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Abstract

Marine classification schemes based on abiotic surrogates often inform regional

marine conservation planning in lieu of detailed biological data. However, these

schemes may poorly represent ecologically relevant biological patterns required for

effective design and management strategies. We used a community-level modeling

approach to characterize and delineate representative mesoscale (tens to thousands

of kilometers) assemblages of demersal fish and benthic invertebrates in the North-

west Atlantic. Hierarchical clustering of species occurrence data from four regional

annual multispecies trawl surveys revealed three to six groupings (predominant

assemblage types) in each survey region, broadly associated with geomorphic and

oceanographic features. Indicator analyses identified 3–34 emblematic taxa of each

assemblage type. Random forest classifications accurately predicted assemblage dis-

tributions from environmental covariates (AUC > 0.95) and identified thermal

limits (annual minimum and maximum bottom temperatures) as important pre-

dictors of distribution in each region. Using forecasted oceanographic conditions

for the year 2075 and a regional classification model, we projected assemblage dis-

tributions in the southernmost bioregion (Scotian Shelf-Bay of Fundy) under a

high emissions climate scenario (RCP 8.5). Range expansions to the northeast

are projected for assemblages associated with warmer and shallower waters of

the Western Scotian Shelf over the 21st century as thermal habitat on the rela-

tively cooler Eastern Scotian Shelf becomes more favorable. Community-level

modeling provides a biotic-informed approach for identifying broadscale ecolog-

ical structure required for the design and management of ecologically coherent,

representative, well-connected networks of Marine Protected Areas. When com-

bined with oceanographic forecasts, this modeling approach provides a spatial

tool for assessing sensitivity and resilience to climate change, which can

improve conservation planning, monitoring, and adaptive management.
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INTRODUCTION

Characterizing the diversity of distinct assemblages in
marine ecosystems and their distribution is key to suc-
cessful implementation of regional conservation planning
(Foster et al., 2017; Roberts et al., 2003), ecosystem-based
management of fisheries (Koen-Alonso et al., 2019), and
marine spatial planning processes (Foley et al., 2010) that
collectively aim to maintain or restore biodiversity and
ecosystem functions that underpin services and benefits
to society. From a conservation perspective, designing
networks of marine protected areas (MPAs) that capture
the full breadth of ecosystem and habitat types is a
keystone principle (representativity) that maximizes
their effectiveness and ecological coherence (Airamé
et al., 2003; Roberts et al., 2003). Ecological coherence
describes the integrity of the collective sites in a network,
the processes, functions, and structures protected
therein, and the network with the wider environment
under changing conditions and is achieved by incorporat-
ing representativity and other ecological principles
(i.e., connectivity, adequacy, replication) in their design
(Ardron, 2008). MPA networks designed to be representa-
tive of taxonomic assemblages and habitat types at a
regional scale are likely to conserve a greater range of
biodiversity and ecosystem functions than those
approaches focused on species richness alone (Roberts
et al., 2003). Moreover, representative networks can serve
as an insurance policy, natural reference, and seed stock
to adjacent non-protected areas (Rice & Houston, 2011),
and thus confer simultaneous benefits to conservation
and fisheries (Gaines et al., 2010; Roberts et al., 2003).
Addressing representativity is a logical precursor to incor-
porating other ecological design principles into MPA net-
works (Roberts et al., 2003; Smith et al., 2009). However,
operationalizing this criterion requires the development of
regional marine classification schemes that delineate the
main biogeographic subdivisions of MPA network plan-
ning areas (Rice & Houston, 2011; Roff et al., 2003). These
subdivisions ideally define spatially contiguous units of rel-
atively homogeneous community composition along
important axes of environmental variation. Although
larger-scale marine ecoregions are available (e.g., Spalding
et al., 2007), their spatial scale often abstracts them from
the scale by which regional MPA networks are developed.

Several approaches have been adopted to develop
marine classification schemes across multiple spatial scales.
These approaches can be broadly characterized as classifica-
tions based on (1) abiotic habitat surrogates or (2) biologi-
cally informed predictive mapping. The first strategy
leverages widely available physiographic and oceanographic
data to delineate units of the classification with the assump-
tion that distinct abiotic conditions will represent

underlying community composition (e.g., Douglass
et al., 2014; Roff et al., 2003). Although these abiotic surro-
gates can provide an adequate first-order approximation of
biological patterns (Kostylev & Hannah, 2007; Sutcliffe
et al., 2015), they often rely on expert judgments of the rela-
tive biological importance of abiotic variables and assump-
tions on boundary locations. Furthermore, abiotic
surrogates alone fail to capture the level of representativity
achieved by biologically informed classifications (Ban, 2009;
Rubidge et al., 2016; Sutcliffe et al., 2015), and therefore
may lead to larger (inefficient) MPA network footprints to
achieve adequate protection of biodiversity features (Ferrari
et al., 2018). The second strategy applies one of three broad
community-level modeling approaches that identify key
environmental correlates with more sparse biological survey
data to extrapolate multispecies patterns (e.g., assemblage
types, species groups, compositional turnover) across a
planning region (Ferrier & Guisan, 2006). A “predict-then-
assemble” approach reconstructs assemblages from inde-
pendently modeled species distributions (e.g., Leathwick
et al., 2006). An “assemble-then-predict” approach models
assemblage types identified directly from the biological sur-
vey data (e.g., Moritz et al., 2013; Rubidge et al., 2016),
whereas an “assemble-and-predict-together” approach
models multispecies responses within a single integrated
process (e.g., Leathwick et al., 2012; Murillo et al., 2018;
Sutcliffe et al., 2015). Each approach confers advantages
and disadvantages; the choice hinges on the data at hand
and intended application (Ferrier & Guisan, 2006).

Marine classifications derived using an assemble-then-
predict approach offer multiple benefits for conservation
applications. Compared to approaches that aggregate sepa-
rate species distribution models, this approach offers faster
processing of a large number of taxa, integrating patterns
from all taxa in the data set. In this way, the modeling
approach can include rare species recorded too infre-
quently to be reliably modeled alone (Ferrier &
Guisan, 2006) and those species with weak environmental
responses (Pitcher et al., 2012); improving power to detect
emergent properties. The regional subdivisions identified
by these classifications also correspond with more distinct
assemblages compared to habitat surrogates (Cooper
et al., 2019; Rubidge et al., 2016), improving the basis on
which to evaluate MPA network representativity.
Although it is thought addressing representativity inher-
ently includes some degree of network connectivity and
climate resilience (McLeod et al., 2009; Smith et al., 2009),
it is rare in practice for demographic and genetic connec-
tivity (Balbar & Metaxas, 2019), ecosystem wide climate
change vulnerability (Wilson et al., 2020), and climate
adaptation considerations (Tittensor et al., 2019) to be
empirically implemented in MPA design and management
(Balbar et al., 2020). Classification techniques also can
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allow for the identification of indicator taxa strongly asso-
ciated with their respective assemblages (Murillo et al.,
2018; Rubidge et al., 2016), which may facilitate selection
of emblematic species for operationalizing the connectivity
criterion or for selective monitoring approaches. Predictive
models, including those developed using an assemble-
then-predict approach, can be used to assess which assem-
blage types may persist under future climate conditions
(Ferrier & Guisan, 2006). Therefore, biologically informed
classification schemes could provide a pragmatic tool
for implementing a recent recommendation by Tittensor
et al. (2019) to incorporate climate-smart objectives
by default into MPA design and management plans
(e.g., maintenance of representativity under changing
climate conditions).

