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ABSTRACT

Predicting subcellular localization has become a
valuable alternative to time-consuming experimen-
tal methods. Major drawbacks of many of these pre-
dictors is their lack of interpretability and the fact
that they do not provide an estimate of the confi-
dence of an individual prediction. We present
YLoc, an interpretable web server for predicting
subcellular localization. YLoc uses natural
language to explain why a prediction was made
and which biological property of the protein was
mainly responsible for it. In addition, YLoc estimates
the reliability of its own predictions. YLoc can, thus,
assist in understanding protein localization and in
location engineering of proteins. The YLoc web
server is available online at www.multiloc.org/YLoc.

INTRODUCTION

Protein sorting is a complex and still poorly understood
process. It is crucial for a protein’s function as a protein’s
location is often correlated with its molecular function.
Thus, knowledge of protein localization can help biolo-
gists to infer the function of a protein. However, experi-
mental methods for determining a protein’s location are
expensive and time consuming. In contrast, computational
predictions rely only on the protein sequence, are fast, and
fairly accurate. Over recent years, various prediction
methods have been introduced. Most methods use
sequence information, such as known sorting signals and
amino acid composition (1–9). More advanced methods
incorporate annotation information such as functional
domains and motifs (10,11), homologous proteins
(12,13), Gene Ontology (GO) terms (14) and textual infor-
mation (15,16). Predictions based on annotated know-
ledge are often more accurate, but are less robust in
cases where little is known about the protein. Hybrid
prediction approaches combine the advantages of both
information sources (17–21).

Although the prediction performance of subcellular lo-
calization predictors has increased significantly over recent
years, their predictions are often not considered to be
trustworthy. Very complex machine learning models of
state-of-the-art prediction systems make it difficult to
understand why a prediction was made. Consequently,
the web interfaces of most methods are non-transparent
and offer no explanation for a particular prediction. In
addition, most methods do not offer confidence estimates
for an individual prediction.
We present YLoc, an interpretable web server for pre-

dicting subcellular localization. Users are provided with
the prediction itself, and also with an explanation why
this prediction was made. The features contributing to
the prediction are translated into natural language
aiming at the most likely explanation of the localization.
In addition, a confidence score helps the users to verify
whether the prediction is reliable or not. YLoc is available
in a low-resolution version, YLoc-LowRes, and a
high-resolution version, YLoc-HighRes, covering 5 or 11
eukaryotic subcellular locations, respectively. YLoc+, the
most general version, integrates multiple locations sites.
All three predictors are available for animal, fungal and
plant proteins.

METHODS AND MATERIALS

YLoc-LowRes was trained on the BaCelLo data set (6),
which contains only globular proteins. The animal and
fungal versions predict four locations: the nucleus (nu),
cytoplasm (cy), mitochondrion (mi) and the secretory
pathway (SP). The plant version additionally predicts
the chloroplast (ch). YLoc-HighRes was trained on the
Höglund data set (7). It covers 11 locations: nu, cy, mi,
ch, endoplasmatic reticulum (er), Golgi apparatus (go),
peroxisome (pe), plasma membrane (pm), extracellular
space (ex), lysosome (ly) and vacuole (va). In the
training of YLoc+, we used the Höglund data set and
additional proteins with multiple locations from the
DBMLoc database (22). The extracted 3054 proteins
share <80% sequence similarity. Only dual locations
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with more than 100 representative proteins were included:
cy and nu (cy_nu), ex and pm (ex_pm), cy and pm
(cy_pm), cy and mi (cy_mi), nu and mit (nu_mi), er and
ex (er_ex) and ex and nu (ex_nu). To our knowledge, this
is currently the largest data set of proteins from multiple
locations.
We derived about 30 000 features from our protein se-

quences using amino acid composition and pseudo com-
position (3) as well as properties such as hydrophobicity,
charge and volume of amino acids. In addition, we
included PROSITE motifs and GO terms from close
homologs. For more details, we refer to Briesemeister
et al. (26). To guarantee interpretable predictions, we
first reduced the number of features using a backward
best first search together with correlation-based feature
selection (23) implemented in the Weka machine
learning library (24). For YLoc-LowRes, we obtained 20
features; for YLoc-HighRes and YLoc+, we obtained 30
features. However, a small number of features is only the
first step toward interpretable predictions. To provide
meaningful explanations, we manually annotated all
selected features in biological terms. Unfortunately, not
every feature can be easily mapped to a biological
property. In such cases, we carefully inspected the initial
feature set and transferred the biological meaning of a
highly correlated feature. A list of all selected and
annotated features can be found in the Supplementary
Data.
YLoc uses naı̈ve Bayes alongside entropy-based discret-

ization (25) to make predictions. Given a set of features
F ¼ F1, . . . ,Fkf g and a set of location classes
C ¼ C1, . . . ,Cnf g, the conditional distribution of class Cj

can be expressed by:

