encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed using GenCLip 2.0 
and STRING 10.5 software. The protein–protein interaction (PPI) network was established using Cytoscape 3.4.0.

	 Results:	 The gene expression profiles of MV-infected DCs were obviously changed. Twenty-six common DEGs (0.9%, MV-
infected DCs vs. normal DCs) were identified at 4 different time points, including 14 down-regulated and 12 
up-regulated genes (P=0.001). GO analysis showed that DEGs were significantly enriched in defense response 
to virus, type I interferon signaling pathway, et al. ISG15 and CXCL10 were the key genes in the PPI network of 
the DEGs, and may interact directly with the type I interferon signaling and defense response to virus signaling.

	 Conclusions:	 The DEGs increased gradually with the duration of MV infection. The type I interferon signaling pathway and 
the defense response to viral processes can be activated against MV by ISG15 and CXCL10 in DCs. These may 
provide novel targets for the treatment of MV.
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Background

Measles is a highly contagious acute respiratory tract infec-
tion caused by the measles virus (MV). Clinical manifestations 
include fever and rash, with encephalitis, bronchopneumonia 
and myocarditis among the more severe complications that 
can lead to death [1–3]. In 2012, the World Health Organization 
(WHO) launched the Measles and Rubella Global Strategic 
Plan. This aimed to eradicate both infectious diseases from 
at least 5 of the 6 WHO regions by 2020 [4]. At present, only 
the Americas have eliminated measles successfully, and the 
task of eradicating measles worldwide remains serious [5,6]. 
Improved understanding of the mechanisms underpinning 
MV infection may help resolve this problem. Early infection 
with the MV involves alveolar macrophages (AMs) and den-
dritic cells (DCs) as targets [7,8]. MV is inhaled via the respi-
ratory tract to infect the local mature AMs and DCs directly. 
These infected cells then transport the virus to adjacent lym-
phatic vessels and subsequently to the draining lymph nodes. 
Here, MV infects monocytes, and T and B lymphocytes, and 
begins replicating and proliferating to cause primary viremia. 
MV proliferation results in spread to the tonsils, thymus and 
other secondary lymphoid organs, and then onto other sites 
such as the kidneys, gastrointestinal tract, liver and respiratory 
tract [9–11]. In the process of MV infection, the host usually 
mounts a strong immune response. Viral perception and activa-
tion of type I interferon exposure typically follows stimulation 
of 2 intracellular signal transduction pathways being the clas-
sical and the plasmacytoid dendritic cells pathways [12,13]. To 
date, there has been no investigation of the molecular mech-
anism for immature DC infection by MV. Therefore, the aim 
of this study was to explore the molecular basis for DC infec-
tion with MV using bioinformatics.

The microarray dataset, GSE980, was obtained from the Gene 
Expression Omnibus (GEO) database of the National Center 
for Biotechnology Information (NCBI; MD, USA). It contained 
10 DC samples from human peripheral blood infected with 
MV (RNA was isolated at 3, 6, 12, and 24 h post-infection) and 
4 normal DC control samples. This work comprised expression 
profile, differentially expressed gene (DEG), functional module, 
gene ontology (GO), Kyoto of encyclopedia genes and genomic 
(KEGG) pathway enrichment, and protein-protein interaction 
(PPI) network analyses.

Material and Methods

Data sources

We searched for human gene chip expression data related to 
the “measles virus” or “MV” in the GEO database (NCBI, MD, 
USA). We obtained the gene chip information dataset, GSE980, 

submitted by Zilliox MJ, Parmigiani G and Griffin DE in January 
2004 and updated in June 2016. The dataset was obtained from 
Affymetrix Human Genome U95 Version 2 Array assay platform.

Experimental design and mRNA extraction

Human CD14+ monocytes were first isolated from human pe-
ripheral blood using standard methods, and grown in colony 
stimulating factor 2 (GMCSF) and interleukin 4 (IL-4) for 6 days 
before infection with MV (Chicago-1 strain). After infection for 
3, 6, 12 and 24 h [14], mRNA was extracted from macrophages 
for subsequent analysis, using an mRNA extraction kit (Thermo 
Fisher Scientific, America).

GSE980 contained data on the gene expression profiles of 
CD14+ monocytes from 14 human subjects. These comprised 
CD14+ monocytes without interventions for use as the con-
trol group (n=4), and CD14+ monocytes infected with MV for 
3 h (n=2), 6 h (n=3), 12 h (n=2) and 24 h (n=3). The dataset 
contained expression information from 12625 genes detected 
by microarray.