Researchers, MPA practitioners, and decision-makers
in Atlantic Canada are uniquely positioned to realize the
extended benefits of a community-level modeling
approach to biophysical classification for marine conser-
vation planning. MPA network planning is coordinated
by the federal Department of Fisheries and Ocean (DFO)
on a regional level (DFO, 2009), prompting the need for
marine classification schemes suitable at that scale. How-
ever, earlier efforts to develop such classifications have
been based either on mainly abiotic habitat surrogates
(Kostylev & Hannah, 2007; Park & Mercier, 2014; Roff
et al., 2003) or taxonomically restricted biological data
sets (Chouinard & Dutil, 2011; Moritz et al., 2013). Exis-
ting classification schemes set up at global (Spalding
et al., 2007), continental (Wilkinson et al., 2009), and
national scales (DFO, 2009) provide useful context for
setting the scale of bioregional networks, but do not
resolve local ecological features identified by regional
network design processes (e.g., DFO, 2018a). Regional
fishery-independent multispecies trawl surveys on the
continental shelf and adjacent areas conducted annually
since the 1970s in Atlantic Canada have greatly expanded
in taxonomic scope in the last decade (Chadwick
et al., 2007), meeting the data requirements for predictive
mapping of bottom communities from a broader ecosys-
tem perspective. With wide continental shelves covering a
broad latitudinal gradient, complex bathymetry, estuarine
to marine conditions, and the confluence of cold polar and
warm tropical currents, the diverse oceanographic and
physiographic context requires the identification of key
environmental gradients driving compositional patterns.
Atlantic Canada also is considered an ocean warming
hotspot (Hobday & Pecl, 2014), with a projected overall
loss of suitable thermal habitat for fish and benthic inver-
tebrates predicted over the 21st century under a high car-
bon emissions scenario (Morley et al., 2018; Stanley
et al., 2018), although, for some species, suitable habitat is
expected to expand (Greenan et al., 2019). Consequently,

there is increased motivation to provide scale-appropriate
ecosystem forecasts and management guidance that could
bridge the gap between theory and practice (Tittensor
et al., 2019) for implementing climate-smart networks in a
vulnerable area.

Here, we apply a unified community-level (assemble-
then-predict) modeling approach to characterize and
delineate the major assemblages of demersal fish and
benthic invertebrates in four regions of Atlantic Canada.
First, we use clustering techniques to identify the pre-
dominant assemblage types from species occurrence data
derived from ecosystem surveys conducted with bottom
trawls within each of four survey regions. We perform
indicator analyses to identify emblematic taxa of each
assemblage type. Next we combine oceanographic and
physiographic data layers with regional coverage and
random forest classification to identify key environmen-
tal correlates with assemblage distributions. We use
modeled assemblage–environment relationships to pre-
dictively map their distribution and produce regional,
biologically informed classification schemes. Finally, we
evaluate the vulnerability of assemblages in the southern-
most bioregion (Scotian Shelf-Bay of Fundy) to ocean
warming using the regional distributional model to
(1) hindcast spatial compositional changes associated
with recent warming and (2) forecast assemblage distri-
butions to 2075 with predictions of a general circulation
model under a high-emissions warming scenario. Our
study expands on previous approaches to develop ecologi-
cally relevant regional classifications in the marine realm
(Rubidge et al., 2016; Sutcliffe et al., 2015) by demonstrat-
ing the utility across multiple regions and for predicting
assemblage vulnerability to climate change. Our method
focusing on assemblage types also offers a complemen-
tary approach to previous work to project climate-
associated distributional changes in marine ecosystems,
which are typically evaluated on a species-by-species
basis.

METHODS

Study areas

We replicated our analyses in each of four administrative
regions delineated by the Department of Fisheries and
Oceans in Atlantic Canada: Quebec (NGSL); Gulf
(SGSL); Newfoundland and Labrador (NL); and Scotian
Shelf-Bay of Fundy, that is, Maritimes (MAR; Figure 1)
regions. These regions correspond roughly with distinct
biogeographic divisions distinguished by their oceano-
graphic and bathymetric features and are recognized
as the appropriate scale for MPA network design in
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Canada (DFO, 2009). The NGSL region spans the lower
St. Lawrence estuary and northern Gulf of St. Lawrence
and the SGSL includes the southern Gulf of St. Lawrence.
In the NGSL region, three deep troughs (Laurentian,
Anticosti, and Esquiman Channels) dominate the
bathymetry; while an expansive, shallow plateau, the
Magdalen Shallows, occupies much of the SGSL region.
Freshwater inputs from the St. Lawrence and Saguenay
rivers and connections with the Atlantic Ocean through
the Cabot Strait and Strait of Belle Isle drive an estuarine
circulation pattern and seasonal sea-ice formation occurs
throughout the Gulf (DFO, 2005). The NL region is char-
acterized by relatively broad and shallow continental
shelves, especially the Grand Banks to the southeast of
Newfoundland. The Newfoundland shelf is intermittently
cut by deeper channels and bound to the southwest by the
Laurentian Channel. The oceanographic regime of the NL
region is heavily influenced by the cold, southward-
flowing Labrador Current, which splits into inshore and
offshore branches that skirt the coastline and continental
shelf, respectively (Templeman, 2010). The MAR region
encompasses the Scotian Shelf spanning the Atlantic coast
of Nova Scotia, the Bay of Fundy, a section of the Lauren-
tian Channel on the northeastern boundary, and portions

of Georges Bank and the Gulf of Maine within Canadian
waters. The Scotian Shelf is characterized by complex
bathymetry including valleys, ridges, shallow banks, and
deep basins. Cool waters carried by the southwest flowing
Nova Scotia and Labrador currents have a larger influence
on the Eastern Scotian Shelf, whereas occasional incur-
sions of warmer slope water affect the Western Scotian
Shelf (Maclean et al., 2013).

We delineated study area boundaries as the limits of
the annual multispecies bottom trawl surveys conducted
by DFO in each region. These boundaries cover depth
ranges of 17–523 m (mean = 224 m, median = 224 m)
for NGSL, 9–386 m (mean = 76 m, median = 59 m) for
SGSL, 30–1855 m (mean = 296 m, median = 199 m) for
NL, and 26–2104 m (mean = 277 m, median = 140 m)
for MAR. Survey strata in the NL and MAR regions do
not include the extent of Canada’s Exclusive Economic
Zone comprising the deepest continental slope, rise, and
abyssal plain habitats. Rough bottom topography pre-
vents sampling along part of the North Shore of the
NGSL region and all surveys avoid areas with known
dense aggregations of cold-water corals (Chadwick
et al., 2007). Within each study area, biological data were
aggregated to cells (i.e., “sites”) in a regular grid (4-km
resolution). Therefore, observations for clustering and
distribution analysis were derived as the aggregate obser-
vations of all trawls within that grid cell over the span of
available data. Environmental raster layers were either
aggregated or resampled (bilinear method) from their
native resolutions to match this grid size. We selected the
4-km cell size based on the average distance to nearest
neighboring survey set locations within each regional
data set (3–5 km) and to reflect the spatial accuracy of
survey methods determined by standard tow distances
(Appendix S1: Table S1). To eliminate potential bias
introduced by grid cells with unequal sampling area, we
also applied a 5-km buffer around land points to exclude
partial grid cells.

