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1  | INTRODUC TION

Vascular cognitive impairment and dementia (VCID) is currently the 
second most common type of dementia just after Alzheimer's disease 
(AD).1 In 2015, approximately 47.5 million people were affected by 
dementia, which is expected to increase to 75.6 million by 2030. The 
annual global social cost for VCID and vascular dementia (VaD) is $604 
billion, accounting for 1.0% of the global gross domestic product.2

Vascular cognitive impairment and dementia occurs when cere-
bral blood flow is compromised. It is a comprehensive brain disorder 
that comprises mild cognitive impairment (MCI), VaD, and mixed de-
mentia, such as mixed vascular and AD-type cognitive impairment.3 

VCID presents a significant decline in cognitive function due to cere-
bral vascular damage, including clinical stroke, asymptomatic infarcts 
and microinfarcts, leukoaraiosis, cerebral amyloid angiopathy (CAA),4 
transient ischemic attack (TIA), and micro hemorrhage.5 Diagnosis is 
further defined according to whether there is a causal relationship be-
tween cognitive impairment syndrome and vascular disease.6,7

Up to now, treatment for VCID is still limited to relief and therapy 
of symptoms.8 For example, Donepezil was found to enhance the 
cognitive ability of VaD patients.3 Administration of Galantamine is 
beneficial for patients with mixed AD and VaD.9

Non-coding RNAs, especially miRs, are one of the many biolog-
ical factors that cause functional changes during VCID. Because of 
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Abstract
Vascular cognitive impairment and dementia (VCID) is defined as a progressive de-
mentia disease related to cerebrovascular injury and often occurs in aged populations. 
Despite decades of research, effective treatment for VCID is still absent. The patho-
logical processes of VCID are mediated by the molecular mechanisms that are partly 
modulated at the post-transcriptional level. As small endogenous non-coding RNAs, 
microRNAs (miRs) can regulate target gene expression through post-transcriptional 
gene silencing. miRs have been reported to play an important role in the pathol-
ogy of VCID and have recently been suggested as potential novel pharmacological 
targets for the development of new diagnosis and treatment strategies in VCID. In 
this review, we summarize the current understanding of VCID, the possible role of 
miRs in the regulation of VCID and attempt to envision future therapeutic strategies. 
Since manipulation of miR levels by either pharmacological or genetic approaches 
has shown therapeutic effects in experimental VCID models, we also emphasize the 
potential therapeutic value of miRs in clinical settings.
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the redundancy of targets, miRs can target multiple signal pathways; 
one miR can target multiple messenger RNAs (mRNAs), whereas nu-
merous miRs can act on one mRNA at the same time.10 VCID can 
trigger altered miR expression in the blood and brain of rodents and 
humans.11-14 Besides, miRs can be regulated by external agents to 
improve symptoms caused by VCID.15-18

In this review, we summarize the current advances on the patho-
genesis and treatment of VCID, with a focus on the possible role of 
miRs in disease regulation and attempt to explore future therapeutic 
strategies.

2  | OVERVIE W OF VA SCUL AR COGNITIVE 
IMPAIRMENT AND DEMENTIA ( VCID)

Vascular cognitive impairment and dementia includes any degree of 
cognitive impairment resulting from vascular brain pathology, from 
MCI to dementia, regardless of its specific mechanism.19

2.1 | White matter injury in VCID

Given that blood flow in white matter (WM) is supplied by long, pen-
etrating arterioles that lack anastomotic branches, WM is more sus-
ceptible to reduced CBF.20,21 WM is composed of neuronal axons, the 
surrounding myelin sheath, and glial cells such as astrocytes, oligo-
dendrocytes, pericytes, and microglia.22 Myelinated WM tracts are 
responsible for long-range connectivity through axonal transport, 
and their lesions can lead to neuronal circuits processing speed defi-
cits and corticocortical disconnections.23 The pathological changes 
in WM can predict VCID according to neuropathology guidelines, 
and WM injury is a significant contributor to dementia.24-26