Data preprocessing and differentially expressed gene 
screening

After downloading the GSE980 dataset, R software (https://
www.r-project.org/) and Genevestigator (https://genevestiga-
tor.com/) were used to conduct the normalization (μ=0, s=1) 
to improve data comparability and reliability. The 4 indepen-
dent MV-infected CD14+ mononuclear cells groups and the 
control group were tested using the unpaired Student’s t-test, 
and the DEGs were screened out (P<0.05, false discovery rate 
<0.05, fold change >1.2).

GO and KEGG enrichment analysis

We considered that the common DEGs at all 4 time points 
would be a sensitive and stable biomarker for CD14+ cells in-
fected with MV, and would play an important role in this pro-
cess. Therefore, we selected the common DEGs from the CD14+ 
mononuclear cells at the 4 time points and analyzed their bi-
ological functions using human gene functional analysis soft-
ware GenCliP 2 (http://ci.smu.edu.cn/GenCLiP2/analysis.php) 
and Cytoscape 3.5.1 platform. The corresponding analysis pa-
rameters were then established to obtain the biological func-
tions and signal pathways enriched among the DEGs.

Establishment of the PPI network

The name of the protein corresponding to the common DEGs 
at 4 time points was uploaded to STRING 10.0 (http://string-
db.org/) and online software (https://www.intomics.com/inbio/
map/#hom) to establish the PPI network. Parameter values 
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such as reliability and attachment nodes were adjusted and 
the appropriate PPI network of the DEGs obtained. The core 
protein of CD14+ mononuclear cells against MV was screened 
according to the PPI nodes.

Construction of the gene-pathway interaction network

To further explore the potential role of the above core pro-
tein, the gene-pathway interaction network for the common 
DEGs was established. This was done using the GLUGO plat-
form of Cytoscape software (http://cytoscape.software.inform-
er.com/) to investigate the interactions among the core pro-
tein and pathways in CD14+ against MV.

Results

Data preprocessing and stability

The gene dataset, GSE980, was subjected to standard normal-
ization treatment using R software. After preprocessing, the 
median value of the sample data was essentially the same as 
the mean value, which indicated normality. The data showed 
good stability and ensured that subsequent analyses were re-
liable (Figure 1).

DEG screening

After infection of CD14+ monocytes with MV for 3 h, 31 genes 
were significantly changed (18 down-regulated, 13 up-
regulated) compared with the controls. After MV infection of 
CD14+ monocytes for 6 h, the expression of 565 genes also 
had obvious changes (294 down-regulated, 271 up-regulated) 
compared with the control group. After 12 and 24 h, there were 
1114 (726 down-regulated, 388 up-regulated) and 1505 (956 
down-regulated, up to 549 up-regulated) genes, respectively, 

that were significantly altered in MV-infected CD14+ mono-
cytes compared with controls (Figure 2).

To obtain the most sensitive and stable DEGs of CD14+ mono-
cyte against MV, we used a Venn diagram to obtain the 24 
most common DEGs at the 4 time points (Figure 3). The 26 
common DEGs are shown in Supplementary Table 1.

GO and KEGG enrichment

The results of GO functional enrichment analysis of 26 com-
mon DEGs are shown in Figure 4 and in Supplementary Table 2. 
The functional enrichment analysis was divided into 3 cate-
gories: biological processes, molecular functions and cellular 
components. Figure 4 shows 5 molecular functions, 1 cellular 
component, and 26 biological processes were involved in these 
26 common DEGs. This shows that the main function of the 
DEGs in the process of CD14+ monocytes against MV is through 
the interferon I signaling and the antiviral reaction pathways.

PPI (protein-protein interaction) network of DEGs

The PPI network of the 26 common DEGs was established and 
showed that the topology network contained 3 typical sub-net-
works, mainly related to biological functions such as protein 
synthesis (Figure 5). Both ISG15 and CXCL10 proteins inter-
acted with many other proteins. Deletion of these 2 proteins 
would result in the entire network structure being obviously 
scattered, indicating that ISG15 and CXCL10 were important 
link nodes in the most typical sub-network. The CXCL10 clus-
ter was related to chemokine and interferon induction. The 
ISG15 cluster was related to the antiviral function of the in-
terferon signaling pathway.