Biological data sources

To identify and map the distribution of the major biologi-
cal assemblages in each of the four regions, we used geo-
referenced occurrence data for demersal fish and benthic
invertebrate taxa collected during multispecies bottom
trawl research surveys conducted annually by DFO in
each region (Figure 1). We acquired positional and catch
composition data from DFO regional databases and
archives between the years 2007 and 2017 inclusive (only
up to 2013 for NL and 2016 for MAR). Over this
period, the scope of surveys expanded to improve the tax-
onomic resolution of non-commercial fish species and

F I GURE 1 Study domain of four regions of the Northwest

Atlantic: Northern Gulf of St. Lawrence (NGSL), Southern Gulf of

St. Lawrence (SGSL), Newfoundland and Labrador (NL), and

Maritimes (MAR). Shaded area indicates limits of regional

multispecies bottom trawl surveys. Points are locations of

individual trawl sets from 2007 to 2017. Surveys in the Northern

and Southern Gulf of St. Lawrence partially overlap on the

southern boundary of the Laurentian Trough
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invertebrates and survey design, gear, and protocols
remained relatively consistent. Surveys in all regions fol-
low a stratified random design with effort in each depth
stratum proportional to its area (Chadwick et al., 2007).
However, there are substantive regional differences with
respect to survey timing, fishing vessel and gear, and fish-
ing and sampling protocols (Appendix S1: Table S1;
Chadwick et al., 2007). Therefore, we opted to treat
regional data sets separately. Surveys are conducted sea-
sonally in summer or fall in all regions, and NL and
MAR regions also undertake a separate spring survey
(Appendix S1: Table S1). For these regions, we elected to
pool data across seasonal surveys (spring = 30%–40% of
observations). In NL, the spring survey covers only the
southern half of the shelf. However, ordination (nMDS)
of points where the two surveys overlap indicated little
separation in community structure (Appendix S1:
Figure S1). From these regional data sets, we excluded
invalid sets due to damaged gear, improper catch han-
dling, or tow durations outside an acceptable range
(Appendix S1: Table S1).

Surveys record the number and biomass of all fish
and invertebrate taxa captured. However, data on inver-
tebrate taxa in the NL region were available only for a
handful of commercially harvested species. Taxa were
identified to the highest reliable or practicable taxonomic
resolution. Certain taxa, particularly invertebrates, are
therefore treated in regional databases and our analyses
as groups of species at the genus level or higher
(e.g., Sebastes spp., Buccinidae, Pennatulacea; Appendix
S1: Table S2 has complete taxa list). Many higher-level
taxa comprise a known number of species and have fre-
quent records in the data set (Nozères et al., 2015). How-
ever, we removed any higher taxa that could result in the
same species being coded to two separate taxa by differ-
ent observers and therefore are too general to be of use
(e.g., Annelida, Mollusca, Bivalvia). In some instances, a
restricted subset of species that are easily identified are
recorded separately from their parent taxon in the survey
database, and represent separate taxonomic entities
(e.g., Aphrodita hastata separate from all other poly-
chaetes). Because trawl surveys are designed to specifi-
cally target benthic species, we filtered regional data sets
for taxa with any of the following habitat associations
listed on FishBase (Froese & Pauly, 2019), SeaLifeBase
(Palomares & Pauly, 2019), or WorMS (WoRMS, 2019):
benthic, benthos, sessile, reef-associated, demersal,
benthopelagic, bathydemersal, or bathypelagic.

To reduce potential biases related to differences in cat-
chability among taxa and habitats and to increase the con-
tribution of less common taxa, we converted abundance
data to presence–absence. We counted a taxon as present
if it was recorded in any trawl set located in that particular

4-km grid cell over the period from 2007 to 2017. However,
following Rubidge et al. (2016) we chose a conservative
exclusion threshold and removed species that were
reported in less than 1% of sampling sites in an attempt to
balance the contribution of these rarer taxa with the
potential distortion they may introduce to similarity-based
analyses (sensu Gauch, 1982, Legendre & Legendre, 2012).
The final regional data sets consisted of 1580 sites and
162 taxa for NGSL, 1326 sites and 122 taxa for SGSL, 4908
sites and 70 taxa for NL, and 2527 sites and 113 taxa for
MAR that met all inclusion criteria for catch records.

Characterizing ecological assemblages

Hierarchical clustering

To group sites in each regional data set into broad assem-
blage types based on their compositional similarity, we
calculated pairwise distances between sites as Simpson
dissimilarity (βsim) using the R package simba v. 0.3-5
(Jurasinski & Retzer, 2012). As a measure of beta diver-
sity, βsim captures spatial compositional turnover inde-
pendent of species richness, is suitable for presence–
absence data, and performs superiorly to other common
metrics (Koleff et al., 2003). Dissimilarity between sites is
scaled between 0 (no compositional difference) and
1 (no shared taxa) and is defined as

βsim ¼ 1� a
min b,cð Þþa

where a is the number of taxa shared between paired
sites and b and c are the number of taxa unique to each
respective site.

From the resulting dissimilarity matrices we grouped
sites with similar taxonomic compositions using hierarchi-
cal agglomerative clustering with average linkage method
(i.e., unweighted pair-group method using arithmetic aver-
ages, UPGMA). Clustering was performed with the R func-
tion hclust (R version 3.6.3; R Core Team, 2020). We also
evaluated our choice of dissimilarity metric and linkage
method by comparing the cophenetic correlation coeffi-
cient from the resulting dendrogram to the coefficients
from dendrograms produced using other dissimilarity met-
rics (Jaccard, Soerensen, Gower) and clustering methods
(centroid, McQuitty’s, median, Ward, single, complete).
The cophenetic correlation coefficient indicates how well
information in the original dissimilarity matrix is pre-
served by the dendrogram produced by clustering (Sokal &
Rohlf, 1962). In all four regions, Simpson dissimilarity and
UPGMA consistently outperformed other distance metrics
and clustering algorithms (Appendix S1: Table S3).
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To choose the similarity threshold at which to cut
dendrograms, and therefore the number of clusters, in a
more rigorous way, we inspected plots of several internal
cluster validity indices against cluster number (k = 2–20;
Appendix S1: Figure S2). These indices included the C
index (Hubert & Schultz, 1976), the Calinski-Harabasz
index (Calinski & Harabasz, 1974), the Point-Biserial
index (Milligan, 1981), the Davies-Bouldin index
(Davies & Bouldin, 1979), and the Silhouette index
(Roussseeuw, 1987). These indices measure the degree of
within-cluster dispersion relative to between-cluster dis-
persion, and the optimal number of clusters is indicated
by the maximum value of the index (minimum for
Davies-Bouldin and C indices). When multiple local
optima occurred, we favored clustering solutions with
more clusters, given our aim was to identify the full range
of assemblage types in each region. In cases of disagree-
ment among indices, we selected the consensus cluster
number. Based on these criteria, we cut dendrograms at
βsim = 0.494 (k = 7) for NGSL, βsim = 0.494 (k = 10) for
SGSL, βsim = 0.512 (k = 8) for NL, and βsim = 0.587
(k = 9) for the MAR region.

