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BACKGROUND: Atrial fibrillation (AF) is associated with substantial 
morbidity, especially when it goes undetected. If new-onset AF could 
be predicted, targeted screening could be used to find it early. We 
hypothesized that a deep neural network could predict new-onset AF 
from the resting 12-lead ECG and that this prediction may help identify 
those at risk of AF-related stroke.

METHODS: We used 1.6 M resting 12-lead digital ECG traces from 
430 000 patients collected from 1984 to 2019. Deep neural networks 
were trained to predict new-onset AF (within 1 year) in patients without 
a history of AF. Performance was evaluated using areas under the receiver 
operating characteristic curve and precision-recall curve. We performed 
an incidence-free survival analysis for a period of 30 years following the 
ECG stratified by model predictions. To simulate real-world deployment, 
we trained a separate model using all ECGs before 2010 and evaluated 
model performance on a test set of ECGs from 2010 through 2014 that 
were linked to our stroke registry. We identified the patients at risk for AF-
related stroke among those predicted to be high risk for AF by the model 
at different prediction thresholds.

RESULTS: The area under the receiver operating characteristic curve and 
area under the precision-recall curve were 0.85 and 0.22, respectively, for 
predicting new-onset AF within 1 year of an ECG. The hazard ratio for the 
predicted high- versus low-risk groups over a 30-year span was 7.2 (95% 
CI, 6.9–7.6). In a simulated deployment scenario, the model predicted 
new-onset AF at 1 year with a sensitivity of 69% and specificity of 81%. 
The number needed to screen to find 1 new case of AF was 9. This model 
predicted patients at high risk for new-onset AF in 62% of all patients 
who experienced an AF-related stroke within 3 years of the index ECG.

CONCLUSIONS: Deep learning can predict new-onset AF from the 12-
lead ECG in patients with no previous history of AF. This prediction may 
help identify patients at risk for AF-related strokes.
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Atrial fibrillation (AF) is a common cardiac rhythm 
disorder associated with several important ad-
verse health outcomes including stroke and 

heart failure.1–4 In patients with AF and risk factors for 
thromboembolism, early anticoagulation is effective at 
preventing strokes.5–8 Unfortunately, AF is often unrec-
ognized and untreated because it is frequently asymp-
tomatic or minimally symptomatic.9–11 Thus, methods to 
screen for and identify undetected AF are of significant 
interest12–14 to ultimately prevent strokes.

Population-based screening for AF is challenging for 
2 primary reasons. First, the yearly incidence of AF in the 
general population is low, with reported incidence rates 
of <10 per 1000 person-years younger than 70 years of 
age.15–17 Second, AF is often paroxysmal, with many epi-
sodes lasting <24 hours.18 At present, the most common 
screening strategy is opportunistic pulse palpation, some-
times in conjunction with a 12-lead ECG during routine 
medical visits. This has been shown to be cost-effective in 
certain populations and is recommended in some guide-
lines.19–21 However, studies of implantable cardiac devices 
suggest that this strategy will miss many cases of AF.10,11

Many continuous monitoring devices are now avail-
able to detect paroxysmal and asymptomatic AF.10,12,13 
Patch monitors can be worn for up to 14 to 30 days, 
implantable loop recorders provide continuous monitor-
ing for as long as 3 years, and wearable monitors such 
as the Apple Watch13 can be worn indefinitely. Continu-
ous monitoring devices overcome the problem of par-
oxysmal AF but must still contend with the overall low 
incidence of new-onset AF and cost and convenience 
limit their use for widespread population screening.

If future AF could be accurately predicted from a 
widely used and inexpensive test, this could identify a 
high-risk population that could then be screened with 

a continuous monitoring device. Machine learning, in 
particular deep neural networks (DNNs), can likely assist 
with this task. A recent study by Attia et al demonstrated 
the ability of a DNN to identify the electrocardiographic 
signature of paroxysmal AF from 12-lead ECGs showing 
sinus rhythm in a short time window.22 A similar signa-
ture may be present in the ECG of patients without AF 
but who develop AF in the future. The prediction of truly 
future clinical outcomes from the ECG using machine 
learning methods is a new area of research with great 
potential. For example, recent work has demonstrated 
how a DNN can predict 1-year all-cause mortality direct-
ly from the 12-lead ECG with good performance, even 
in patients with ECGs clinically interpreted as normal.23 
In the present study, we trained a DNN to use ECGs to 
predict new-onset AF in patients with no history of AF. 
We then simulated a deployment scenario of this mod-
el retrospectively to demonstrate the high potential to 
identify patients who later have an AF-related stroke.