In animal models of VCID, permanent occlusion of the common ca-
rotid arteries (CCAs) is the most frequently used large vessel occlusion 
model that leads to BBB disruption and significant WM impairment.27 
This model shares several common pathological consequences with 
small vessel disease, including microinfarcts and WM changes.28,29 
WM lesions and rarefaction mainly occur in the corpus callosum with 
remarkable myelin loss, axonal damage, microglia, and astrocyte acti-
vation, without causing neuronal damage.30-33 In the model of small 
vessel occlusion, microglia/macrophage polarization was also found 
strongly linked to VCID.34 Except for the rodent models, the accumula-
tion of myelin defects such as myelination, swelling, and complete ax-
onal degeneration has also been found to be correlated with cognitive 
decline in rhesus monkeys.35 Besides, aging exacerbates the degenera-
tion of WM, and the consequences of chronic cerebral hypoperfusion 
(CCH) are more severe in aged animals.36

2.2 | Gray matter injury in VCID

The neurovascular unit consists of neurons, glia, perivascular, and 
vascular cells. Together, they maintain the normal physiological 

function of neurons, repair damaged neurons, and play an essential 
role in keeping the homeostasis of the cerebral microenvironment.37 
The pathogenesis of VCID mainly appears in the neurovascular unit. 
Among these neurovascular components, the neuron is the basic 
structural and functional unit of the nervous system. Global neu-
ronal loss that is produced by persistent cerebral hypoperfusion in 
specific brain regions, such as the hippocampus, can lead to severe 
learning and memory impairment.38

Neurons are electrically active cells that require a continuous 
supply of oxygen and glucose to produce a tremendous amount of 
energy, which is needed to maintain membrane potential. Therefore, 
neurons are vulnerable to ischemic injury. Different from stroke, 
which is induced by a sudden and complete disruption of blood sup-
ply to different regions of the brain, non-stroke causes of VCID is 
often caused by a moderate but sustained decrease in blood supply 
by CBF. The mild but continuous reduction of blood supply could 
cause a reduction in oxygen and glucose supply to the brain, leading 
to cell death, memory impairment, and dementia.39

2.3 | Molecular mechanism of VCID

Although animal models cannot entirely present the complex clinical 
symptoms of VCID in humans, they aid in understanding the molecu-
lar changes in the brain during cerebrovascular injury to a certain 
extent, which eventually leads to cognitive impairment of VCID.40 
Several mechanisms can be used to generalize the pathological 
causes of the VCID at the molecular level (Figure 1).

2.3.1 | Oxidative stress

The molecular mechanisms of oxidative stress-induced cognitive 
impairments can be studied by using animal models, such as bilat-
eral carotid artery occlusion (BCAO) rat models. In the BCAO model, 
oxidative stress is characterized by an increase in ROS production,41 
which is one of the triggers leading to cardiovascular pathophysi-
ology and neurodegeneration.42 The accumulation of ROS and the 
decrease in antioxidant enzymes may directly affect the synaptic 
activity and excitatory transmission of neurons, leading to cognitive 
impairment.43 The enzyme that produces excessive ROS produc-
tion during VCID is nicotinamide adenine dinucleotide phosphate 
(NADPH). 43 ROS produced by NADPH co-enzymes are the criti-
cal contributors to cerebrovascular dysregulation and might lead 
to cognitive impairment through cell dysfunction and cell death.43 
Inhibition of NADPH oxidase activity reduced the cognitive impair-
ment induced by BCAO models in rodents.44 Similar alterations are 
also observed in VCID patients. Several studies have reported that 
the level of antioxidant enzymes in blood samples of VaD patients is 
decreased.45,46

There are many signal pathways involved in the regulation of ox-
idative stress in VCID. Some researchers reported that activation of 
the PI3K/PDK1/AKT pathway could inhibit the apoptosis of neurons 
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in VCID through antioxidative stress effects.47 The activated ERK-
Nrf2-HO-1 signaling pathway is also related to the antioxidant 
protection in response to hypoperfusion injury.48 L-carnitine is an an-
tioxidant agent, which can regulate PTEN/the mammalian target of 
rapamycin (mTOR) signaling pathway in the rat CCH model, thereby 
enhancing axonal plasticity and oligodendrocyte expression.49

2.3.2 | Neuroinflammation

Neuroinflammation is closely involved in the pathophysiology of 
VCID.50 Inflammatory-related microglia causes cognitive impair-
ment by activating receptor for advanced glycation end products 
(RAGE), which is present on both microglia and neurons. RAGE can 
further stimulate the expression of nuclear factor kappa B (NF-κB), 
a transcription factor that regulates the expression of several pro-
inflammatory genes.51 Besides, microglia releases cytokines, such 
as interleukin (IL) and tumor necrosis factor-α (TNF-α), that play 

essential roles in the pathogenesis of dementia.52,53 Increased IL-6 is 
associated with VaD in patients.54 Accordingly, the serum IL-6 level 
of VaD patients also increased significantly.55