The taxonomic resolution of taxa recorded at each
site as well as the sampling effort (number of trawl sets)
have the potential to affect the degree of similarity
between sites and therefore bias clustering solutions.
The majority of taxa in each regional data set were
identified to at least the genus level (NGSL = 81%,
SGSL = 77%, NL = 100%, MAR = 100%) and for grid
cells having trawl data, few (12%–21%) contained more
than one trawl set from across multiple years (mode = 1,
95th percentile = 2, max = 5–8). Furthermore, the grid
cells containing multiple trawl sets were not biased
toward certain clusters. Their frequency in a given clus-
ter was proportional to cluster area (Appendix S1:
Figure S10). Nonetheless, to evaluate these potential
sources of bias, we re-ran clustering analyses with a sec-
ond data set in each region, filtering out taxa classified
to taxonomic levels higher than genus and, for grid cells
with multiple trawl sets across years, using the catch
data from the most recent trawl set. In all four regions,
we identified the same number of clusters (assemblage
types) with the reduced data set as the original full data
set and the frequency distribution of assemblage types
was similar between data sets. Cramer’s V indicated
low (0.1 < ɸc < 0.3) or little association (ɸc < 0.1)
between data set type (full or reduced) and cluster
membership (NGSL = 0.069, SGSL = 0.020,
NL = 0.088, MAR = 0.125). We present the results for
the full data set to retain as much biological informa-
tion as possible and because the removal of taxa higher
than the genus level disproportionately removes inver-
tebrates, which are already underrepresented.

Indicator analysis

To identify taxa emblematic of the predominant assem-
blage types in each region we conducted indicator ana-
lyses as developed by Dufrêne and Legendre (1997).
Within each region, we calculated the indicator value of
each taxon for each of the major dendrogram clusters
(defined here as clusters comprising 20 or more sites)
using the indval function in the labdsv R package
(Roberts, 2016). The indicator value is an index scaled
between 0 and 1 describing the degree to which a taxon
characterizes a group of sites, the significance of which is
evaluated by a randomization procedure. The value of
the index increases as a taxon occurs in one particular
cluster (i.e., assemblage type) with greater specificity
(i.e., is rare at sites of other clusters) and fidelity
(i.e., occurs frequently in sites of that cluster). We consid-
ered a taxon to be a strong indicator of an assemblage if
its indicator value was maximal among all clusters, was
>0.25, and significant at α = 0.05 (Dufrêne &
Legendre, 1997).

Modeling distribution of assemblages
based on environmental correlates

To identify environmental correlates with the distribu-
tion of the predominant assemblage types in each region,
we derived raster data layers for 57 oceanographic and
physiographic variables. We selected variables antici-
pated to form key environmental gradients driving com-
positional turnover on a regional scale and that were
widely available in all four regions (Appendix S1:
Table S4). Sources for data layers included various out-
puts from the BNAM ocean circulation model (Wang
et al., 2018), remote-sensing products derived from NASA
satellite data and processed by the Remote Sensing Unit
at the Bedford Institute of Oceanography (Fisheries and
Oceans Canada, 2021a, 2021b), and mapping products
obtained from spatially interpolated in situ measures
including Bio-ORACLE layers (Tyberghein et al., 2012)
and GEBCO grids (GEBCO Compilation Group, 2014).
Native spatial resolution varied between input sources
(Appendix S1: Table S4), but we aggregated or resampled
inputs to match the 4-km resolution of the biological
data. Contingent on availability, for time-varying
covariates, we constrained input data to the years 2007 to
2017 to align with biological survey data (Appendix S1:
Table S4). If input sources were resolved at a monthly or
more frequent time interval, we calculated multiple
annual and seasonal summary variables (mean, mini-
mum, maximum, range) that were averaged across avail-
able years (Appendix S1: Table S4). After applying a
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5-km land buffer to data layers, there were 7540 cells for
NGSL, 4424 for SGSL, 39,218 for NL, and 13,326 for
MAR populated with all environmental variables.

To model the relationship between the spatial distribu-
tion of assemblages and environmental predictors, we
implemented random forest classifications using cluster
membership as the response. We limited classifications to
the major clusters in each region as minor clusters repre-
sented too few observations to be reliably modeled (gener-
ally 1 or 2 sites each; 5–10 sites in total) and were not
geographically coherent enough to provide meaningful
targets for conservation planners (Appendix S1:
Figure S12). Major clusters were identified in dendrograms
as those with ≥20 sites. Random forest is an ensemble
machine learning algorithm that combines the predictions
from a “forest” of decision trees to classify observations
based on the majority vote among trees (Breiman, 2001).
For each region, we fit a random forest model based on
10,000 trees in R using the default settings of the
randomForest package (Liaw & Wiener, 2002). We evalu-
ated model accuracy with both the out-of-bag (OOB) error
rate (percent misclassified), and a 10-fold cross-validated
estimate of the area under the receiver operating charac-
teristic curve (AUC), which is an indicator of how well on
average the classifier differentiates between pairwise clas-
ses (Hand & Till, 2001). We randomly partitioned data sets
into 10 subsets, using each in turn to validate predictions
of a model calibrated with the remaining 90% of observa-
tions by calculating the multi-class AUC with the multi-
class.roc function in R package pROC (Robin et al., 2011).
We averaged AUC values across cross-validation runs.

To improve model interpretability, we identified and
removed highly correlated predictor variables prior to
model fitting using an iterative variable elimination proce-
dure similar to Knudby et al. (2013). Within each regional
study area, the pair of variables with the highest absolute
correlation coefficient (Pearson’s r) among all cells in envi-
ronmental raster layers was considered and one elimi-
nated from the data set. We applied the following criteria
when deciding which of two correlated variables should
be retained. For pairs that described different summaries
of the same variable: (1) annual summaries were preferred
over seasonal ones with the exception of surface chloro-
phyll and primary production (spring summary preferred)
and (2) those describing environmental extremes and,
therefore, potential tolerance limits, were preferred (mini-
mum and maximum > range > mean). For pairs describ-
ing different variables: (1) variables more closely
associated with the seabed were preferred over sea surface
variables (e.g., bottom temperature > sea surface tempera-
ture, depth-integrated primary production > surface chlo-
rophyll), (2) temporally dynamic variables were preferred
over static ones to facilitate predictions under future

climate scenarios (e.g., bottom salinity and temperature >
depth), and (3) variables with a higher native spatial reso-
lution and based on more contemporary data were pre-
ferred. This process continued iteratively until a subset of
the original 57 variables remained for which all pairwise
correlations were ≤0.7, yielding a final subset of 11–22
environmental predictors for each regional data set
(Appendix S1: Table S5). Over 99% of sites with available
biological data in each regional data set were assigned to a
major cluster, and of these, only 23–41 (mainly nearshore)
lacked associated data for the complete set of environmen-
tal predictors.

To delineate the potential distribution of each of the
predominant assemblage types, we used the regional ran-
dom forest classifiers to determine the predicted cluster
membership for grid cells that had associated environ-
mental data but lacked biological data from trawl sur-
veys. We also highlighted areas of greater model
uncertainty by identifying grid cells for which the proba-
bility of cluster assignment underlying the prediction was
<0.70. The resulting regional biologically informed classi-
fication schemes indicated both the assemblage type and
distinguishing abiotic habitat features likely to be
encountered at a given location. To identify the key envi-
ronmental variables associated with spatial variation in
assemblage structure, we calculated the mean decrease in
model accuracy resulting from randomly permuting the
values of each predictor variable in the random forest
classifier among observations (i.e., relative variable
importance). We examined variable importance plots to
assess the top predictors distinguishing individual clus-
ters (i.e., assemblage types) and for the overall model
accuracy. To further characterize the environmental con-
ditions distinguishing assemblage types, we examined
how the distribution of input grid cell values for the top
predictors in each model varied among clusters.

Climate change susceptibility

We evaluated the susceptibility of modeled assemblages
in the southernmost bioregion (MAR) to distributional
changes associated with climatic drivers in two ways:
(1) evaluating the predictive performance of the random
forest classifier when hindcasting past changes, and
(2) forecasting distributional changes expected under a
long-term climate projection with a regional forecasted
oceanographic model developed using a high greenhouse
gas emission scenario (representative concentration path-
way, RCP, 8.5).