P CjjF
� �

/ P Cj

� � Yk

i¼1

P FijCj

� �
: ð1Þ

The final posterior probabilities P CjjF
� �

are calculated by
normalizing the right term of Equation (1) such that all
posteriors sum up to one. Based on the feature likelihoods
P FijCj

� �
, we calculate a discrimination score which

provides a simple and transparent understanding of the
influence of a feature on the prediction, for details see
Briesemeister et al. (26). A positive score indicates that
this feature is typical for the predicted location, whereas
a negative score indicates that this feature alone would
suggest a different location. Secondly, the discrimination
score shows how strongly a feature influenced the
prediction.
For multiple localization prediction, we assume that a

protein present in multiple locations is equally distributed
among those. Proteins labeled with two locations are
assigned to a dual-location class, for example, Cnu cy.
YLoc+ then evenly distributes the posterior probabilities
of the dual-location classes onto the probabilities of the
two individual locations. For example, P Cnu cyjF

� �
=2 is

added to P CnujFð Þ and to P CcyjF
� �

. All locations with a
probability above a threshold of 1=jCj are predicted,
where jCj is the number of locations. If a location is less

than half as probable as the next most probable one, this
location and all less probable locations are not predicted.

The probability of the predicted location shows only
how likely a protein is to be found in this location
compared with the other locations. A confidence
estimate, however, tells how likely it is that this prediction
is to be correct. For this purpose, we analyze whether the
protein is typical for the predicted class or whether YLoc
already extrapolates. If a feature vector is more likely for
proteins from the predicted location than for proteins
from all locations, i.e. P FjCpred

� �
> P Fj

S
Cj

� �
, we rate a

prediction as being reliable. Since predicted locations with
only a few training examples are often less reliable, we
include the prior class probability in our confidence score:

P Cpred

� �
P FjCpred

� �

P Cpred

� �
P FjCpred

� �
+P Fj

S
Cj

� � : ð2Þ

Confidence scores ranges from zero for unreliable predic-
tions to one for very confident predictions. For more
details on the YLoc methodology, refer to Briesemeister
et al. (26).

EVALUATION

We have tested the performance of YLoc on two inde-
pendent data sets (IDSs). The BaCelLo IDS (27) consists
of animal, fungal and plant proteins from the nu, cy, mi
and SP which have at most 30% sequence identity to
proteins in the BaCelLo data set. The Höglund IDS (20)
contains animals proteins from remaining locations, the
er, go, pe, pm, ex and ly, and was constructed with the
same restrictions as the BaCelLo data set. In addition,
proteins from the same location which align with an
E-value >10�3 are clustered and treated as one instance
in the evaluation. We compared the YLoc predictors with
five other state-of-the-art subcellular localization predict-
ors: MultiLoc2 (20), BaCelLo (6), LOCTree (4), WoLF
PSORT (9) and Euk-mPloc (19). All methods are avail-
able as web servers. The individual prediction perform-
ance was evaluated using the overall accuracy (ACC),
which is the percentage of correctly predicted instances,
and the average F1-score (F1), which is the average over
the harmonic means of precision and recall of each
location. Note that YLoc+, WoLF PSORT and
Euk-mPloc are evaluated using the generalized ACC and
F1 from multilabel classification (28).

The evaluation results are summarized in Table 1. In
our benchmark study, we observed that YLoc shows
comparable performance to current state-of-the-art
methods. For the BaCelLo IDS, YLoc-LowRes and
MultiLoc2-LowRes perform best since they are specialized
in distinguishing globular proteins. The high-resolution
predictors YLoc-HighRes, YLoc+, MultiLoc2-HighRes,
WoLF PSORT and Euk-mPloc perform slightly worse
on this data set, since they are more general predictors.
On the Höglund IDS, MultiLoc2-HighRes, YLoc-
HighRes and YLoc+ show comparable performance,
whereas WoLF PSORT and Euk-mPloc perform worse.
MultiLoc2 shows very good accuracy throughout the
study. However, its architecture is very complex and the
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output is not interpretable. In contrast, YLoc uses a very
simple model and its predictions are hence interpretable.
The detailed location-wise performance of YLoc is shown
in the Supplementary Data. When YLoc is applied
without the use of GO-term-based features, the perform-
ance is only slightly reduced compared with the original
predictors. In most cases, the performance drops only by
0.01 to 0.04. However, YLoc-LowRes plants shows a con-
siderable performance loss on the BaCelLo plant IDS. In
contrast, on the Höglund IDS, we observe a slight per-
formance gain. For details see supplementary material
of (26).

