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Abstract

The goal of this study was to assess the goodness-of-fit of theoretical models of population

dynamics of Aedes aegypti to trap data collected by a long term entomological surveillance

program. The carrying capacity K of this vector was estimated at city and neighborhood

level. Adult mosquito abundance was measured via adults collected weekly by a network of

sticky traps (Mosquitraps) from January 2008 to December 2011 in Vitória, Espı́rito Santo,

Brazil. K was the only free parameter estimated by the model. At the city level, the model

with temperature as a driver captured the seasonal pattern of mosquito abundance. At the

local level, we observed a spatial heterogeneity in the estimated carrying capacity between

neighborhoods, weakly associated with environmental variables related to poor infrastruc-

ture. Model goodness-of-fit was influenced by the number of sticky traps, and suggests a

minimum of 16 traps at the neighborhood level for surveillance.

Introduction

Arthropod-borne viruses are responsible for a high disease burden worldwide [1, 2]. Many

arboviruses originally evolved and diversified in the tropics and currently show increasing vir-

ulence and invasive characteristics associated with abrupt and explosive outbreaks, even in

temperate regions [3]. The main arthropod vectors involved in viral transmission to humans

are ticks, sandflies and mosquitoes. Mosquitoes of the genus Aedes are among the most studied

vectors due to their role on the transmission of several arboviruses with significant public
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health impact, including yellow fever, dengue, zika (Flaviviridae, Flavivirus) and chikungunya

(Togaviridae, Alphavirus) [4].

The abundance of Aedes aegypti in a territory is an important risk factor for the emergence

and maintenance of these diseases [4], and many countries spend a large amount of resources

on vector surveillance and transmission control measures. In Brazil as well as other countries

that follow the World Health Organization (WHO) guidelines, the standard surveillance pro-

tocol is the household survey, which generates regular estimates of the Premise Index (PI),

with values above 4% indicating risk of dengue outbreak [5]. However, many studies have sug-

gested that such larval indices are not sensitive or efficient for monitoring the female adult

Aedes population, which is the mosquito subpopulation directly linked to virus transmission

[6, 7].

A trap-based surveillance program for continuous estimation of female adult Ae. aegypti
is an alternative to household surveys. Traps are less intrusive, require less labor, and can

achieve better spatial coverage and temporal resolution [8]. There are some initiatives to use

trap based surveillance worldwide, using different traps and protocols, but no consensus has

emerged yet on the best approach [6].

In Brazil, several cities have started trap-based Aedes surveillance initiatives in the last

decade, in a quest for new entomological indices to guide their dengue control activities. The

city of Vitória, capital of Espı́rito Santo State, is one of them. The city has been the scene of

dengue epidemics since 1995 when DENV-2 serotype arrived [9]. Currently, all four dengue

serotypes circulate in the city, with dominance of DENV-1 and DENV-4 since 2013 [10]. In

2016, the region witnessed the arrival of Zika (2,276 cases) and Chikungunya (313 cases) [11].

Vitoria’s trap surveillance program, named “Intelligent Dengue Monitoring System”

(MI-Dengue) (Ecovec SA, Belo Horizonte, Brazil) employs sticky traps (MosquiTRAP) baited

with synthetic oviposition attractant to capture gravid Aedes mosquitoes [12]. Captured mos-

quitoes are identified and counted in the field and data are sent immediately to a data center

via cell phone [13, 14]. The Mean Female Aedes sp. Index IMFA is calculated as the ratio

between the number of mosquitoes and the number of traps in a given area and mapped to

inform the city’s vector control crew on the location of high infestation neighborhoods that

will be targets for intervention, which includes source reduction and adulticide application [5].

Previous studies have investigated the adequacy of the MI-Dengue system in other cities in

terms of effectiveness in reducing dengue cases [13, 14] and its cost-effectiveness [14]. Some

studies suggest that the MosquiTrap is less sensitive than other traps to monitor the seasonal

dynamics of Ae. aegypti [6, 15].

Climate and landscape factors are important determinants of Ae. aegypti abundance. Vitó-

ria city is a humid climate city located in the Brazilian coastline, where seasonal effects are

mostly temperature-driven [6, 16]. In a meta-analysis, Couret and Benedict [17] concluded

that temperature is a sufficient factor to explain variation in the development rate of Ae.
aegypti. Among landscape factors, the availability and quality of breeding sites determine the

carrying capacity of a given area. Intraspecific competition within breeding sites affect the

mortality rate of larvae and consequently the productivity of an area [18, 19].