METHODS
Study data are available to researchers on reasonable request 
to the corresponding author. The methods can be reproduced 
based on details in the article; code will not be made available.

Data Selection and Phenotype 
Definitions
The Geisinger Institutional Review Board approved this retro-
spective study with a waiver of consent, in conjunction with 
our institutional patient privacy policies. We extracted 2.8 mil-
lion standard 12-lead digital ECG traces from Geisinger’s clini-
cal MUSE (GE Healthcare, Milwaukee, WI) database, acquired 
between January 1984 and June 2019. Although 12-lead rest-
ing ECGs are acquired for 10-s, the ECG traces available for this 
study were in the standard clinical PDF format with 2.5-s traces 
for all 12 leads and 10-s rhythm strip traces for leads II, V1, 
and V5 (15 signal traces in total) at 500 Hz sampling frequency 
(42% of studies acquired at 250 Hz were resampled to 500 Hz 
by linear interpolation) and 1 µV resolution. We retained only 
ECGs (1) acquired in patients ≥18 years of age, and (2) with no 
significant artifacts as identified by the final ECG interpretation 
at the time of acquisition. This amounted to 1.6 million ECGs 
from 431 000 patients. The median (interquartile range) follow-
up available after each ECG was 4.1 (1.5–8.5) years. Qualifying 
follow-up encounters were restricted to ECG, echocardiography, 
outpatient visit with internal medicine, family medicine or car-
diology, any inpatient encounter, or any surgical procedure. An 
ECG was classified as normal if the findings text included strings 
that matched “normal ECG” or “within normal limits” and no 
other abnormalities were identified. All other ECGs were consid-
ered abnormal.

AF Outcome Definition
We excluded patients with preexisting or concurrent docu-
mentation of AF. The AF phenotype was defined as a clinically 
reported finding of AF from a 12-lead ECG or a diagnosis of 
AF applied to 2 or more inpatient or outpatient encounters or 

Clinical Perspective

What Is New?
• A deep learning model can identify patients at high 

risk for new-onset atrial fibrillation (AF).
• In patients with no history of AF who have an AF-

related stroke, nearly two thirds would have been 
predicted to be high-risk for AF before the stroke 
by the deep learning model.

What Are the Clinical Implications?
• AF is a leading cause of stroke, and AF-related 

strokes can occur in patients with no known his-
tory of AF.

• A deep learning model capable of predicting future 
AF could be used in conjunction with a systematic 
monitoring strategy to find AF early and potentially 
prevent AF-related stroke.
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AF listed on the patient problem list from our institutional elec-
tronic health record (August 1996 to January 2020). Any new 
diagnoses occurring within 30 days after cardiac surgery or 
within 1 year of a diagnosis of hyperthyroidism were excluded. 
Details on the applicable diagnostic codes and blinded chart 
review validation of the AF phenotype are provided in Methods 
in the Data Supplement and Table I in the Data Supplement. 
We chose to group atrial flutter with AF because the clinical 
consequences of the 2 rhythms are similar, including the risk of 
embolization, and because the 2 rhythms often coexist.

AF was considered to be new onset if it occurred at least 
1 day after a baseline ECG that did not show AF in a patient 
with no known previous history of AF. This included patients 
with newly identified paroxysmal AF as well as incident AF. 
Electronic health record data were used to identify the most 
recent qualifying encounter date for censorship.

Model Development and Evaluation
We designed a deep convolutional neural network using only 
digital ECG traces as input in 3 temporally coherent branches. 
The data were restructured into 0- to 5-s signals for leads I, 
II, V1, and V5 in the first branch, 5- to 7.5-s signals for leads 
V1, V2, V3, II, and V5 in the second branch, and 7.5- to 10-s 
signals for leads II, V1, V4, V5, and V6 in the third branch 
(Figure I in the Data Supplement). The lead I signal between 
the 2.5- to 5-s interval was computed using the Goldberger 
equation24 (–aVR=[I+II]/2) using signals from leads aVR and II.

The DNN model was designed to analyze the ECG signals 
to yield a predicted risk score for new-onset AF within 1 year 
of the ECG. The model architecture is illustrated in Figure 
II in the Data Supplement (details in Methods in the Data 
Supplement). A second instance of the model also included 
age and sex as input features to the DNN.

For all experiments, data were divided into training, internal 
validation, and test sets. The composition of the training and test 
sets varied by experiment, as described in Study Design; how-
ever, the internal validation set in all cases was defined as a 20% 
subset of the training data to track validation area under the 
receiver operating characteristic curve (AUROC) during training 
to avoid overfitting (details in Methods in the Data Supplement).