12

10

8

6

4

2

95%
90%
75%

25%
10%
5%

Median

Agent

Time

Untreated

0 h

GS
M

15
45

7

GS
M

15
45

8

GS
M

15
45

9

GS
M

15
46

0

GS
M

15
46

1

GS
M

15
46

2

GS
M

15
46

3

GS
M

15
46

4

GS
M

15
46

5

GS
M

15
46

7

GS
M

15
46

8

GS
M

15
46

9

GS
M

15
47

0

GS
M

15
47

1

Measles virus

3 h 6 h 12 h 24 h

Lo
g 2(e

xp
re

ss
io

n v
alu

e)

Figure 1. �Distribution features of the expression 
data after sample normalization. (After 
preprocessing, the median value of the 
sample data was essentially the same 
as the mean value, which indicated 
normality, which showed good stability 
and ensured that subsequent analyses 
were reliable).
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Gene-pathway network

To further explore the specific pathways of ISG15 and CXCL10 
protein involvement in the antiviral process of DCs, we estab-
lished a gene-pathway network (Figure 6). As shown in Figure 6, 
the change in expression of ISG15 could directly activate the 
type I interferon signaling pathway, and CXCL10 could directly 
activate the defense response to the virus signaling pathway.

Expression of key genes at different time points of DC 
antiviral activity

The changes in expression of ISG15 and CXCL10 at different 
antiviral time points are shown in Figure 7. Both genes showed 
a significant increase after CD14+ cells were infected with MV, 
which suggested that elevated expression of the 2 key genes 
might activate the critical pathway in CD14+ cells against MV 
(A: * vs. 0 h: P<0.05, # vs. 3 h: P<0.05; B: * vs. 0 h: P<0.05).
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Figure 2. �DEGs between MV‑infected CD14+ monocytes and controls at different time points. After infection of CD14+ monocytes with 
MV for 3 h, 18 DEGs were down-regulated and 13 DEGs up-regulated comparing with the controls; At 6 h, 294 were down-
regulated and 271 were up-regulated comparing with the control group. After 12 and 24 h, there were 1114 (726 down-
regulated, 388 up-regulated) and 1505 (956 down-regulated, up to 549 up-regulated) genes, respectively. The red dots 
represent up-regulated DEGs and the green dots represent down-regulated DEGs comparing with the control group.
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We further explored the co-expression of ISG15 and CXCL10 
in human tissue samples using STRING. The results showed 
that ISG15 and CXCL10 were co-expressed in humans (in-
cluding CD14+), suggesting that these 2 genes have an inter-
active relationship in the fight of CD14+ cells against MV in-
fection (Figure 8).

Discussion

In the past, measles was a typical acute respiratory tract dis-
ease that was very prevalent in children and highly contagious. 
The widespread uptake of the measles vaccine has led to a 
significant reduction in the incidence of this disease. However, 
in some geographical areas, especially where vaccines are not 
widely available, the incidence of measles remains high and 
poses significant threat to child health [15–17]. To actively pre-
vent and treat measles, we should actively explore its patho-
genesis to assist in the control of this disease.
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between MV‑infected CD14+ monocytes and controls 
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Figure 4. �Results of GO and KEGG enrichment analysis for the 
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component, and 26 biological processes were involved 
in these 26 common DEGs.
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CD14, the lipopolysaccharide (LPS) receptor, was initially a leu-
kocyte differentiation antigen that existed on the surface of 
monocytes and macrophages. Experimental work involving the 
addition of LPS to the supernatant of endothelial cells cultured 
in vitro showed obvious endothelial cell activation with the ad-
dition of normal human serum (including sCD14) or recombi-
nant human sCD14. This involved induction of the endothe-
lial lymphocyte adhesion molecules, IL-1 and IL-6, along with 
other cytokines. In contrast, addition of anti-CD14 antibodies 
could inhibit activation of these cytokines [18–20]. Therefore, 
under the action of LPS, CD14 could mediate the cell reaction, 
and play an anti-inflammatory and antiviral role.

This study systematically analyzed the chip dataset, GSE980, 
to explore the mechanism of CD14 cells undergoing antiviral 

activity. Our study showed that compared with normal CD14 
cells, the gene expression profiles of CD14 cells infected with 
MV were significantly changed, and the number of DEGs was 
significantly increased with longer infection times. Further anal-
ysis showed that the initial effects of CD14 cells against MV 
infection involved activation of the interferon I signaling and 
the antiviral response pathways. Our PPI analysis showed that 
the activation of these pathways was accomplished mainly by 
ISG15 and CXCL10. Our establishment of the gene-pathway in-
teraction network further confirmed these findings.