To assess the ability of our model to predict composi-
tional changes associated with recent warming events in
the MAR region, we compared hindcast predictions of
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the random forest classifier to observed assemblage struc-
ture for two temporal divisions of our initial biological
survey data set: 2007–2011 and 2012–2016. The period
2012–2016 corresponds with an inter-annual trend of
increasing frequency and persistence of bottom water
warm anomalies on the Scotian Shelf driven by incur-
sions of warm/saline water from the continental slope
(Brickman et al., 2018; Hebert et al., 2018). We limited
our comparison of observed and predicted assemblage
type to grid cells in the study area containing survey sets
in both time periods (n = 238). We determined whether a
change in the observed assemblage type occurred
between time periods in cells with repeated measures by
restricting the taxa presence/absence data in those cells
to each period in turn prior to reclassification with hier-
archical clustering as above. We then hindcast cluster
membership (i.e., predicted assemblage type) from bot-
tom temperature and salinity conditions for each time
period in turn as inputs to the random forest classifier.
To assess the predictive performance of model hindcasts
we calculated model-wide error rate (percent mis-
classified) and AUC using all hindcast predictions and
sensitivity, specificity, and precision for specific classes
from the confusion matrix for both time periods com-
bined. These performance measures provide an indica-
tion of how well the model can resolve compositional
changes associated with shifting climatic conditions.

To forecast how distributions of the predominant
assemblage types may respond to long-term environmen-
tal changes under a high-emissions scenario, we com-
pared our contemporary regional spatial classification to
spatial predictions of our random forest classifier with
bottom temperatures and salinities projected to 2075
under RCP scenario 8.5. We obtained projected tempera-
ture and salinity conditions for the year 2075 from the
Bedford Institute of Oceanography North Atlantic Model
(BNAM), a high-resolution numerical ocean circulation
model (Brickman et al., 2016). Grid cells in which the
predicted assemblage type for 2075 differed from present
were identified as susceptible to climate change. Finally,
we compared the relative change in predicted area (from
present) occupied by the major assemblage types to iden-
tify which would be most or least susceptible to change.
An overall decrease (increase) in area would indicate a
loss (gain) of suitable thermal habitat for a given assem-
blage type. This approach of modeling assemblage types
based on changes to suitable thermal habitat does not
account for species interactions (e.g., predation, competi-
tion, facilitation) or other factors (e.g., adaptation) that
might constrain patterns of redistribution (Pinsky
et al., 2020) or allow for individualistic species responses
or no-analog assemblages (Ferrier & Guisan, 2006; Nieto-
Lugilde et al., 2018). However, while the direction and

rate of projected range shifts may vary regionally among
taxa (Morley et al., 2018) or even between populations
(Stanley et al., 2018), historical observations indicate that
distributional responses to climate variability are reason-
ably unified among marine species within an assemblage
and that, similar to single species, long-term changes in
assemblage distributions closely follow shifts in preferred
thermal habitat (Kleisner et al., 2016).

RESULTS

Characterizing ecological assemblages

Hierarchical agglomerative clustering of biological survey
data indicated three to six major site groupings rep-
resenting the predominant assemblage types in each
region (Figure 2). Of sites with available survey data, over
99% were assigned to one of these major clusters associ-
ated with discrete geomorphic and oceanographic fea-
tures (Appendix S1: Figure S3). These assemblages were
characterized by 3–34 indicator taxa (median = 7) that
most distinguished a given assemblage from others
within the same region (Appendix S1: Table S6). Of the
112 taxa we identified as strong indicators, 48 were
shared across multiple regions (Appendix S1: Figure S4).
The number of indicator taxa characterizing a particular
assemblage was directly proportional to the taxa richness
in that assemblage (Appendix S1: Figure S11).

In the NGSL region, the majority of sites grouped in a
cluster associated with deep channels (Laurentian, Anti-
costi, and Esquiman; Figure 2, Appendix S1: Figure S3)
represented by 19 indicator taxa adapted to depth and
warmer waters (Appendix S1: Table S6). This assemblage
was most similar to a second cluster formed by sites con-
centrated at the head and along the slopes of these deeper
troughs (Figure 2, Appendix S1: Figure S3). This channel-
bordering assemblage contained the fewest indicator taxa
(seven) with the lowest IndVal in this region (Appendix
S1: Table S6). The remainder of sites, forming the most
distinct cluster, were associated with narrow straits and
shallow coastal areas along the north shore of Quebec
and west coast of Newfoundland, represented by a group
of 34 indicator taxa largely composed of polar and subpo-
lar invertebrate species (Figure 2, Appendix S1:
Figure S3, Table S6).

Sites in the narrow and relatively shallow Northum-
berland Strait formed the most distinct of four clusters in
the SGSL, represented by seven indicator taxa associated
with shallow, coastal habitats that were often rare, but
unique (high IndVal, low frequency) to this assemblage
(Figure 2, Appendix S1: Figure S3, Table S6). Similar to
the NGSL region, sites in the SGSL region within the
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F I GURE 2 Dendrograms indicating similarity (calculated from Simpson dissimilarity) in taxonomic composition of bottom-associated

fish and benthic invertebrates between sites from annual multispecies trawl surveys in each of four regions of the Northwest Atlantic: NGSL,

SGSL, NL, MAR (see Figure 1 caption for regional abbreviations). Nodes on lower branches indicate greater similarity between sites within

that cluster. Colored groupings identify major clusters of sites sharing similar assemblage types (BoF, Bay of Fundy; ESS, Eastern Scotian

Shelf; WSS, Western Scotian Shelf)
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Laurentian Channel also formed a unique cluster
(Figure 2, Appendix S1: Figure S3) with a large overlap in
the indicator taxa (14 of 19 in the SGSL) between the
channel assemblages in the two regions (Appendix S1:
Table S6, Figure S4). The largest cluster comprised sites
on the expansive Magdalen Shallows and in Chaleur Bay
(Figure 2, Appendix S1: Figure S3), with 10 of 14 indicator
taxa shared with the two shallower NGSL assemblages
(Appendix S1: Table S6, Figure S4). The fourth cluster of
sites around the Magdalen Islands and the nearshore of
SGSL shared some similarity with the Magdalen Shallows
(Figure 2, Appendix S1: Figure S3) and had the fewest
indicator taxa (five), which were largely soft-bottom asso-
ciated (Appendix S1: Table S6).

In NL, sites were more evenly distributed among the
five major clusters (Figure 2). Sites along the continental
slope formed the most distinct cluster in this region,
followed by a cluster of sites occurring at the mouth of
the Laurentian Channel and at the shelf break on the
southwest margin of the Grand Banks (Figure 2, Appen-
dix S1: Figure S3). The latter group had many indicator
taxa in common (6 of 8) with the analogous channel
assemblages in the NGSL and SGSL (Appendix S1:
Table S6, Figure S4). Bathypelagic, benthopelagic, and
bathydemersal fish strongly characterized the Slope
assemblage, which had 16 indicator taxa (Appendix S1:
Table S6). Sites occurring on the southern Grand Banks
formed a unique cluster from other sites on the
Newfoundland-Labrador Shelves (Figure 2, Appendix S1:
Figure S3) with only three, albeit strongly associated indi-
cator taxa (Appendix S1: Table S6). The remaining sites
were split between the Inner and Outer continental shelf
corresponding roughly with the inshore and offshore bra-
nches of the Labrador Current (Figure 2, Appendix S1:
Figure S3). The Inner Shelf included more polar and sub-
polar species (seven indicators), while temperate to
boreal species (four indicators) better characterized the
Outer Shelf (Appendix S1: Table S6).