The models were evaluated using the AUROC, which is 
a robust metric of model performance for binary classifica-
tion. Higher AUROC suggests higher performance (with per-
fect discrimination represented by an AUROC of 1, and an 
AUROC of 0.5 equivalent to a random guess). We also com-
puted a precision-recall curve, which summarizes the tradeoff 
between the true positive rate (sensitivity or recall) and the 
positive predictive value (precision) for the model at different 
thresholds. The area under the precision recall curve (AUPRC) 
was calculated as the average precision score by computing 
the weighted average of precisions achieved at each thresh-
old by the increase in recall (with perfect discrimination rep-
resented by an AUPRC of 1 and random chance equivalent to 
the proportion of target class in the data—for example, 0.04 
[Figure 1]—for the holdout set defined in Study Design).

Study Design
We performed 2 separate modeling experiments (Figure 1):

(1)   Proof-of-concept model: Using all ECGs from 
January 1984 to June 2019, a holdout set (20%) was 

identified at the beginning of the study (Figure 1A). The 
model was trained with the remaining 80% of the data. 
There was no overlap of patients between the holdout 
set and the training set. All ECGs with known time-to-
event or at least 1 year of follow-up were used during 
model training, and a single random ECG was selected 
for each patient in the holdout set for model evaluation 
(Figure IIIA in the Data Supplement), with results denoted 
as “M0”. Two versions of the model architecture were 
compared: one with ECG traces alone as inputs (DNN-
ECG), and a second with ECG traces, age, and sex (DNN-
ECG-AS). For comparison, we implemented an extreme 
gradient boosting (XGBoost)25 model using only age 
and sex as inputs. We also compared the DNN model 
with the published CHARGE-AF (Cohorts for Aging and 
Research in Genomic Epidemiology) 5-year risk predic-
tion model26 in a subset of patients who had all of the 
data necessary to calculate a CHARGE-AF score.

To establish model stability and generalizability, we 
performed 5-fold cross-validation within the M0 model 
training set to derive models M1 to M5 and evaluated 
each on the respective unique fold test set (cross-valida-
tion test sets). There was no overlap of patients between 
the training set and cross-validation test set in each fold. 
As earlier, all qualifying ECGs were used during model 
training, and a single random ECG for a patient was 
chosen from the cross-validation test sets so as not to 
overweight patients with multiple ECGs (Figure 1A).

We also performed Kaplan-Meier (KM) incidence-
free survival analysis27 with the available follow-up data 
in the holdout set stratified by the model prediction for 
all 3 of the models (age and sex only, DNN-ECG, and 
DNN-ECG-AS), using an optimal operating point to 
stratify the population into low- and high-risk groups for 
new-onset AF. The optimal operating point was defined 
as the point on the ROC curve on the highest iso-per-
formance line (equal cost to misclassification of positives 
and negatives) in the internal validation set. Patients who 
did not develop AF were censored at the most recent 
encounter. We fit a Cox proportional hazard model28 
regressing time to development of AF on the model-
predicted classification of low-risk groups and high-risk 
groups. The hazard ratios (HR; adjusted for age and sex) 
were reported for the DNN model predictions, as well as 
for subpopulations defined by age groups (<50, 50–65, 
and ≥65 years), sex (men and women), and ECG type 
(normal and abnormal) for the holdout set.

(2)  Simulated deployment model: To simulate a real-world 
deployment scenario—evaluating model performance in 
patients who later had an AF-related stroke—we used a 
second modeling approach (Figure 1B). Because a stan-
dard digital ECG contains information on age and sex, 
we used the DNN model that included age and sex for 
the deployment scenario. All ECGs from 1984 through 
2009 were used as a training set. Next, we identified 
all patients with an ECG between January 1, 2010, and 
December 31, 2014. For each patient, we chose the 
ECG with the highest model prediction risk score, and 
those ECGs comprised the deployment test set. The dates 
were chosen to align with our institutional stroke registry, 
which began tracking patients in 2009 as described later.
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To link deployment model predictions with poten-
tially preventable stroke events, we leveraged an inter-
nal registry of patients diagnosed with acute ischemic 
stroke after 2009 at any of the 3 main Geisinger hos-
pitals. From January 1, 2010, to December 31, 2017, 
representing the time interval included in this analy-
sis, there were 6569 patients in the registry who were 
treated for an ischemic stroke. We used this registry to 
identify patients within the deployment model test set 
with an ischemic stroke subsequent to the test set ECG. 
A stroke was considered AF-related and potentially pre-
ventable if the following criteria were met: (1) the ECG 
in the test set was before the stroke, and the model 
predicted risk score was above the given operating 
point (ie, high risk for new-onset AF); and (2) previously 
undiagnosed AF was identified at the time of the stroke 
or up to 365 days after the stroke (Figure IIIB in the 
Data Supplement). To allow for time lag on emergency 
department and hospital admission notes, we included 
AF that was identified up to 2 days before the date of 
the qualifying stroke encounter. To allow for adequate 
follow-up, we included strokes that occurred within 
3 years of the ECG (Figure 1B, Figure IIIB in the Data 
Supplement). A total of 96, 250, and 375 potentially 
preventable AF-related strokes were identified within 1, 
2, and 3 years after ECG, respectively. We performed a 
chart review to determine whether those patients were 
on anticoagulation at the time of the stroke (details 
in Methods in the Data Supplement). We explored Fβ 
scores (for β = 0.5, 1, and 2)  and the Youden index29 
for model operating points in the internal validation 
set (Figure IV in the Data Supplement). Figure V in the 
Data Supplement shows the relationship between the 