To show that users can benefit from the integrated con-
fidence score, we analyzed the performance enrichment for
high confidence scores. We reevaluated the performance
of the YLoc predictors on the BaCelLo animals IDS by
considering only proteins that could be predicted with a
minimum confidence score. For statistical reasons, we
excluded classes with less than five instances. The perform-
ance of YLoc for different minimum confidence scores is
shown in Table 2. For the subset of proteins that can be
predicted with high confidence, YLoc shows increased
prediction performance. Consequently, predictions made
with high confidence scores can be rated as more reliable.

We tested YLoc+’s ability to predict multiple localiza-
tion sites in a nested 5-fold cross-validation scheme on the
DBMLoc data set (22). We found that YLoc yields an
ACC of 0.64 and an F1 of 0.68 using multilabel
measures. YLoc+ correctly identifies half of the proteins
as multiple targeted and predicts both locations correctly
in about one-third of the cases.

WEB SERVER

The YLoc web server requires protein sequences in
FASTA format as input. It allows users to predict the

location of at most 20 proteins. For large-scale predic-
tions, users can access YLoc via SOAP or HTTP using
the Python-based client scripts provided on the YLoc web
site. Users can choose between three YLoc predictors,
YLoc-LowRes, YLoc-HighRes and YLoc+, and three
protein origins, animals, fungi and plants. In addition,
they can switch off the use of GO term-based features.
In this case, YLoc uses models in which the GO terms
from close homologs are replaced by sequence-based
features. Consequently, these YLoc models rely less on
the presence of close homologous proteins. Every predic-
tion will be assigned with a prediction ID that can be used
to retrieve results later on. Alternatively, users can simply
bookmark the waiting page or result page to obtain results
later. Currently, predictions are saved for 2 weeks. The
location prediction of a single protein takes 10–20 s, de-
pending on the protein length.
Prediction results are displayed in three levels of details.

The prediction summary presents the predicted loca-
tion(s), the probability of those and the confidence score
for every query protein. The probability of a location is
simply how likely the protein is located in this compart-
ment. In contrast, the confidence score is a measure of
reliability. A low confidence score implies the possibility
that the real probability can differ considerably from the
predicted probability. However, a high confidence score
signifies that the predicted probability is close to the real
probability for being located in the predicted location.
Consequently, higher confidence scores imply a higher re-
liability of the prediction for the individual sequence. In
addition, an explanation in natural language clarifies why
the prediction has been made. This explanation includes
the two most likely reasons for this localization, for
example: ‘The most important reason for making this pre-
diction is the strong SP sorting signal’ or ‘Moreover, it is a
barely charged protein.’ This information can be very

Table 2. Performance of YLoc on the BaCelLo animal IDS (27) for different minimum confidence scores

Predictor Measure 0.0 0.2 0.4 0.6 0.8 0.9

YLoc-LowRes F1 0.75 0.76 0.78 0.80 0.84 0.95
ACC 0.79 0.79 0.81 0.86 0.91 0.93
No. of instances 576 467 395 299 189 118

YLoc-HighRes F1 0.69 0.74 0.76 0.76 0.77 0.77
ACC 0.74 0.78 0.80 0.82 0.83 0.84
No. of instances 576 507 470 428 391 354

YLoc+ F1 0.67 0.69 0.72 0.77 0.76 0.81
ACC 0.58 0.60 0.62 0.65 0.65 0.69
No. of instances 576 494 423 324 219 142

Table 1. Performance of the YLoc and other state-of-the-art predictors on the BaCelLo IDS (27) (B) and Höglund IDS (20) (H) concerning F1

and ACC (in brackets)