Environmental carrying capacity is the maximum population load an area can support

[20] and for Ae. aegypti, it should increase with the amount of suitable breeding sites. Mathe-

matically, the carrying capacity is a prominent modeling feature in the logistic function as

a factor controlling the growth of the population. An assessment of the carrying capacity

would be useful for informing control activities, particularly, if mechanical control is to be

used. Although the carrying capacity is not directly observable, it can be estimated from

abundance data using a mathematical model describing its population dynamics. These

models take the form of a set of functions mechanistically describing the relationship
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between the observed variable (number of mosquitoes trapped per week) and the factors reg-

ulating the mosquito life parameters.

In a previous work, we estimated the carrying capacity of Ae. aegypti in neighborhoods of

Rio de Janeiro using ovitrap data [21]. The model has four equations, describing the dynamics

of egg, larvae, pupae and adults. The carrying capacity K is assumed to be constant and control

the maximum load of the egg compartment. Temperature is the external variable that controls

the seasonality of the observed mosquito abundance. In the present study, the same mathemat-

ical model is used to estimate the carrying capacity of Ae. aegypti in the city of Vitoria as a

whole and in each of its neighborhoods separately. In particular, we investigate if the estimated

carrying capacity is associated with differences in human density and environmental variables

related to the presence of breeding sites. Finally, we discuss the potential inclusion of model-

based carrying capacity estimation in the surveillance routines.

Methods

Study area

Vitória (20˚19’15” S, 40˚20’10” W) is the capital of the state of Espı́rito Santo in southeastern

Brazil (Fig 1). The city is located on a small riverine island, with altitudes ranging from 0 to

149 m. Its total population (355,875 inhabitants) lives in a 97.4km2 area, resulting in a 3,338.3/

km2 population density [22]. The climate in Vitória is characterized as humid tropical, with

average rainfall of 1,153 mm/year and an average temperature of 34.4˚C in the summer and

24.4˚C during the winter. The city is divided in a total of 80 neighborhoods [22], including

slums with poor infrastructure and middle/high income areas with increasing degrees of

urbanization and improved socioeconomic conditions.

Data

Temperature time series. Images from the MODIS satellite (surface temperature

sensor with 1000 meters of resolution) were obtained from the International Research

Institute for Climate and Society (IRI) platform at the Columbia University Land Institute

[23], for the period between January 2008 and December 2011, with a temporal resolution

of 8 days. The satellite’s diurnal measurements are proxies for the daily maximum tempera-

ture. Good quality images (without cloud coverage) were selected and interpolated by the

empirical Bayesian method [24]. A time series of maximum temperature with a time resolu-

tion of 8 days was obtained for each neighborhood by averaging the image values within the

neighborhood geographical polygon. A daily time series of maximum temperature was cre-

ated by linear interpolation using na.approx function from library zoo [25], R environment

[26].

The mean daily temperature time series used in this work were calculated by fitting a

regression model of the form

TempmedðtÞ ¼ aTempmax þ b

to Goiabeiras Automatic Station (20.3156˚S, 40.3172˚W) [27], where both mean and maxi-

mum temperatures were available (the former from a meteorological station, the latter from

the satellite). The resulting expression was used as an approximation of the mean temperature

in all remaining neighborhoods. On average, the mean temperature is five degrees below the

maximum temperature in Vitoria. For details on temperature data, we refer the reader to table

S1 Table.
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Mosquito surveillance data. The entomological data consisted of a weekly time series

with the number of captured Ae. aegypti mosquitoes, using sticky traps (called MosquiTraps)

as part of the city’s entomological surveillance plan. Data from January 2008 to December

2011 were obtained from Ecovec SA (Belo Horizonte, Brazil). Traps were distributed on a reg-

ular grid with 250 m spacing covering the city and were inspected by trained personnel. The

weekly entomological index (IMFA, Mean Female Aedes sp. index), calculated as the ratio

between the total number of Ae. aegypti females captured and the number of inspected traps

(Fig 2). The IMFA indexes were calculated for the city as a whole and for each neighborhood

[13]. A total of 75 neighborhoods monitored by DENGUE-MI were used in the analysis. Some

neighborhoods were grouped into Junctions due to difficulty in determining the exact location

of some traps: Junction 1—Ariovaldo Favalessa, Alagoano and Morro Alagoano; Junction 2—

Bela Vista and Nossa Senhora Aparecida; Junction 3—Praia do Suá, Morro de Santa Helena,

Morro do Suá and Morro do São João; Junction 4—São Pedro, São José e Santos Reis; Junction

5—Segurança do Lar and Solon Borges. All IMFA data used in this work is available in S1

Table.