2.3.3 | BBB integrity and injury in VCID

Vascular cognitive impairment and dementia is a cerebrovascular 
injury-related disease associated with BBB disruption. Endothelial 
tight junction (TJ) proteins are major components of the BBB 
and are responsible for sealing gaps between adjacent endothe-
lial cells.56 Altered distribution or loss of TJ proteins is frequently 
seen in ischemic-induced cerebral microvessel injuries, resulting 
in compromised BBB integrity and dementia.57 TJ proteins include 
transmembrane proteins, cytoplasmic attachment proteins, and 
cytoskeletal proteins.58 Transmembrane proteins include three 
complete membrane proteins, occludins, claudins, and junctional 
adhesive molecules (JAMs). Cytoplasmic attachment proteins, which 

F I G U R E  1   Potential molecular mechanisms in VCID. CCH can cause a cascade of pathological changes: neuronal damage, WM lesions, 
glial activation, and BBB disruption, resulting in cognitive impairment and dementia in experimental studies. The following cellular 
hemostasis abnormalities mainly contribute to the above pathological changes in VCID: oxidative stress, neuroinflammation, BBB disruption, 
abnormal lipoprotein metabolism, endoplasmic reticulum stress, and the deposition of Aβ [Colour figure can be viewed at wileyonlinelibrary.
com]
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are also named as closed small loop proteins, contain ZO-1, ZO-2, 
and ZO-3. Prolonged hypoperfusion in white matter and gray mat-
ter eventually leads to TJ disruption and BBB leakage, which come 
into appearance before cognitive impairments.59 As the most com-
mon model in VCID studies, the BCAS model shows BBB leakage 
not only in the corpus callosum and external capsule but also in the 
gray matter.60 A meta-analysis from 31 studies counted 1953 indi-
viduals of normal aging or cerebral microvascular disease. In 693 
healthy human, increasing age was associated with the increase in 
BBB permeability. BBB permeability was increased further in 510 
patients with either VCID or AD presented compared with 547 aged-
matched controls.59,61 In the post-mortem brains of VCID patients, 
there are higher levels of claudin-2, claudin-5, and claudin-11.62 
Besides, claudin-1 genetic polymorphisms were found to be highly 
associated with VCID.63 Besides TJ disruption and subsequent para-
cellular leakage, the reverse transcytosis across BBB is also involved 
in the clearance of Aβ from brain.64,65 Failure or reduction in Aβ brain 
clearance through endothelial transcytosis may lead to the accumu-
lation of Aβ in brain and finally result in dementia.66

2.3.4 | Other mechanisms

In recent years, cumulative evidences have shown that the patho-
genesis of VCID is closely related to the destruction of cholesterol 
homeostasis and lipoprotein disturbances.67,68 Changes in choles-
terol homeostasis lead to abnormal cholesterol uptake from plasma 
to brain.69 Apolipoproteins (such as ApoA, ApoE) and the choles-
terol efflux transporter, ABCA1 (ATP-binding cassette transporter 
A1), are involved in the cholesterol conversion between astrocytes 
and neurons in the brain.70 Liver X receptor-β/retinoid X receptor-α 
(RXR-α)/ABCA1 signaling cascade plays a vital role in lipoprotein me-
tabolism.71-73 ApoA1 and cholesterol, the downstream mediators of 
this signaling pathway, may provide a protective role in cerebral hy-
poperfusion.70 Fatty acid amide hydrolase (FAAH) inhibitor UBR597 
blocks the PI3K-AKT-mTOR pathway and autophagy to attenuate 
CCH-induced neuronal damage and improve cognitive function.74 
Curcumin can reduce the discharge of excess cholesterol and pre-
vent further brain injury by activating the LXR/RXR-ABCA1/apoA-1 
pathway.75

Endoplasmic reticulum stress (ERS) is a process by which un-
folded/misfolded proteins accumulate in the ER after an ER ho-
meostasis disorder.76 Specific stress conditions such as hypoxia, 
nutrient deprivation, calcium consumption, and hyperglycemia can 
trigger ERS.77 Sustained ERS eventually leads to cell apoptosis. 
N-Butylphthalide (NBP) can reduce ERS and treat VCID by activating 
the Shh/Ptch1 pathway in the hippocampus.78