Data set YLoc-
LowRes

YLoc-
HighRes

YLoc+ MultiLoc2-
LowRes

MultiLoc2-
HighRes

BaCelLo LOCTree WoLF PSORT Euk-mPloc

B Animals 0.75 (0.79) 0.69 (0.74) 0.67 (0.58) 0.76 (0.73) 0.71 (0.68) 0.66 (0.64) 0.58 (0.62) 0.67 (0.70) 0.54 (0.61)
B Fungi 0.61 (0.56) 0.51 (0.56) 0.51 (0.48) 0.61 (0.60) 0.58 (0.53) 0.60 (0.57) 0.43 (0.47) 0.51 (0.50) 0.56 (0.60)
B Plants 0.58 (0.71) 0.54 (0.58) 0.49 (0.58) 0.64 (0.76) 0.54 (0.62) 0.56 (0.69) 0.58 (0.70) 0.46 (0.57) 0.37 (0.46)
H Animals � (�) 0.34 (0.56) 0.37 (0.53) � (�) 0.41 (0.57) � (�) � (�) 0.18 (0.36) 0.24 (0.27)
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important since it might already give a hint of the
underlying mechanism for this protein localization.
The detailed prediction page provides more information

on a particular protein prediction. For example, the prob-
ability distribution of the locations is provided. It is im-
portant to know the runner-up locations, especially for
low confidence predictions, since rather ambiguous predic-
tions should be inspected manually. YLoc also provides
the most similar protein from Swiss-Prot 42.0 and
associated GO terms. More details of how protein attri-
butes influence the prediction are given in a large attribute
table (Figure 1). The attributes are expressed in biological
terms and ordered according to their absolute discrimin-
ation score, which corresponds to its influence on the pre-
diction. A positive discrimination score implies that the
attribute value is very typical for the predicted location,
but atypical for some other location. In contrast, a
negative discrimination score implies that the attribute
value is more typical for some other location than the
predicted one. A simple+/� encoding shows whether an
attribute is typical for a location or not. By simply inspect-
ing only the first lines of the table, it is sometimes already
obvious which biological property lead to the prediction
outcome and is likely to be responsible for the real local-
ization of the protein. In addition, it gives hints of which
parts of the protein should be considered for protein
engineering.
How a particular biological attribute is calculated can

be found on a detailed attribute page (Figure 2). For
example, YLoc-LowRes (animal version) calculates the
strength of the SP sorting signal using the ‘autocorrelation
of every third hydrophobic amino acid within the first 20
amino acids in the N-terminus’. Knowing how the attri-
bute value is calculated is essential to understand which
particular amino acids and properties encode for possible
sorting signal. Furthermore, the attribute is visualized.
Embedded Javascript code displays the distribution of
proteins from the different locations regarding this
feature. The provided protein distributions are very
helpful for understanding how proteins from different

locations behave with respect to a biological property or
sorting signal.

APPLICATION

The interpretable YLoc web service can be applied to
numerous tasks that range from large-scale predictions
to the identification of sorting signals. A very interesting
application example is supervised protein engineering.
YLoc can identify biological properties, e.g. example
sorting signals that might be responsible for the localiza-
tion. For example, human fumerate hydratase (FH,
SwissProt AC P07954) is primarily located in the mi.
The three YLoc predictors (animal version) detect the
correct location and identify a mitochondrial targeting
peptide (mTP). After truncating the leading 43 residues,
FH lacks an mTP and shows a negatively charged
N-terminus which is unfavorable for mitochondrial local-
ization. Consequently, YLoc predicts FH to be cytoplas-
mic. In fact, the truncated FH protein is a known
cytoplasmic isoform of FH encoded by the same gene
(29). This example shows that YLoc can by valuable in
location engineering of proteins.

YLoc VIA SOAP

For large-scale predictions, YLoc can be accessed via
SOAP. The corresponding WSDL can be downloaded
from the YLoc web site. In addition, we provide a
Python-based script. Alternatively, YLoc can be
accessed via an HTTP-based client that is also available
for download.

CONCLUSION

As an interpretable web server for predicting subcellular
localization of proteins, YLoc explains why a prediction
was made and what features are likely to be responsible
for the protein localization. This information can be very
helpful to understand the localization of a protein and

Figure 1. The attribute table of the YLoc web service lists all attributes in order of their influence on the prediction outcome. All attributes are
expressed in biological terms. The +(+) or �(�) indicates whether that attribute value is (very) typical or (very) untypical for a location.
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thus can assist in location engineering of proteins.
Furthermore, a confidence score rates the reliability of a
prediction. At the same time, it performs comparably with
other state-of-the-art predictors. We believe that YLoc is a
valuable alternative to experimental methods and current
state-of-the-art predictors.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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