Neighborhood data. For each neighborhood, mosquito infestation was related to the fol-

lowing descriptor variables from the last Brazilian Census [22]: population and household

count, area, population density, percentage of households with illegal energy supply, percent-

age of households in unpaved streets, closeness to garbage areas, without manhole and open

sewage. These variables may potentially affect the carrying capacity of the Ae. aegypti popula-

tion. Maps were created using polygons from the same source.

Fig 1. Vitória city and its neighborhoods, Espı́rito Santo, Brazil. The underlying shapefiles with political boundaries

of Brazilian states and Vitória municipality are publicly and freely available at Instituto Brasileiro de Geografia e
Estatística (IBGE, Brazilian Institute of Geography and Statistics) website http://downloads.ibge.gov.br/downloads_

geociencias.htm.

https://doi.org/10.1371/journal.pone.0190673.g001
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Mathematical model

Our mathematical model describes a temperature-driven population dynamics of Ae. aegypti
(introduced in [21]) and a new equation modeling the capturing process of adult mosquitoes

by the trap network. In this section we introduce both model equations and temperature-

dependent life-stage parameters.

Fig 2. (A) Time series of diurnal surface temperature in Vitória city (black) and its neighborhoods (grey); (B) Mosquito infestation index IMFA (black: true

values, red: smoothed curve) at city level and in each neighborhood (grey). The total period ranges from 1st January 2008 to 31th December 2011.

https://doi.org/10.1371/journal.pone.0190673.g002
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Population dynamics. Eqs 1–4 describe the dynamics of eggs, larvae, pupae and adult

populations of Ae. aegypti, respectively.

dE
dt
¼ s0A 1 �

E
K

� �

� ½s1 þ m1�E ð1Þ

dL
dt
¼ s1E � ½s2 þ m2�L ð2Þ

dP
dt
¼ s2L � ½s3 þ m3�P ð3Þ

dA
dt
¼ s3P � m4A � a

Tn

Hn
A

� �

ð4Þ

dTrapped
dt

¼ a
Tn

Hn
A ð5Þ

The first equation describes the dynamics of the egg stock (E), with a density-dependent

oviposition rate, which is regulated by the carrying capacity K, and a hatching rate σ1. Larvae

(L) develop into pupae at a rate σ2, and pupae (P) into adults (A) at a rate σ3. Mortality at each

developmental stage is described by the parameters μ1, μ2, μ3 and μ4. For details on this mathe-

matical model, we refer the reader to [21].

The developmental rates σi are temperature-dependent according to the expression [28]

siðTÞ ¼
ri

T
298

exp
ai

R
1

298
�

1

T

� �� �

1þ exp
bi

R
1

ti
�

1

T

� �� � ð6Þ

where i = 1, 2 and 3 in our model and T represents the mean temperature in Kelvin. For each

life-history stage i, ρi represents the development rate at 298 Kelvin assuming no enzyme inac-

tivation and the pairs {ai, bi} are specific parameters at 298 Kelvin, which are given by Focks

et al. [28]. τi (usually denoted by T1/2H in the literature) represents the temperature when half

of the enzyme is deactivated by being subjected to high temperatures. Finally, R = 1.987 cal K−1

mol−1 is the universal gas constant [29].

Capturing process. The capturing process is modeled by Eq 5 where the variable

Trapped(t) represents the total number of mosquitoes captured during the surveillance period

until the instant t. The capture rate is given by αTn/Hn, where α is the trap attractiveness (pro-

portion of mosquitoes within a household attracted by the trap), Tn and Hn represents the

number of traps and households in neighborhood n, respectively. The ratio Tn/Hn is therefore

a density of traps per household.