The type I interferon pathway is a major component of natural 
immunity, and plays an important role in the process of control-
ling and scavenging pathogens. IRF3 is a key transcription fac-
tor of the interferon I pathway. The currently recognized major 
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Figure 6. �Gene-pathway network of 26 DEGs. 
The change in expression of ISG15 
could directly activate the type I 
interferon signaling pathway, and 
CXCL10 could directly activate 
the defense response to the virus 
signaling pathway.
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Figure 7. �ISG15 and CXCL10 expression at different time points after CD14+ cell infection with MV virus. ISG15 and CXCL10 showed 
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might activate the critical pathway in CD14+ cells against MV (A: * vs. 0 h: P<0.05, # vs. 3 h: P<0.05; B: * vs. 0 h: P<0.05).
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mechanism for negative regulation of IRF3 is degradation of 
IRF3 protein caused by viral infection [21–23]. Other studies 
have reported that ISG15 enhanced the congenital antiviral 
response by inhibiting IRF3 degradation [24,25]. Experiments 
conducted in vitro showed that the signaling pathway involved 
in IRF3 could effectively activate and regulate the expression 
of the promoter region of CXCL10. The result being activation 
of the antiviral effect of the type I interferon pathway [26,27]. 
ISG15 is a 17 kDa protein secreted and encoded by the ISG15 
gene in humans. ISG15 has antiviral activity that is tightly reg-
ulated by specific signaling pathways with a role in innate im-
munity. ISG15 was identified as an interferon stimulated gene 
(ISG) since its expression was induced in response to type I in-
terferon or LPS treatment [28].

In this study, gene expression profiles in the infection and 
control groups were distinctly different in the initial 24 h, and 
the immune mechanism of the DCs against MV varied with in-
fection time. The expression of the type I interferon signaling 
pathway along with the other key genes (ISG15 and CXCL10) 
are integral in the immune response’s fight against MV of the 
DCs. As such, they provide a reference for the diagnosis and 
treatment of MV infection.
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Conclusions

In conclusion, our findings explained, from a bioinformatics 
perspective, the potential immune mechanism of DCs in MV 
infection within the first 24 hours of infection, and suggested 
that key signaling pathways (such as type I interferon signaling 
pathway) and key genes (ISG15 and CXCL10) played an impor-
tant role in the anti-infective process. Similar reports are still 
rare. These potential biomarkers will also enhance the early 
diagnosis and treatment of MV infection. Unfortunately, inde-
pendent validation experiments were not carried out in this 
study. Therefore, more rigorous experiments will be designed 
and conducted to verify the above findings in our future studies.
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Supplementary Tables

Pathway ID Pathway description
Count in 
gene set

False discovery 
rate

Founctional category

GO:0051607 Defense response to virus 11 6.51E-13 Biological process

GO:0060337 Type I interferon signaling pathway 7 6.47E-09 Biological process

GO:0071357 Cellular response to type I interferon 7 6.47E-09 Biological process

GO:0019221 Cytokine-mediated signaling pathway 10 4.41E-08 Biological process

GO:0045071 Negative regulation of viral genome replication 5 5.28E-06 Biological process

GO:0051707 Response to other organism 10 6.81E-06 Biological process

GO:0071345 Cellular response to cytokine stimulus 9 1.24E-05 Biological process

GO:0006955 Immune response 12 2.01E-05 Biological process

GO:0006270 DNA replication initiation 4 4.15E-05 Biological process

GO:0006271 DNA strand elongation involved in DNA replication 4 6.78E-05 Biological process

GO:0006268 DNA unwinding involved in DNA replication 3 0.000172 Biological process

GO:0032508 DNA duplex unwinding 4 0.000402 Biological process

GO:0006950 Response to stress 15 0.00122 Biological process

GO:0007166 Cell surface receptor signaling pathway 12 0.00122 Biological process

GO:0006952 Defense response 10 0.00198 Biological process

GO:0051704 Multi-organism process 12 0.00235 Biological process

GO:0071310 Cellular response to organic substance 11 0.00275 Biological process

Supplementary Table 2. The results of GO functional enrichment analysis of 26 common DEGs.
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