proportions of new-onset AF and stroke (within 3 years 
of ECG) as a function of age in the deployment test set.

Statistical Analysis
Multiple AUROCs were compared by bootstrapping 1000 
instances (using random and variable sampling with replace-
ment). Differences between models were considered statistically 
significant if the absolute difference in the 95% CI was >0.

The KM analysis and HR for proof-of-concept model were 
computed using the lifelines package (version 0.24.1) in 
Python (version 3.6.8) and R (version 4.0.0).

RESULTS
DNN Model Predicts AF at 1 Year
The AUROC and AUPRC of the proof-of-concept DNN 
models for the prediction of new-onset AF within 1 year 
in the holdout set (M0) were 0.83 (95% CI, 0.83–0.84) 
and 0.21 (95% CI, 0.20–0.22), respectively, for DNN-
ECG; and 0.85 (95% CI, 0.84–0.85) and 0.22 (95% CI, 
0.21–0.24), respectively, for DNN-ECG-AS (Figure  2). 
This performance represents a significant improvement 
compared with the XGBoost model using only age and 
sex (AUROC, 0.78 [95% CI, 0.77–0.79]; AUPRC, 0.13 
[95% CI, 0.12–0.14]; P<0.05 for difference in 95% CI by 
bootstrapping for both DNN models). In the holdout set, 
we had sufficient data to calculate CHARGE-AF scores 
for 65% of the patients. In this subset, the DNN-ECG-
AS showed superior performance (AUROC, 0.84 [95% 
CI, 0.83–0.85]; AUPRC, 0.20 [95% CI, 0.19–0.22]) 

A B

Figure 1. Flow chart illustrating the study design and data summary.
A, Data exclusions and data definition of proof-of-concept model. B, Data flow for deployment model. AF indicates atrial fibrillation.



Raghunath et al Machine Learning Prediction of New AF Based on ECG

Circulation. 2021;143:1287–1298. DOI: 10.1161/CIRCULATIONAHA.120.047829 March 30, 2021 1291

ORIGINAL RESEARCH 
ARTICLE

compared with the CHARGE-AF score (AUROC, 0.79 
[95% CI, 0.78–0.80]; AUPRC, 0.12 [95% CI, 0.11–0.13]; 
Figure VI in the Data Supplement). The DNN models also 
maintained high performance within the subgroup of 
ECGs clinically reported as normal (Figure 2). These re-
sults were observed to be both generalizable and robust 
on the basis of the comparable performance of the M0 
model on the holdout set and M1 to M5 (5-fold cross-
validation models) on cross-validation test sets, as well as 
the stability of the M0 metrics with repeated iterations 
of random sampling within the holdout set (details in 
Methods in the Data Supplement). We simulated an ex-
ternal dataset by splitting the patient population by en-
counters at either Geisinger Medical Center or all other 
non–Geisinger Medical Center locations (Methods in the 
Data Supplement). The performance of the DNN-ECG-
AS model trained on Geisinger Medical Center data and 
evaluated on a non–Geisinger Medical Center dataset 
was comparable with that obtained with the M0 model 
(AUROC, 0.85; and AUPRC, 0.21).

We also computed an AUROC of 0.87 (95% CI, 
0.86–0.88; DNN-ECG model) for AF presenting exclu-
sively between 1 to 31 days after the baseline ECG, 
consistent with the findings of Attia et al for the identi-
fication of paroxysmal AF from sinus rhythm.22 We rec-
ognize that the DNN model both detects paroxysmal 
AF and predicts truly incident AF, and this is covered in 
detail in the Discussion.