For calculating a theoretical IMFA in a week w based on our model, we use the equation

imfamodelðwÞ ¼
TrappedðwÞ � Trappedðw � 1Þ

Tn
ð7Þ
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Model parameterization

All symbols and their meanings are listed in Table 1. The different life history parameters were

obtained from the literature. The number of traps (Tn), and households (Hn) were parameter-

ized according to each surveillance area. The attractiveness of the Mosquitrap, α, is not known

a priori. However, previous field study described in Resende et al. [30] compared the catching

rate of 1, 2, 4, 8, 16 traps placed in a single house with no evidence of ever exhausting the local

mosquito population. This result suggests that the capture rate of a single trap is low. Here, we

arbitrarily set α = 0.2 implying that 20% of the mosquitoes within a household would be cap-

tured per day. The impact of this choice is discussed later.

Model fitting. To estimate the carrying capacity K for each neighborhood as well as Vitó-

ria city as a whole, the following steps were taken: first, weekly time series of IMFA (imfaobs)

were computed using either all city traps or the subset of traps within a neighborhood; second,

imfaobs was smoothed using local Polynomial Regression (degree 2, degree of smooth-

ing = 0.08); and third step was to fit the mathematical model to imfaobs. For each candidate

value for K, the model was numerically solved until its steady state using the temperature time

series as a forcing function and the resulting time series of mosquito captures, imfamodel, was

calculated using 7.

The model was implemented in R [26] and calibrated using the optimize and the

FME::modCost functions to find the value of K that minimizes the mean squared error (MSE)

between imfamod (at steady state) and imfaobs [32].

Results

At the city scale

The city of Vitória was monitored with 1410 traps. The estimated carrying capacity for Vitória

city as a whole was 2401 eggs (error = 3.55). This number should not be interpreted as an abso-

lute measure of the maximum load of eggs, because this calculation is conditioned on the trap

attractiveness (set at α = 0.2) and trap density. Later in the text, a formula is provided for calcu-

lating K using other values of α.

Fig 3 compares the observed and predicted time series of IMFA. The model fitted well the

seasonal fluctuations of IMFA, which tends to increase in October and peaks in December-

January. The lowest abundance is observed from June to July.

Table 1. Model parameters and values.

Parameters Values Sources

Oviposition rate (σ0) 1.0day−1 [31]

Egg eclosion rate (σ1) ρ1 = 0.24, a1 = 10798,

b1 = 100000, τ1 = 14184

[28] and [29]

Pupation rate (σ2) ρ2 = 0.2088, a2 = 26018,

b2 = 55990, τ2 = 304.6

Emergence rate (σ3) ρ3 = 0.384, a3 = 14931,

b3 = −472379, τ3 = 148

Egg mortality rate (μ1)

Larva mortality rate (μ2)

Pupa mortality rate (μ3)

Adult mortality rate (μ4)

1/100day−1

1/3day−1

1/70day−1

1/17.5day−1

[31]

Carrying capacity (K) Fitted

Trap attractiveness (α)

Traps per neighborhood (Tn)

Households per neighborhood (Hn)

0.2day−1

variable

variable

ECOVEC

IBGE (2010)

https://doi.org/10.1371/journal.pone.0190673.t001

Aedes aegypti mathematical modeling and surveillance

PLOS ONE | https://doi.org/10.1371/journal.pone.0190673 January 5, 2018 7 / 16

https://doi.org/10.1371/journal.pone.0190673.t001
https://doi.org/10.1371/journal.pone.0190673


At the neighborhood scale

The 75 neighborhoods in Vitória vary considerably in area, population density, and infrastruc-

ture (Table 2). On average, a neighborhood has 4200 inhabitants, ranging from 98 to more

than 39 thousand. There is still a large proportion of households located in streets with poor

drainage, unpaved streets, and close to open garbage dumps.

The number of traps installed per neighborhood varied from 2 in Junction 1, to 149,

in Jardim Camburi. The mean number of traps was 18.67 with a median = 13 traps. The sam-

pling effort increased linearly with the neighborhood area (km2), according to the equation

Traps = 4.7 + 22.8 × area (R2 = 0.49).

The mathematical model was fitted independently to each of the 75 time series of IMFA
from the neighborhoods of Vitória. Estimated K varied from 1383 to 4143. The distribution of

K values are approximately normally distributed (Fig 4) with mean 2585 and standard devia-

tion 649. The value of K estimated for Vitoria city (K = 2401) is lower than the average K esti-

mated at the neighborhood level. Estimated K and average IMFA per neighborhood, aIMFA,

are linearly associated (Table 2) as expected from the Eq 8 described below.

Fig 3. Time series of observed (black) and predicted (red) Aedes aegypti abundance index IMFA in Vitória, ES, from 1st January 2008 to 31th December 2011.