The MAR region had the most clusters (n = 6), and
similar to NL, the initial node of the dendrogram sepa-
rated sites on the continental slope from the others
(Figure 2, Appendix S1: Figure S3). A similar set of
depth-adapted indicator taxa as the Slope assemblage in
NL (7 of 11 taxa in common; Appendix S1: Figure S4)
characterized this assemblage (Appendix S1: Table S6).
Likewise, there was also a distinct cluster formed by sites
occurring in the Laurentian Channel and along the shelf
break (Figure 2, Appendix S1: Figure S3) with four indi-
cator taxa, all shared by the comparable assemblages in
the other three regions (Appendix S1: Table S6,
Figure S4). As with the other regions, the indicator taxa
for the Slope and Laurentian Channel/Shelf Break
assemblages had a strong affinity (high IndVal) to their

clusters (Appendix S1: Table S6). We also observed a
clear division of sites between the Eastern (ESS) and
Western (WSS) Scotian Shelf (Figure 2, Appendix S1:
Figure S3). Within the east–west divisions, sites associ-
ated with shallow banks and the inner Bay of Fundy
(BoF) also grouped separately from deeper parts of the
shelf (Figure 2, Appendix S1: Figure S3). Demersal fish
largely distinguished both WSS assemblages, while the
emblematic taxa for the two ESS assemblages included
more invertebrates and were similar to the more north-
erly NGSL, SGSL, and NL regions with some subpolar
species (Appendix S1: Table S6, Figure S4).

Modeling distribution of assemblages
based on environmental correlates

Our regionally restricted random forest classifications
produced relatively spatially contiguous predictions for
the distributions of the predominant assemblage types
in all four regions (Figure 3). In all regions, models per-
formed with high accuracy as indicated by the low OOB
error rates (≤20.2%) and high multiclass AUC values
(>0.95) across all classes (Table 1). However, certain
assemblages in each region were more frequently mis-
classified (Table 1), including Channel Heads and
Slopes in NGSL, the Inshore/Magdalen Islands and
Northumberland Strait/St. George’s Bay assemblages in
SGSL, Inner Shelf in NL, and ESS in the MAR region.
There also was greater uncertainty (lower model assign-
ment probabilities) in predictions for more frequently
misclassified assemblages (Figure 3). We also observed a
pattern of greater uncertainty in model predictions for
grid cells on the boundaries between assemblages
(Figure 3), likely reflecting intermediate environmental
conditions. Variable importance plots indicated
which specific environmental variables best distinguish
between the predominant assemblages in each region
(Figure 4, Appendix S1: Figure S5) and facilitate a
description of the characteristic environmental habitat
features occupied by those assemblages (Appendix S1:
Figures S6–S9).

In NGSL, average minimum bottom temperature was
the most important environmental predictor, followed by
average maximum bottom and sea surface temperature
and dissolved oxygen concentration (Figure 4), but pH
and a broadscale bathymetric position index (BPI, depth
of a location relative to its neighbors within 20 km) also
was important for distinguishing Shallow Banks and
Straits (Appendix S1: Figure S5). Average minimum bot-
tom temperature was warmer where the Deep Channel
assemblage occurred relative to Shallow Banks and
Straits and intermediate for Channel Heads and Slopes
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F I GURE 3 Predicted distribution of predominant assemblage types of bottom-associated fish and benthic invertebrates in each of four

regions of the Northwest Atlantic: NGSL, SGSL, NL, and MAR (see Figure 1 caption for regional abbreviations). Color denotes the expected

assemblage type in a given 4-km grid cell based on relationships with environmental correlates delineated by random forest classification

(BoF, Bay of Fundy; ESS, Eastern Scotian Shelf; WSS, Western Scotian Shelf). Grid cells outlined in black indicate greater uncertainty in the

model prediction (probability of assignment <0.70)
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(Appendix S1: Figure S6). The pattern was similar, but
less pronounced in average maximum bottom tempera-
ture (Appendix S1: Figure S6). Dissolved oxygen concen-
trations were lower but variable in Deep Channels
compared to the other assemblages (Appendix S1:
Figure S6). BPI values suggested, on average, the Shallow
Straits and Banks assemblage occurred in elevated areas
(positive BPI), the Deep Channels assemblage in depres-
sions (negative BPI), and Channel Heads and Slopes

assemblage in areas of constant slope (BPI near zero;
Appendix S1: Figure S6).

As with NGSL, various metrics of bottom temperature
(average mean, maximum, and minimum) were among
the most important predictors in SGSL (Figure 4). Aver-
age maximum primary production in spring/summer also
differentiated sites in the Northumberland Strait/St.
George’s Bay assemblage (Appendix S1: Figure S5). The
Magdalen Shallows assemblage was characterized by low
primary productivity and generally the coolest average
maximum, mean, and minimum bottom temperatures,
although minimum temperature was variable within this
cluster (Appendix S1: Figure S7). In contrast, the North-
umberland Strait/St. George’s Bay assemblage was distin-
guished by high primary productivity, the warmest
average maximum and mean bottom temperatures, and
among the coolest minimum bottom temperatures
(Appendix S1: Figure S7). The Inshore/Magdalen Islands
assemblage occurred in areas of intermediate primary
productivity, and likewise experiencing high seasonal
variability in bottom temperature, though not as extreme
as the Northumberland Strait (Appendix S1: Figure S7).
Bottom temperatures experienced by the Laurentian
Channel assemblage were less seasonally variable, and
therefore, while average maximum bottom temperatures
were among the lowest in this region, average minimum
temperatures were warmest for this assemblage
(Appendix S1: Figure S7).

Depth, average minimum and maximum bottom tem-
perature, and average bottom salinity range were the four
most important environmental predictors in the random
forest classification for NL (Figure 4). Dissolved oxygen
and pH also were important for distinguishing the Lau-
rentian Channel/Shelf Break assemblage and average
surface chlorophyll concentration in winter was an espe-
cially important variable for the Grand Banks assemblage
(Appendix S1: Figure S5). The Grand Banks and Slope
assemblages fell at opposite ends of the depth gradient,
and the Inner Shelf group occurred at shallower depths
on average than the Outer Shelf and Laurentian Chan-
nel/Shelf Break assemblages (Appendix S1: Figure S8).
Average minimum and maximum bottom temperature
was warmest for the Laurentian Channel/Shelf Break
and Slope assemblages, followed by Outer Shelf, Grand
Banks, and Inner Shelf (Appendix S1: Figure S8). The
Slope assemblage was characterized by the smallest aver-
age range in bottom salinity; Grand Banks and Lauren-
tian Channel/Shelf Break by the largest, albeit more
variable for the latter (Appendix S1: Figure S8). This
range in salinity separated conditions characterizing the
Inner and Outer shelf clusters, where the former had a
greater range (Appendix S1: Figure S8).

TAB L E 1 Measures of whole model and class-specific

accuracy for random forest classifications predicting cluster

membership identified from biological survey data (i.e., assemblage

type) based on environmental correlates

Region and assemblage OOB (%) AUC

NGSL

All 10.8 0.974

Deep channels 6.72

Shallow banks and straits 7.43

Channel heads and slopes 22.3

SGSL

All 8.39 0.974

Magdalen Shallows 3.58

Inshore/Magdalen Is. 23.6

Laurentian Channel 9.09

Northumberland Strait/St. George’s
Bay

19.3

NL

All 15.2 0.977

Inner shelf 20.0

Outer shelf 16.4

Grand Banks 13.0

Slope 7.37

Laurentian Channel/shelf break 15.4

MAR

All 20.2 0.962

WSS: Outer BoF 19.1

WSS: Banks/Inner BoF 21.4

ESS 30.9

ESS: Banks 17.6

Laurentian Channel/shelf break 22.9

Slope 17.1

Note: Classifications are restricted within four regions of the Northwest
Atlantic: NGSL, SGSL, NL, and MAR (see Figure 1 caption for regional
abbreviations).