DNN 1-Year AF Risk Prediction Is 
Associated With Long-Term AF Hazard
The KM curves and HR for the 3 AF-prediction models 
in Figure 2 are illustrated in Figure 3 with the operating 

points marked on the corresponding ROC curves (Fig-
ure 3A). The DNN models showed HRs of 6.7 (95% CI, 
6.4–7.0) and 7.2 (95% CI, 6.9–7.6) in DNN-ECG and 
DNN-ECG-AS, respectively (Figure 3B). Adjusting for age 
(in increments of 10 years) and sex (interactions with sex 
and model were significant), the HR remained signifi-
cant: 3.7 (95% CI, 3.6–4.1) and 3.1 (95% CI, 2.7–3.4) in 
women and men, respectively, for the DNN-ECG model 
and 3.8 (95% CI, 3.6–4.1) and 2.9 (95% CI, 2.5–3.4) in 
women and men, respectively, in the DNN-ECG-AS mod-
el (Figure  3C). For unadjusted comparisons, the DNN 
models had higher HR than the XGBoost model (age and 
sex) within all subsets defined by sex, age groups, and 
ECG type (normal or abnormal). Age alone is a powerful 
predictor of AF, so we further investigated the perfor-
mance of the DNN-ECG-AS model by stratifying survival 
curves by age groups. Figure 4 (top row) shows the KM 
curves for age groups <50, 50 to 65, and ≥65 years in 
men and women. As expected, in both sexes, the sur-
vival curves are substantially different in each age group. 
However, Figure 4 (bottom row) shows that in each age 
group, the DNN model retains its ability to discriminate 
between high- and low-risk populations for the develop-
ment of new-onset AF. The superiority of the DNN model 
over age and sex alone is most evident in younger age 
groups, and we note that no patient <58 years old was 
predicted as high-risk by the XGBoost model.

Prediction of New-Onset AF May Help 
Identify Patients at Risk of Future AF-
Related Stroke
We observed 3497 patients out of 181 969 (1.9%) 
with an ischemic stroke following an ECG within the 
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deployment test set (2010–2014). Of these, 96, 250, 
and 375 patients had a stroke within 1, 2, and 3 years, 
respectively, of an ECG and received a new diagnosis 
of AF within 365 days after the stroke. Of those 375 
patients, 341 were not on an anticoagulant at the time 
of the stroke, 32 were on anticoagulant medications 
for reasons other than AF, and 2 patients had insuf-
ficient records to determine whether they were being 
treated with anticoagulants at the time of the stroke. 
Hence, these 375 represent a cohort at risk of AF-re-
lated strokes at the time of ECG. To reemphasize, we 

hypothesized that the DNN would identify many of 
these ECGs as high-risk for AF.

Applying the model (trained on data before 2010) 
to this deployment test set, we again observed good 
performance for the prediction of new-onset AF at 1 
year (AUROC, 0.83; AUPRC, 0.17). Using an operating 
point determined by the F

2 score, the sensitivity was 
69%, the specificity was 81%, and the number needed 
to screen (NNS) to find 1 case of new-onset AF at 1 year 
was 9 (Table). In addition, 62% (231 of 375) of patients 
who had an AF-related stroke within 3 years of an ECG 

A B

C

Figure 3. ROC curves, incidence-free KM survival curves, and HRs in subpopulations for the 3 models evaluated on the holdout set. 
The 3 models are XGBoost model with age and sex only (blue); DNN model with ECG traces only (DNN-ECG; red); and DNN model with ECG traces, age, and sex 
(DNN-ECG-AS; black) for all ECGs in the holdout set. A, ROC curves with operating points marked for the 3 models. B, Incidence-free KM curves for the high- and 
low-risk groups for the operating point shown in A for a follow-up of 30 years. Note that curves corresponding to the low-risk group for all 3 models overlap. C, 
The plot of HR with 95% CIs for the 3 models in subpopulations defined by age groups, sex, and normal or abnormal ECG label. Note that there is no HR for age 
<50 years for the first model as there was no subject classified as high-risk for new-onset atrial fibrillation by the model for that subpopulation. DNN indicates 
deep neural network; HR, hazard ratio; KM, Kaplan-Meier; and ROC, receiver operating characteristic.
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were predicted to be high-risk for new-onset AF (Fig-
ure 5). The NNS to identify AF in 1 patient who devel-
oped an AF-related stroke within 3 years of a high-risk 
prediction was 162. The Table also shows favorable 
test characteristics in subgroups defined by age, sex, 
race, comorbidities, clinical setting, and CHA2DS2-VASc 
score.30 The model performance and test characteristics 
at other operating points in Figure 5 are summarized in 
Table II in the Data Supplement.