It is estimated that 40% of  AD  patients also have some forms 
of VCID.79-82 The most common hypothesis for the progression of 
AD is the amyloid cascade hypothesis, stating that beta-amyloid 
(Aβ) aggregation leads to hyperphosphorylation of tau and tan-
gle formation, which then leads to neurodegeneration.83,84 CCH 
can induce the deposition of Aβ in the hippocampus,85 along with 

neuronal morphological damage and cognitive deficits.86-89 Icariin 
can downregulate the level of insoluble Aβ fragments in the hippo-
campus by decreasing the expression levels of Aβ-protein precursor 
(APP) and β-site APP-cleaving enzyme 1 (BACE1), while increasing 
the expression levels of insulin-degrading enzyme (IDE) and ADAM 
metallopeptidase domain 10 (ADAM10). The effect of Icariin on 
Aβ reduction is mediated by upregulation of peroxisome prolifera-
tor-activated receptor α (PPARα) and γ (PPARγ), and the activation of 
BDNF/TrkB/CREB signaling pathway.90

3  | MICRORNA S AND VCID

miRs function as a novel class of small non-coding RNAs (~21-25 nt) 
that negatively regulate gene expression.91,92 By hybridizing to the 
3’-untranslated regions (3’-UTR) of one or more mRNAs, miRs nega-
tively regulate gene expression.91,92 miRs involve almost all cellular 
processes, including cell proliferation, differentiation, metabolism, 
apoptosis, and immune responses in various pathophysiological 
conditions.93

3.1 | The biomarker functions of miRs in VCID

miRs are very stable in various biofluids, including blood, plasma, 
CSF, and saliva,93-95 and thus, circulating miRs can serve as poten-
tially informative biomarkers for a range of neurological diseases 
(Table 1). By performing plasma miR profiling in small-vessel VaD pa-
tients and also in age- and sex-matched healthy controls, Prabhakar 
et al demonstrated that among the 44 differentially expressed miRs, 
miR-409-3p decreased more than 4-fold whereas miR-451a, miR-
486-5p, and miR-502-3p increased more than 3.6-fold compared 
with healthy controls.96 A validation study further suggested these 
miRs as potential biomarkers for identifying small-vessel VaD.96 
Sheinerman et al also found that two sets of circulating brain-en-
riched miRs, the miR-132 family (miR-128, miR-132, and miR-874) and 
the miR-134 family (miR-134, miR-323-3p, and miR-382), were sig-
nificantly different in MCI patients from age-matched controls with 
very high sensitivity and specificity.97 In a recent study, Marchegiani 
et al also reported that compared with both healthy controls and 
dementia patients, the level of miR-222 was significantly increased 
in VaD patients, suggesting miRs are novel and promising biomarkers 
to diagnose VaD.98

3.2 | The role of microRNAs in the 
pathogenesis of VCID

Apart from the biomarker functions of miRs, accumulating evidence 
also revealed the critical role of miRs in the pathogenesis of VCID 
in animal models (Table 2). miR-195 was the first systematically in-
vestigated miR in CCH-induced cognitive impairment. Ai et al dem-
onstrated that miR-195 repressed amyloidogenesis via regulating 
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the expression of APP and BACE1 at the post-transcriptional level. 
Furthermore, lentivirus-mediated miR-195 knockdown induced de-
mentia, whereas overexpression of miR-195 reduced dementia vul-
nerability triggered by two-vessel occlusion (2VO) in rats.85 Similar 
to miR-195, the miR-132 level was also downregulated in the hip-
pocampus and cerebral cortex of CCH rats.16,99

miR-9 is another miR involved in the pathogenesis of CCH. Sun 
et al discovered that the miR-9 level was increased in the hippocam-
pus and cerebral cortex of CCH rats after 2VO.13 Besides, miR-9 
knockdown reduced the symptoms of dementia triggered by 2VO 
in rat models.100 Similarly, Wei et al found that miR-9-5p was sig-
nificantly elevated in serum and CSF in VaD patients, as well as in 
2VO-induced CCH rats. Further, the authors discovered that admin-
istration of the miR-9-5p antagomir significantly attenuated memory 
impairment, rescued the cholinergic neuronal function, and lowered 
oxidative stress and neuronal loss in CCH rats.17 CCH also enhanced 
the expression of miR-27a, but inhibited miR-124 expression.11,18