Average temperature series is shown in dashed line.

https://doi.org/10.1371/journal.pone.0190673.g003
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The mathematical model did not fit equally well to all time series. The median MSE was 8.8,

with an interquantile range = [6.47, 13.18]. Four neighborhoods presented MSE> 30, two of

them with few traps installed (2 and 3, respectively).

We further investigated if the goodness-of-fit was associated with the number of traps. The

quality of the fit in each neighborhood was classified as below and above the average of MSE.

Using ROC [33], we calculated as n = 16, the number of traps that best discriminated between

the two groups (Fig 5). The poorest fits were observed in neighborhoods monitored with less

than 10 traps.

We hypothesized that K would be associated with environmental and demographic charac-

teristics of the neighborhoods (Table 2). We found K associated with neighborhood size, but

not with population density. Among the variables related to the production of breeding sites,

only % households with garbage in the streets was associated and with less intensity, only to

aIMFA, % households with open sewage. In addition, the variable % households in streets with-
out manhole was associated negatively with K (Fig 6).

Relationship between carrying capacity, mosquito abundance and capture

rate

The mathematical relationship between the carrying capacity K and capture rate α, as a func-

tion of the number of adult mosquitoes in the equilibrium is:

K ¼ A�
1

1

s3

FLFP a
Tn

Hn
þ m4

� � � FE

0

B
B
@

1

C
C
A

� 1

ð8Þ

where FE, FL, FP are combinations of the life history parameters (see S1 Appendix for the der-

ivation of this expression from the mathematical model).

According to this expression shows, K should increase linearly with the abundance of adult

mosquitoes (what we found) but this relationship depends on a composite factor of life-history

parameters and the trapping process. It is clear that the estimated K will vary if trap attractive-

ness varies (α), in other words, the estimated K is trap dependent.

Table 2. Association between demographic, environmental and entomological variables with aIMFA (average

IMFA per neighborhood) and the estimated carrying capacity K of the neighborhoods of Vitoria city. Linear

regressions were fitted (see text for details). Three asterisks indicate p − value< 0.05, two asterisks indicate

p − value< 0.1.

Descriptors Range aIMFA K
aIMFA [0.2561,0.7712] ���

K [1383,4143] ���

Number of traps [2,149]

log(Number of inhabitants) [4.5,10.5]

Number of households [27,14451]

Area (km2) [0.045,3] �� ���

Population density (person/km2) [447,52479]

% households with illegal energy supply [0,30]

% households with garbage in the streets [0,8] ��� ���

% households in unpaved streets [0,20]

% households with open sewage [36,54] ��

% households in streets without manhole [0,79] ���

https://doi.org/10.1371/journal.pone.0190673.t002
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Discussion

Entomological surveillance is a key component of any dengue control program. Infestation

indexes are collected to inform levels of attention and to identify hotspots for vector control

activities. Understanding the temporal dynamics of Ae. aegypti and its response to environ-

mental factors is important for the development of early-warning systems and identification of

urban landscapes most associated with infestation. In this study, we have shown that a mecha-

nistic model with temperature-dependent transition rates is able to capture the temporal

dynamics of Ae. aegypti in a dengue endemic tropical city and allows the estimation of the

mosquito’s carrying capacity. It is known that high temperature is a strong modulator of Ae.
aegypti dynamics [34, 35], once it stimulates the fast development of larvae and the likelihood

of adult emergence, as well its dispersion [36, 37]. Our results are in agreement with previous

work [21] who applied the same model to ovitrap data in Rio de Janeiro, and supports the

Fig 4. Frequency distribution of Aedes aegypti carrying capacity in Vitória neighborhoods.

https://doi.org/10.1371/journal.pone.0190673.g004
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hypothesis that mosquito abundance responds to temperature even when annual temperature

amplitudes are not high [6].