DISCUSSION
We have shown that a DNN, trained on >1 million 12-
lead resting ECGs, can predict new-onset AF within 1 
year with good performance (AUROC, 0.85). We dem-
onstrated that this DNN outperformed both a clinical 
model (CHARGE-AF) and an XGBoost model using age 

and sex within the same dataset. We similarly note the 
superiority of our performance compared with the re-
ported performances of other models in previous studies: 
CHARGE-AF (AUROC, 0.77), ARIC (Atherosclerosis Risk 
in Communities) (AUROC, 0.78), and Framingham heart 
study (AUROC, 0.78).26,31,32 Moreover, the shorter predic-
tion interval of our model (1 year compared with 5–10 
years) allows for a more actionable prediction, and this 
prediction retains significant prognostic potential over 
the next 3 decades. We have shown that a large pro-
portion of patients who had an AF-related stroke were 
predicted to be high risk for new-onset AF before stroke 
by the DNN model, demonstrating an important proof 
of concept for potentially using this model to prevent 
strokes through enhanced AF screening.

The DNN model is likely doing 2 different things: de-
tecting paroxysmal AF and predicting incident AF. This is 
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distinct from the study by Attia et al that focused solely 
on the identification of paroxysmal AF without claiming 
the ability to predict incident AF. As noted, the results 
indicate that our DNN model is doing both. Intuitively, 
the characteristics of the ECG that lead to a high-risk 
prediction by the DNN will be more prevalent in pa-
tients who already have AF but are currently in sinus 
rhythm. With this in mind, we expect a higher model 
performance for identification of paroxysmal AF com-
pared with prediction of incident AF, and this is exactly 
what we see. We also expect a declining rate of new-
onset AF over the course of 1 year. This is seen in Figure 
VII in the Data Supplement and is consistent with rapid 
identification of paroxysmal AF followed by a slower 

identification of cases that represent incident AF. The 
largest piece of evidence supporting our assertion that 
the DNN model can predict incident AF is the continued 
separation of the KM incidence-free survival curves up 
to 30 years after the index ECG, as noted in Figures 3 
and 4. In a retrospective analysis such as this, it is im-
possible to quantify how much of the new AF found 
within 1 year was detection of preexisting paroxysmal 
AF and how much was prediction of truly incident AF. 
However, from the perspective of preventing AF-related 
stroke, any finding of newly discovered AF is important, 
as it allows the opportunity to initiate anticoagulation.

More than 25% of all strokes are deemed a result 
of AF, and ≈20% of strokes caused by AF occur in 

Table. Performance Summary of the Deep Neural Network Model With Age and Sex for Predicting 1-Year New-Onset AF in a Deployment Scenario 
and the Potential to Identify Patients at Risk for AF-Related Stroke Within 3 Years of ECG

 
Method/subgroup 
(operating threshold 
defined by F2 score)

Data New-onset AF within 1 year of ECG Number predicted 
to be high risk for 
AF who developed 
an AF-related stroke 
within 3 y (number 
needed to screen) Data (%)

AF incidence 
(%)

Proportion 
of ECGs 
flagged as 
high risk (%)

Number needed 
to screen to find 
1 new-onset AF

Sensitivity 
(recall) (%)

Specificity 
(%)

Full test set 100 3.5 21 9 69 81 231 (162)

Sex

    Men 45 4.1 25 9 70 77 109 (186)

    Women 55 2.9 17 9 67 84 122 (141)

Race

    White 97 3.5 21 9 69 81 227 (162)

    Black 2.3 1.7 11 13 49 90 3 (156)

    Other 0.8 1.2 11 12 75 90 1 (179)

Comorbidities

    Coronary heart disease 9 7.8 52 8 84 50 66 (129)

    Heart failure 1.3 18.8 77 4 92 27 17 (109)

    Hypertension 47 4.6 28 9 70 74 162 (146)

    Type 2 diabetes 14 5.3 33 8 74 69 63 (137)

    None of the above 49 2.2 13 9 65 88 57 (202)

Patient setting

    Outpatient 49 2.1 13 13 51 87 63 (189)

    Emergency 26 5.2 26 6 77 77 117 (105)

    Inpatient 6 7.3 41 7 78 62 20 (232)

    Unknown 18 3.4 27 11 73 75 31 (279)

Age group, y

    <50 32 0.5 2 15 23 98 2 (551)