By using endothelial cell-specific miR-126 conditional knockout 
mice, it was found that EC-targeted deletion of miR-126 aggravated 
cognitive impairment, decreased CBF, myelin density, and axon 
density, increased inflammation, and exacerbated water channel 
and glymphatic dysfunction compared with control mice in multi-
ple microinfarction-induced vascular dementia.101 Recently, several 
groups have demonstrated that miR-93 aggravates inflammatory re-
sponse by modulating TLR signaling pathways.102,103

Other miRs were also reported to play a regulatory role in the 
pathogenesis of VaD, and modulation of these miR levels provided 
therapeutic potential against VCID in animal models. For example, 
suppression of miR-96 expression alleviated cognitive impairment.12 
Besides, CCH-induced TNF-α could upregulate miR-501-3p.104 miR-
501-3p inhibitor effectively suppressed CCH-induced ZO-1 reduc-
tion and BBB destruction in cerebral white matter and significantly 
improved working memory deficits in the mouse model of CCH.104 
Moreover, there was a significant increase in miR-210-5p in the 
hippocampus of rats after VCID. miR-210-5p antagomir effectively 
attenuated these VCID-induced phenotypes.105 In addition, miR-
134-5p antagomir can relieve cognitive dysfunction in VCID.106 On 
the other hand, miR-26b overexpression significantly attenuated 

microglial activation, inflammatory responses, neurotoxicity, and 
cognitive impairments in 2VO-generated CCH.107 CCH can inhibit 
miR-181c expression in the hippocampus, which is closely associated 
with the reduction in dendrite spine density and dendritic branch-
ing of hippocampal neurons.108 Virus-mediated delivery of miR-
181c partially rescued cognitive impairment in rat CCH.108 Direct 
knockdown of miR-153 or overexpression of the antisense molecule 
(lenti-AMO-153) may be a new strategy for alleviating the synaptic 
pathology and cognitive decline of VaD.109,110

3.3 | The mechanism of microRNAs in the 
regulation of VCID

Constantly reduced blood supply and resultant neuronal hypoxia 
contribute to oxidative stress, which promotes neuroinflammation 
and BBB injury, thereby further increasing the susceptibility of the 
affected tissue to neurodegeneration.111 Recently, specific miRs 
have been shown to act on proteins in intrinsic and extrinsic signal-
ing pathways through post-translation modification, thus regulating 
cognitive injury after VCID (Figure 2). This section discusses the pos-
sible molecular mechanisms and signaling pathways of those miR-
NAs in VCID pathophysiology.

miR-9 can target the 3’-UTR domain of the creb gene to directly 
inhibit the expression of CREB, which suppresses BACE1 expres-
sion.100 miR-9 could also regulate the process of Nav1.1/Nav1.2 
trafficking in 2VO rats by binding to the coding sequence domain 
of Navβ2.13 Contrary to miR-9, the expression of miR-124 was con-
tinuously inhibited in the 2VO rat model. Aβ might upregulate the 
expression of BACE1 by inhibiting miR-124 expression.18 In addition, 
miR-9 and miR-124 presented the synergistic effect in the regulation 
of dendritic branching by binding to the Rap GTP-binding protein 
Rap2a and regulating the AKT/GSK3β pathway.112 By binding to the 
3’-UTR of snap25 gene mRNA, miR-210-5p exacerbated cognitive 
impairment. The dysfunction of the miR-210-5p-snap25 signaling 
pathway might be relevant to synaptic loss in VCID.105 Like miR-
210-5p, by binding to the 3’-UTR of foxp2 (forkhead box p2), the miR-
134-5p/foxp2/Syn1 pathway was found to contribute to cognitive 

MicroRNAs Biomarkers Sensitive (%) Specificity (%) Reference

miR-409-3p Diagnosis 76 89 Langa et al81

miR-451a Diagnosis 70 75 Langa et al81

miR-486-5p Diagnosis 75 83 Langa et al81

miR-502-3p Diagnosis 75 89 Langa et al81

miR-128 Diagnosis 84 96 Sheinerman et al97

miR-132 Diagnosis 88 93 Sheinerman et al97

miR-874 Diagnosis 94 96 Sheinerman et al97

miR-134 Diagnosis 86 82 Sheinerman et al97

miR-323-3p Diagnosis 88 80 Sheinerman et al97

miR-382 Diagnosis 76 90 Sheinerman et al97

miR-222 Diagnosis N/A N/A Marchegiani et al98

TA B L E  1   MicroRNAs as potential 
biomarker in VCID
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impairment in chronic ischemia-induced VCID through loss of corti-
cal neurons and synaptic proteins.106