In this study, we have found carrying capacities for textitAe. aegypti varying from 1383 to

4143 across Vitoria’s neighborhoods. These values represents an approximation of the egg

Fig 5. (A) Comparison between the number of traps used in the entomological surveillance resulted in high (poor fit) or low

MSE (good fit). (B) ROC curve showing the number of traps that separating good fits from poor fits. The red line indicates the

n = 16 traps that separates the two groups.

https://doi.org/10.1371/journal.pone.0190673.g005
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maximum capacity load of each neighborhood, once it also depends on the stated efficiency of

the trapping system to sample the adult population. In other words, a more attractive trap

would collect a larger sample of the flying population than a less attractive one and the number

of collect mosquitoes will affect the estimated K. Resende et al. [30] showed that trap sensitivity

(Positive MosquiTRAP Index) increased significantly with 8 traps per block in both high and

low abundance areas, suggesting that higher densities of MosquiTRAPs may be required for

monitoring Ae. aegypti.
In the literature, there are suggestions that Ae. aegypti carrying capacity should increase

with human population density and the amount of breeding sites produced by poor managed

garbage disposal, and water storage. In Vitória, we have found evidence for association of K
with garbage in the streets. The negative association between the % households in streets with-
out manholes and K could be explained by manholes functioning as oviposition sites in the

urban landscape. The presence of immature Ae. aegypti in the drainage system without clean-

ing and maintenance is well understood [38, 39], being considered a potential breeding site by

the Center for Disease Control and Prevention (CDC) [40]. In Brazil, it is commonly stated

Fig 6. Maps of Vitória, ES, neighborhoods. Maps show estimated carrying capacity K (green), the average entomological index aIMFA (blue), % households with
garbage in the streets (black) and % households in streets without manhole (red), respectively. The underlying shapefile with Vitória municipality and

neighborhoods used to build this figure is publicly available and free to use at Instituto Brasileiro de Geografia e Estatística (IBGE, Brazilian Institute of Geography

and Statistics) website http://downloads.ibge.gov.br/downloads_geociencias.htm.

https://doi.org/10.1371/journal.pone.0190673.g006
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that most breeding sites are within the households and their owners should be responsible for

their removal. Although we did not directly address this hypothesis, the results presented here

suggest that the landscape outside the households also contributes to the carrying capacity of

Ae. aegypti. Differences in receptivity conditions, as found in the neighborhoods of Vitória, are

expected in an urban landscape. It is likely that even within neighborhoods, the short flight

capacity of Ae. aegypti will favor the formation of small clusters of mosquitoes [41]. Therefore,

improving sanitary conditions and public services to reduce mosquito density is an important

control policy [42, 43] as well as defining and directing more intense efforts of vector control

actions to the clusters of greater risk.

The entomological surveillance program implemented in Vitória operates with 2 to 149

traps per neighborhood, which is the spatial scale at which IMFA is calculated and control

actions implemented. Our results have indicated that the estimation of carrying capacity is

affected by the sampling effort (number of traps). Small neighborhoods, with small sampling

effort, were found to have less precise trap data to be modeled. A closer inspection indicates a

higher variability in IMFA as sample size decreases. Better than average goodness-of-fit has

been only observed with 16 or more traps installed (Fig 5). Although this is not a study

designed for sample size calculation, our results suggest that a minimum of 16 traps should be

considered for monitoring a neighborhood. Otherwise, if less traps are delivered per area, than

IMFA should be calculated with less spatial resolution.

There are some limitations in this study. The satellite data is only reliable on days with

few clouds, and under perfect conditions, every 8 days. There is only one meteorological sta-

tion in the city, at the airport. Cities with the geographical complexity of Vitoria should have

meteorological surveillance integrated with their entomological surveillance. The microclimate

variations within a city can be strong enough to offer different survival and reproduction con-

ditions for invertebrates [44] such as Ae. aegypti. The model also present limitations, as it con-

siders temperature as the only source of temporal variation. Rainfall and relative air humidity

may be extra sources of variation that should be considered in future models. It is also neces-

sary to further explore spatial dependences between neighborhoods. Finally, the parameters of

the model, except for K, were fixed in values obtained from the literature, which do not neces-

sarily reflect the biology of the mosquitoes in Vitória.

In summary, the trap based surveillance system employed in Vitória delivers infestation

indices that are consistent with the patterns predicted by Ae. aegypti ecological models. This

result supports the usefulness of the trap-based surveillance for guiding Ae. aegypti control

programs, in combination with mathematical models that allow the estimation of the unob-

servable carrying capacity. For local assessments, the quality of the indices depended on the

trap sample size. We recommend that IMFA indices should be calculated with at least 16 traps

per neighborhood. From a modeling perspective, this study highlights the importance of math-

ematical models beyond their applications in ecology. Besides estimating latent (hidden) vari-

ables, once calibrated, models can be used to point out geographic areas and levels for the

control of vector-borne diseases.
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