    50–65 33 2.2 12 12 47 89 23 (308)

    Men, ≥65 15 8.4 54 8 81 48 91 (164)

    Women, ≥65 19 6.7 42 8 76 61 115 (125)

CHA2DS2-VASc score30

    <2 53 1.4 7 12 43 93 18 (382)

    ≥2 47 5.8 36 8 76 66 213 (143)

Results are shown based on model predictions using the full test set, as well as specified population subsets with varying demographic, clinical setting, or 
comorbidity characteristics. AF indicates atrial fibrillation/flutter.
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individuals not previously diagnosed with AF.33–35 Once 
AF is detected, anticoagulation is effective at prevent-
ing stroke, but screening for AF is difficult because of 
the paroxysmal nature of AF and the fact that it is of-
ten asymptomatic. Screening strategies involving patch 
monitors, wearables, and other devices can be used to 
detect AF but are most effective in populations with a 
high prevalence of AF. The underlying goal for develop-
ing this prediction model is to identify a high-risk popu-
lation that can then be selected for additional monitor-
ing with the goal of finding AF before a stroke.

We simulated such a real-world scenario by apply-
ing our model to all ECGs acquired within our large re-
gional health system (Geisinger) over a 5-year period by 
cross-referencing predicted high-risk ECGs with future 
ischemic stroke incidences that were deemed potential-
ly preventable (concurrent/subsequent identification of 
AF). We found that a high proportion (62%) of patients 
who had an AF-related stroke were correctly predicted 
as high-risk for AF. The NNS to identify AF in 1 patient 
who later had an AF-related stroke was 162. This com-
pares favorably with other well-accepted screening 
tests, including mammography (NNS 476 to prevent 1 
breast cancer death ages 60–69 years),36 prostate specif-
ic antigen (NNS 1410 to prevent 1 death from prostate 
cancer),37 and cholesterol (NNS 418 to prevent 1 death 
from cardiovascular disease).38 Not all patients with AF 
are at high risk for stroke, and scoring systems such as 
CHA2DS2-VASc30 are commonly used to determine the 
need for anticoagulation. A CHA2DS2-VASc score of 2 

or greater is the cut point most commonly used to start 
an anticoagulant, and the Table shows that the model 
performs well within that subgroup, with an NNS of 8 to 
find 1 new case of AF. The Table also shows that 92% of 
patients predicted to be high-risk for AF who later had 
an AF-related stroke had a CHA2DS2-VASc score of 2 or 
greater and were potentially eligible for anticoagulation.

Three points are important to note in evaluating these 
findings. First, we have counted strokes occurring only 
at 3 Geisinger hospitals based on the exclusive use of an 
internal registry. Despite Geisinger’s predominantly rural 
clinical population with low outmigration, some patients 
in the deployment test set likely had an incident stroke at 
another facility and were not captured in the registry. This 
leads to an underestimate of the number of patients at 
risk for stroke. Second, there was no systematic monitor-
ing strategy to identify AF in the patients in our test set. 
Identification of new AF undoubtedly occurred in multiple 
ways, including fortuitous capture of asymptomatic AF as 
well as ECGs obtained in symptomatic patients. A sys-
tematic monitoring strategy implemented as part of the 
predictive model will capture more AF, as has been borne 
out in studies of continuous monitors. For example, in 
the mSTOPS trial (mHealth Screening to Prevent Stroke), 
monitoring with a patch monitor for up to 4 weeks iden-
tified new AF with an incidence of 6.7 per 100 person-
years compared with 2.6 per 100 person-years without 
monitoring.12 Third, our population of AF-related strokes 
was purposefully restricted by our definition that AF de-
veloped at the time of stroke or within 1 year after the 
stroke. We expect that some patients with an AF-related 
stroke would not have had their AF discovered in the 1 
year after the stroke. For all of these reasons, we posit 
that the numbers we report for NNS with respect to both 
AF and stroke ascertainment represent worst-case sce-
narios of what would be prospectively realized. A pro-
spective clinical trial is needed to confirm this speculation.