The reduced miR-132 level increased tau phosphorylation at 
Ser396. Nimodipine alleviated cell apoptosis and reduced hyper-
phosphorylation of the Tau protein by activating the miR132/GSK3β 
pathway.99 miR-132 may participate in the downregulation of methyl 
CpG binding protein 2 (MeCP2) after CCH, and MeCP2 downregu-
lation was possibly involved in cognitive deficit through BDNF and 
its downstream pathways (TrkB and CREB) after 2VO.14 miR-132 
ameliorates CCH-induced learning and memory impairments by tar-
geting the scn1a and scn2a genes to downregulate the expression of 
Nav1.1 and Nav1.2.16

miR-96 can suppress autophagy by regulating the PTEN-Akt-
mTOR signaling pathway.12 miR-27a affects autophagosome clear-
ance through post-transcriptionally regulating lysosomal-associated 
membrane protein-2 (LAMP-2) expression.11 miR-181c might im-
prove cognitive impairment, promote hippocampal neuronal remod-
eling, and increase N-methyl-D-aspartate receptor 1 (NR1) subunit 
expression through the effect of TRIM2 on neurofilament light (NF-
L) ubiquitination.108

miR-195 improved dementia susceptibility in 2VO rats by inhib-
iting the expression of APP and BACE1 at the post-transcriptional 
level via targeting different genes.85 In a later study, Sun et al dis-
covered that miR-195 could also bind to the 3’-UTR of the cdk5r1 
gene, thereby regulating tau hyperphosphorylation. Knockdown 
of miR-195 increased tau phosphorylation at Ser202/Thr205, 
Ser262, Thr231, and Ser422 and activated the Cdk5/p25 pathway. 
Overexpression of miR-195 reversed these effects in 2VO-induced 

CCH in rats.113 Moreover, researchers from the same group fur-
ther found that miR-195 can increase phosphatase methylester-
ase-1 (PME-1) expression by binding to the 3’-UTR domains of the 
Ppme1 gene. Downregulation of miR-195 in CCH reversed this ef-
fect and reduced phosphatase-2A (PP2A) protein and activity.114 
Overexpression of miR-195 rescued CCH-induced dendritic de-
generation and neuron apoptosis by targeting the tnfrs21 gene to 
downregulate the expression of DR6 and suppress the N-APP/DR6/
caspase pathway.15 Considering the critical role of miR-195 in VCID, 
the complement of exogenous miR-195 may be a potentially anti-de-
mentia approach. A recent report showed that miR-153 is involved in 
the CCH-impaired hippocampal glutamatergic synaptic vesicle traf-
ficking by binding site in the 3′ untranslated region (3’UTR) of the 
SYN1, Snap25, Vamp2, Stx1a, and Syt1 genes, which may be a new 
drug target for prevention or treatment of AD and VaD.109,110

Overexpression of miR-26b ameliorates inflammation, neu-
rotoxicity, and cognitive impairment by decreasing the number of 
activated microglia and targeting IL-6.107 As an angiogenic miR, miR-
126 regulates various vascular functions.115,116 miR-126 not only 
regulates angiogenesis and WM remodeling but can also regulate 
glymphatic function to affect innate immune response and inflam-
mation.117,118 Regulation of the miR-93-mediated TLR signal pathway 
is probably a potential mechanism for alleviating the inflammatory 
response of VCID.119

Given the importance of BBB integrity in VCID progression, ma-
nipulating target genes that regulate the BBB or TJ integrity may 
protect against VCID. Our previous data show that miR-15a/16-1 
inhibition alleviates ischemia-induced BBB disruption in mice.21,104 

TA B L E  2   VCID-associated microRNAs

MicroRNAs Functions Targets Reference

miR-195 Reduces dementia vulnerability and prevents VCID APP, BACE1 Ai et al85

miR-132 Protects against CCH-induced learning and memory 
impairments and ameliorates dementia in VCID