Abbreviations: AUC, multiclass area under the receiver operating
characteristic curve (1 = perfect differentiation between classes); OOB, out-
of-bag error rate (percent misclassified).
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A similar suite of variables ranked as the most impor-
tant environmental predictors in the MAR region
(Figure 4). As expected, there was a depth gradient sepa-
rating the Slope assemblage (deepest), the Laurentian
Channel/Shelf Break, and assemblages occurring on the
continental shelf, with a further distinction in depth for
shallow banks assemblages on both the ESS and WSS
(Appendix S1: Figure S9). The four assemblages on the
continental shelf were further distinguished by average
minimum bottom temperature (WSS > ESS; cooler for
shallow banks and inner BoF), average maximum bottom
temperature (WSS > ESS; warmer for shallow banks and
inner BoF), and average maximum bottom salinity
(WSS > ESS; less saline for shallow banks and inner BoF;
Appendix S1: Figure S9). Maximum salinity was less

variable and higher on average for the Slope and Lauren-
tian Channel/Shelf Break assemblages (Appendix S1:
Figure S9). Bottom temperature was seasonally consistent
and less variable for the deeper assemblages, but gener-
ally warmer for the Laurentian Channel/Shelf Break
compared to the Slope assemblage (Appendix S1:
Figure S9). Slope and dissolved oxygen also were impor-
tant variables distinguishing the two deeper assemblages
(Appendix S1: Figure S5).

Climate change susceptibility

Of the 238 sites in the MAR region that were sampled
both before (2007–2011) and during a recent period of

F I GURE 4 Variable importance plots indicating mean decrease in whole model accuracy resulting from randomly permuting values of

environmental predictors among observations used in the four regional random forest classifiers: NGSL, SGSL, NL, and MAR (see Figure 1

caption for regional abbreviations). Variable summaries with prefix “Avg” indicate averages across years with available data. Abbreviations

are SST, sea surface temperature; DO, dissolved oxygen; MLD, mixed layer depth; BPI, bathymetric position index; NS, north-south; EW,

east-west; chl, chlorophyll; PP, primary production. Refer to Appendix S1: Table S4 for details and data sources for individual variables
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warming (2012–2016) on the Scotian Shelf, 69 (29%)
grouped with a different assemblage type based on taxo-
nomic composition after the warming period began.
However, changes were not proportional across the six
predominant assemblage types (Figure 5). Consequently,

there was a net decrease in the number of sites classified
as ESS or ESS: Banks, a net increase in sites classified as
Laurentian Channel/Shelf Break or WSS: Outer BoF and
no net change in sites classified as Slope or WSS: Banks/
Inner BoF (Figure 5). Furthermore, our regional
random forest classifier was able to accurately hindcast
these period-specific cluster assignments based only
on environmental conditions (error rate = 25.2%,
AUC = 0.938 across both time periods). However, the clas-
sifier was better able to discern true negatives than true
positives for all classes (sensitivity < specificity) and may
overestimate the prevalence of the ESS, ESS: Banks, and
Laurentian Channel/Banks assemblages (precision <
sensitivity; Appendix S1: Table S7).

Likewise, the model predicted distributional shifts of
the predominant MAR assemblages with forecasted
warming under RCP 8.5 in 2075 (Brickman et al., 2016).
In general, the WSS/Outer BoF and WSS: Banks/Inner
BoF assemblages are predicted to expand northward and
east across the Scotian Shelf and to greater depths as suit-
able thermal habitat shifts (Figure 6b). Consequently, we
projected a net increase in relative area occupied by these
assemblages at the expense of decreases for the Lauren-
tian Channel/Shelf Break, ESS, and ESS: Banks assem-
blages (Figure 6a). The Slope assemblage is predicted to
be most resistant to change with no net change in area
(Figure 6a).

F I GURE 5 Comparison of number of sites in the Maritimes

region grouping with each of the six predominant assemblage types

(indicated by color hue) between two time periods (darker

shading, 2007–2011; lighter shading, 2012–2016) for sites sampled

for taxonomic composition in both time periods (n = 238)

F I GURE 6 (a) Predicted relative change in area encompassed by spatial distributions of the six predominant assemblage types in

Maritimes region in 2075 with bottom temperature and salinity conditions projected under RCP 8.5. Data are difference in area between

2075 and present expressed as percentage of present area. (b) Predicted 2075 assemblage distributions. Assemblage types are identified by

color hue. Regions with darker shading and blue outline indicate areas susceptible to change under projected warming (i.e., predicted

classification in 2075 differs from present)
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DISCUSSION

Biological classifications inform
ecologically coherent conservation
strategies

We identified the predominant assemblages of demersal
fish and benthic invertebrates in Atlantic Canada from
biological survey data and developed ecologically com-
prehensive regional classification schemes using predic-
tive mapping that can practically inform a number of
management applications. Our classifications divide
regions into mesoscale (tens to thousands of kilometers)
subunits representing spatially coherent areas of similar
species composition, emblematic taxa characterizing the
assemblages, and the important abiotic habitat features.
These subunits could be used to define management
areas in an ecosystem-based approach to fisheries man-
agement, inform the ecological objectives of marine spa-
tial planning processes, or guide design, siting, and
monitoring decisions in regional MPA network planning
processes. Our results are largely consistent with previous
community-level modeling efforts in the NGSL using tax-
onomically restricted data sets that identified similar
assemblage types associated with channels, slopes, and
shallow coastal areas with indicator species and environ-
mental correlates overlapping with our analysis (fish
[Chouinard & Dutil, 2011], benthic invertebrates [Moritz
et al., 2013]). However, our results differ from earlier
classifications in the NL (Park & Mercier, 2014) and
MAR regions that were based mainly on abiotic surro-
gates (DFO, 2016; Kostylev & Hannah, 2007; Roff
et al., 2003). These discrepancies likely arise from differ-
ences in the identity and relative weighting of abiotic sur-
rogates used in those classifications. Commonly available
abiotic predictors do not contribute equally to explaining
patterns of community composition (Pitcher et al., 2012).
Our random forest classifiers indicated a restricted set of
environmental axes distinguished between biotic assem-
blages (temperature, depth, salinity, DO), and these var-
ied in relative importance. By integrating available
biological information with abiotic predictors, our
approach offers improved spatial insights for conserving
the key ecological features of each region.

Our classifications provide benchmarks by which to
evaluate ecological coherence in regional MPA network
design and management. Studies have shown demersal
fish and benthic macrofaunal assemblages identified by
biologically informed classification approaches have
greater homogeneity in composition, richness, and abun-
dance within groups (Cooper et al., 2019), larger
between-group compositional differences, and indicator

taxa with stronger associations (Rubidge et al., 2016)
compared to abiotic habitat surrogates. Therefore, by
predicting the distributions of the main assemblage types
in each region at a relatively fine spatial resolution
(4 km), our classifications can facilitate setting and
achieving MPA network broadscale representativity tar-
gets (e.g., Government of Canada, 2011). We found multi-
ple regions shared similar assemblages associated with
the Laurentian Channel and continental slope habitats,
offering additional opportunities to replicate features and
implement connections among regional networks. The
list of indicator taxa we identified for each assemblage
type provides candidate species for evaluating regional
connectivity patterns for network planning and manage-
ment. Ecologically justified, quantitative conservation
objectives demand a shift away from common rules-of-
thumb approaches to connectivity (Magris et al., 2014),
but demographic (e.g., individual-based modeling, tag-
ging studies) and genetic methods for empirically charac-
terizing connectivity patterns require additional time,
money, and resources. Indicator analyses, such as those
proposed here, could help prioritize such investments.
Specific indicator taxa from lengthy lists could be given
priority based on conservation importance (e.g., high
commercial value or cultural importance, species at
risk, etc.).