Once the ability to prevent strokes given this AF-pre-
diction paradigm is demonstrated, this screening could 
be initiated in many different settings and performed 
through many different methods. With regard to setting, 
a promising opportunity—particularly for integrated care 
delivery systems—is the systematic screening of all ECGs 
in a health system. Specifically, the DNN could be incor-
porated into the existing workflow, such that every ECG 
is evaluated, and high-risk studies could be flagged for 
follow-up and surveillance. Such increased surveillance 
could take many different forms, including systematic 
pulse palpation, systematic ECG screening, continuous 
patch monitors worn once or multiple times, intermittent 
home screening with a device such as the Kardia mo-
bile, or wearable monitors such as an Apple Watch.12,13,39 
Although these methods could be used in isolation to 
screen for AF, and many clinical trials are currently under-
way to that end,40,41 combination with a DNN predictive 
model could help to overcome the challenges associated 
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Figure 5. Illustration of model sensitivity to detect patients at risk of 
AF-related strokes as a function of the proportion of the population 
flagged as high risk to develop new-onset AF.
Colored curves denote patients with strokes occurring within 1 (blue), 2 (or-
ange), and 3 (green) years after ECG in the deployment test set. Gray dotted 
lines represent the corresponding optimal operating thresholds from Table II in 
the Data Supplement. AF indicates atrial fibrillation.
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with the overall low incidence of AF in the general popu-
lation, especially in younger age groups. Age is generally 
the predominant risk factor in guiding AF screening strat-
egies, yet in our study, 38% of all new AF (within 1 year 
of ECG) and 36% of all potentially preventable strokes 
(within 3 years of ECG) occurred among those younger 
than 70 years of age (Figure V in the Data Supplement). 
Our model can be used in all patients older than 18 years 
of age and outperformed a machine learning–based 
model that used age and sex alone.

Our focus in this article has been on the potential to 
prevent AF-related stroke by early identification of new-
onset AF, but there are other ways in which a model 
that predicts future AF could be useful. AF is a frequent 
cause of arrhythmia-induced cardiomyopathy, and a hos-
pital presentation with decompensated heart failure can 
be the first clinical manifestation of new-onset AF.42 En-
hanced surveillance in those predicted to be high-risk for 
future AF may therefore lead to a reduction in arrhyth-
mia-induced cardiomyopathy. In addition to allowing 
early treatment for new-onset AF, a clinical risk prediction 
tool such as this could be used for the prevention of AF. 
A high-risk prediction of future AF could bring increased 
attention to modifiable risk factors such as obesity and 
obstructive sleep apnea, with the goal of avoiding AF al-
together.

We acknowledge some limitations to our study. Al-
though 10-s digital ECG traces are acquired during a rest-
ing 12-lead ECG, we had access to only 2.5-s for 9 of the 
leads and 10-s for the remaining 3 leads. A model using 
10-s for all the leads could be considered in the future 
to maximize model training capabilities. Our analysis was 
limited to a single health system with a predominantly 
White population, so the generalizability to other organi-
zations—particularly with a racially diverse population—
must be established. We refer to the strokes in this study 
as potentially preventable, but in reality, identification of 
AF alone will not prevent all AF-related strokes. Some pa-
tients will either have a contraindication to or are not eli-
gible for anticoagulation, and some who are treated with 
anticoagulation will still have a stroke. A chart review of 
the patients identified as having a potentially prevent-
able AF-related stroke revealed that 9% of them were 
already on anticoagulation for reasons other than AF at 
the time of the stroke. It is unknown whether a diagnosis 
of new-onset AF would have affected the treatment plan 
or outcome in this small subset of patients. A prospec-
tive clinical trial is needed to confirm how many strokes 
can be prevented using a screening strategy on the basis 
of enhanced monitoring as a result of an AF risk predic-
tion. This DNN approach represents a black-box model 
such that we do not know the specific features forming 
the basis of model predictions. Structural changes oc-
cur in the atria of patients with AF, and it is possible the 
DNN is using ECG manifestations of this atrial myopathy 
to guide the prediction.43 Although previous work has 

shown some initial results for model interpretability spe-
cific to ECG-based DNN models for mortality predictions, 
these methods are challenging to generalize on a popula-
tion level.23 Acceptance of this limitation is warranted at 
the present time as more interpretable machine learning 
methods are not designed to directly leverage the digital 
ECG data as the DNN does, and there are currently no ro-
bust methods available to provide this insight into DNNs, 
although it remains an active area of investigation.

CONCLUSIONS
We have shown that a DNN can automatically analyze 
data from a resting 12-lead digital ECG to predict the 
risk of new-onset AF within 1 year with good perfor-
mance. The model can both detect paroxysmal AF and 
predict incident AF. This predictive performance sur-
passes that of currently available clinical models, persists 
even within ECGs interpreted as normal, and is associat-
ed with significant hazard for AF development over the 
next 30 years. Preliminary data simulating a real-world 
deployment scenario demonstrate that using this tool 
identifies a high-risk population for new-onset AF that 
can be targeted for increased screening and may prove 
useful for helping to prevent AF-related strokes.
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