Nav1.1, Nav1.2 Hu et al16

miR-9 Induces cognitive impairment and promotes dementia in VCID Nav1.1, Nav1.2 and BACE1 Sun et al13, Xie et al100

miR-27a Inhibits the process of autophagy and induces dementia in VCID LAMP2 Che et al11

miR-124 Inhibits the formation of Aβ and improves dementia in VCID BACE1 Zhang et al18

miR-126 Ameliorates vascular function and inhibits VCID MMP-9 Yu et al101

miR-93 Aggravates inflammatory response and promote dementia in 
VCID

TLR4 Shang et al102, Liu et al103

miR-96 Inhibits the process of autophagy and induces dementia in VCID mTOR Liu et al12

miR-501-3p Aggravates BBB damage and increases the possibility of dementia 
in VCID

ZO-1 Toyama et al104

miR-210-5p Decreases synapse number and aggravates dementia in VCID Snap25 Ren et al105

miR-134-5p Promotes cortical neuron injury and dementia in VCID Foxp2 Liu et al106

miR-26b Alleviates microglial inflammatory response and protects brain 
from dementia in VCID

IL-6 Kang et al107

miR-181c Increases cellular adaptation to long-term ischemia and reduces e 
the possibility of dementia in VCID

TRIM2,NR1 Fang et al108

miR-153 Promotes synaptic plasticity damage and dysfunction and 
aggravates dementia in VCID

Snap25,Vamp2, Stx1a and 
Syt1

Zhang et al109, Yan 
et al110
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Other miRs such as miR-212, miR-132, miR-150, miR-181a, miR-155, 
miR-501-3p, and miR-128-1-5p are also associated with the regu-
lation of ZO-1, occludin, and claudin-5 expression, therefore con-
tributing to the alterations in BBB stability.120 For example, TNF-α 
combined with miR-501-3p downregulated ZO-1 and lowered cell-
cell resistance, which plays an essential role in the pathogenesis of 
cerebral hypoperfusion, especially in BBB disruption.104

4  | TARGETING REGUL ATORY MICRORNA S 
IS A NOVEL THER APEUTIC APPROACH FOR 
VCID

miRs are key mediators in the pathogenesis of VCID. Understanding 
their functional significance and molecular mechanisms will provide 
new insights in developing novel miR-based therapeutics to delay or 
rescue cognitive impairments and dementia.

4.1 | Current methods

The current approaches for targeting miRNAs in animals include 
transgene or gene knockout of miRs of interest, and exogenous in-
jection of miR mimic or antagomir/inhibitor into the vein, the lateral 
cerebral ventricle, parenchymal infarct area, and intranasal cavity. For 
instance, some researchers injected miR antagomirs into lateral cer-
ebral ventricles or hippocampus by stereotactic technology to examine 
the role of specific miRNA in VCID, showing a significant neuropro-
tective role in the rodent experimental CCH model.15,105,107 However, 
intraventricular delivery of antagomir in the treatment of VCID has 
limitations in clinical application. A few research groups have reported 

that intravenous administration of specific miRNA antagomirs may be 
an effective therapeutic approach in experimental stroke.21,121-123 One 
of the significant limitations in this field is the selection of suitable gene 
targeting vectors.124 So far, this administration method has not been 
reported in the clinical treatment of VCID.

4.2 | Improving drug delivery systems for the 
treatment of VCID

Exosomes are vesicles (approximately 30-100nm) derived from en-
dosomes released from all living systems, including cells.125 Exosomes 
play an essential role in intercellular communication between the 
source and target cells by transferring proteomic and genomic ma-
terials, as well as proteins, mRNAs, and miRs.125 Comparing with 
routine systemic administration, exosomes, which are produced by 
ΒMSCs (bone marrow mesenchymal cells), due to receptor-mediated 
transcytosis and benefit from their lipid bilayer encapsulation, can 
quickly pass through the BBB and deliver miR molecules into brain 
cells.126-128 Cell-based exosome therapy is used to promote brain re-
modeling and improve neurological function. For example, after the 
synthesized double-stranded miRNA was introduced into BMSCs, 
miR-143 carrying exosomes were secreted and quickly transferred 
into osteosarcoma cells to inhibit their migration.129 MSC therapy 
has already been applied in clinical trials of stroke treatment.130 miR-
133b secreted by exosomes from ΒMSCs can induce neural plastic-
ity and functional recovery in rats after stroke.131 Through secreting 
exosomes, neurons can translocate miR-132 to endothelial cells to 
maintain central brain vascular integrity.132 Although there is no 
report on the treatment of VCID with various exosomal miRs, this 
method has broad application prospects in the future.

F I G U R E  2   miR regulatory mechanisms in experimental VCID. miR-132, miR-9, and miR-124 can regulate oxidative stress by the CREB 
pathway, and miR-195 can inhibit the deposition of Aβ in neurons. miR-181c, miR-9, miR-124, miR-210-5p, miR-134-5p, miR-132, and miR-153 
can regulate synaptic loss by AKT/GSK3β and other signaling pathways in neuron dendrites. miR-26b, miR-126, and miR-93 can regulate 
neuroinflammation. miR-96 and miR-27a can suppress autophagy in neurovascular units. miR-501-3p can decrease tight junction expression 
in white matter and the blood-brain barrier [Colour figure can be viewed at wileyonlinelibrary.com]
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4.3 | MicroRNA-based therapy for VCID

There are some small-molecule chemical compounds targeting miRs 
to treat VCID. For example, as a candidate drug to treat tauopathy 
in CCH, Nimodipine has been shown to inhibit tau phosphorylation 
at the Ser 396 site via the miR-132/GSK-3β pathway.99 Obviously, 
manipulation of miRs can affect multiple signal pathways in VCID by 
different molecular mechanisms (Figure 3).

To improve the efficiency of miR inhibition in vivo, different 
chemical modifications have been developed to improve antago-
mir's bioavailability.133,134 These modifications include anti-miR 
oligonucleotides that are synthesized and modified by incorpo-
rations of a methyl group (2’-O-methyl) together with partial 
phosphonothioate linkage and cholesterol conjugation at the 3’ 
end of the strand (which improves tissue distribution and cellular 
uptake), and the use of locked nucleic acids (LNAs). For exam-
ple, LNA-anti-miR-501-3p was intraperitoneally injected to ef-
fectively reduce BBB disruption and improve VCID in the mouse 
BCAS model.104

5  | CONCLUSION AND PROSPEC TS

miRs can translationally repress hundreds of proteins in multiple reg-
ulatory signaling pathways. Thus, physiological expression of miRs 
is essential for maintaining healthy development and function of 
the brain, whereas the imbalance of miR levels in brain cells may in-
crease the susceptibility of VCID and other nervous system diseases. 
Altered miR expression and activities have been shown to play criti-
cal roles in the pathophysiology and progression of VCID.

The levels of hundreds of miRs have been found to be altered 
in peripheral blood samples of VCID patients, which may provide a 
new avenue for rapid diagnosis and treatment of VCID.135 Through 
studies from experimental animal models, it is suggested that pro-
moting or inhibiting the expression of various VCID-associated miRs 
by pharmaceutical and non-pharmaceutical approaches is beneficial 
to the improvement or recovery of cognitive function in VCID.120 

However, effective application of miR-based therapy in VCID may 
encounter several challenges. A major obstacle to the effective 
treatment of VCID is the limited understanding of the role of miRs in 
its pathogenesis. At the present time, miR-related research in VCID 
mainly focuses on investigating the relationship between a specific 
miR of interest and its regulated target genes. In the future, we need 
to further study miRNA regulatory networks to understand the 
role of their complex post-transcriptional regulatory mechanisms. 
Another major challenge for miR-based therapy in VCID is the de-
velopment of pharmacological tools that can aid in effective trans-
port of miR inhibitors and mimics across the BBB to affected brain 
regions with optimal concentrations.

Currently, miR-based VCID treatment is only at the beginning 
stages of testing in experimental VCID models. The application of 
transgenic animals, especially vascular cell-specific miR transgenic or 
knockout mice,136 can help us to better understand the mechanisms 
in VCID. Understanding the pathogenesis of VCID is still superficial 
at the present time, and subsequent research should focus on the 
key pathogenic mechanisms of VCID.

It is generally accepted that aging is not only a simple physiolog-
ical process but also accompanied by many related complications, 
including hypertension, metabolic diseases, and dementia.137 Since 
VCID is closely related to aging, it is necessary for us to strengthen 
our understanding of the relationship between aging and its patho-
genesis and clinical manifestations.138 There are a class of miRs that 
are associated with the aging process and influence lifespan by tar-
geting components of longevity networks or by regulating stem cell 
behavior.139-141 These aging-related miRs, including miR-27, miR-29, 
miR-30, and miR-71, may become the research hot spot for future 
miR-based therapy in VCID.
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