Accounting for the fluid nature of ecological assem-
blages in space and time is required to achieve successful
outcomes for conservation objectives but could be mis-
represented by static maps. For example, community
composition on the Scotian and Newfoundland shelves
has changed over the past 40 years as a result of overex-
ploitation and subsequent protection measures (Pedersen
et al., 2017; Shackell et al., 2012). Moreover, our
approach assumes a fixed relationship between species
and does not account for environmental relationships in
species interactions and thus non-linear responses to cli-
mate change (e.g., thermally regulated predation rates),
though our intra-decadal comparison did show strong
predictive performance. While our analysis did not
account for these variables explicitly, it would be useful
to repeat the same approach for earlier time periods to
capture the representative range of historical and con-
temporary community states for conservation planning.
Likewise, the boundaries between units of the classifica-
tion should not be viewed as rigid features. Whereas our
predictive models performed overall with high accuracy
(low misclassification rate, high AUC values), the
dynamic nature along boundaries was partially captured
in our analysis by locations of greater model uncertainty,
which were aggregated largely along margins between
predicted assemblage types. These areas of higher
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uncertainty could represent transition zones with steep
environmental gradients and rapid compositional turn-
over (Rubidge et al., 2016). Potentially enriched biodiver-
sity and within-species adaptive diversity found in
transition zones increase the value of these areas as dis-
tinct conservation targets that could facilitate adaptation
to changing climatic conditions (Araújo, 2002; Smith
et al., 2009). The small and isolated minor clusters in our
analyses were often located in these areas (Appendix S1:
Figure S12), lending support to the notion of unique
assemblage composition in transition zones. Further
effort to characterize assemblages and environmental
variability in these areas is warranted. Alternative model-
ing techniques that predict spatial variation in composi-
tional dissimilarity such as Gradient Forest (Pitcher
et al., 2012) and Generalized Dissimilarity Modeling
(Ferrier et al., 2007) may be useful for visualizing and
targeting areas of rapid compositional turnover along
environmental gradients.

Temperature gradients shape ecological
and evolutionary patterns relevant for
climate adaptation

In our study, gradients in average minimum and maxi-
mum bottom temperature consistently emerged across
regions as important variables delineating the distribu-
tion of benthic assemblages, which was reflected by the
types of indicator taxa characterizing cold- and warm-
affinity assemblages. Metabolic constraints on oxygen
supply set extremes of thermal tolerance for marine ecto-
therms (Pörtner & Knust, 2007), which occupy geo-
graphic ranges closer to their thermal limits than
terrestrial species (Sunday et al., 2012). Temperature
extremes shape the physiological, behavioral, evolution-
ary, and demographic responses of marine organisms
and populations across wide-ranging spatial and tempo-
ral scales (Pinsky et al., 2020). Consequently, spatial vari-
ation in biological properties across the spectrum of
ecological organization are closely associated with tem-
perature gradients in marine ecosystems including
genetic structure (Stanley et al., 2018), abundance
(Waldock et al., 2019), community composition (Pitcher
et al., 2012, Rubidge et al., 2016, this study), diversity
(Tittensor et al., 2010), and functional traits (Henriques
et al., 2017). Stanley et al. (2018) documented a genetic
break in population structure shared by multiple species
in the Northwest Atlantic associated with a steep latitudi-
nal gradient in seasonal temperature minima. We found
a transition in community structure at a comparable loca-
tion along the Atlantic coast of Nova Scotia (�44.5�–45�
N) consistent with this temperature gradient, suggesting

an important link between temperature stress and ecologi-
cal and evolutionary processes in the region.

Our regional model predicted changes in the distribu-
tion of fish and invertebrate assemblages in the MAR
region in response to recent observed and projected 21st
century warming of bottom temperatures, but that
changes in suitable thermal habitat varied among assem-
blages. Under a high-emissions climate scenario (RCP
8.5), the two Western Scotian Shelf assemblages associ-
ated with warmer waters are projected to expand to the
northeast at the expense of the deeper Laurentian Chan-
nel and cold-affinity Eastern Scotian Shelf assemblages
with little overall change for the Continental Slope
assemblage. The direction and magnitude (hundreds of
kilometers) of these changes are consistent with single
species projections for the region (Morley et al., 2018).
Similar to historical observations from bottom trawl sur-
veys of long-term, climate-associated range shifts in spe-
cies assemblages, our projections show a greater
latitudinal response in shallower warm water assem-
blages compared to deeper assemblages (Kleisner
et al., 2016) and an increased dominance of assemblages
with affinities to warmer waters (Burrows et al., 2019).
Further validation of our predictions could be achieved
through comparisons to more complex community-level
models fitted to multispecies responses (reviewed by
Nieto-Lugilde et al., 2018). However, given the ability of
our model to accurately hindcast compositional changes
associated with warming in the last decade and that
assemblage distributions are likely to track changes in
extent of thermal habitats (Kleisner et al., 2016), our pro-
jections could inform climate-smart conservation plan-
ning currently underway in Atlantic Canada. MPA
networks should protect areas across a range of novel
future climatic conditions (Tittensor et al., 2019). Our
predictions identify potentially resilient areas that could
serve as temporary thermal refugia (Keller et al., 2009;
Tittensor et al., 2019) and areas more susceptible to
change that may require more active monitoring and
management to ameliorate the cumulative effects of
other stressors (Keller et al., 2009; McLeod et al., 2009).

Community-level modeling facilitates
monitoring and adaptive management

Biologically informed classifications such as ours can pro-
mote more efficient and cost-effective monitoring of
MPA networks in other ways. Effective monitoring pro-
grams are key to adaptive management (WCPA/
IUCN, 2007), but collecting additional ecological data
can be prohibitively expensive. The lower within-habitat
variability associated with biologically informed
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classification schemes relative to abiotic surrogates trans-
lates to reduced sampling intensity required to detect
changes in species richness and abundance (Cooper
et al., 2019). In addition, failure to account for biogeo-
graphic variation in monitoring programs may reduce
power to detect reserve effects for target and non-target
species (Hamilton et al., 2010). Evaluating network effi-
cacy could be further simplified by targeting monitoring
programs toward the indicator taxa we identified. A num-
ber of indicator taxa from our study were previously iden-
tified as more vulnerable to climate change (Stortini
et al., 2015) and could therefore serve as sentinel species
(e.g., mustache sculpin, snow crab). Indicators shared by
multiple regions and that are already experiencing
temperature-mediated declines, like snow crab
(Zisserson & Cook, 2017), should be further prioritized.
We also identified the environmental surrogates most
closely associated with biological patterns (e.g., tempera-
ture, depth), which can further prioritize sampling efforts
to the most relevant variables especially if collection of
physical data (e.g., through the Atlantic Zonal Monitor-
ing Program; Therriault et al., 1998) is a more feasible
option than a comprehensive biological survey.

Despite the extensive benefits of community-level
modeling approaches for marine conservation, practical
application is limited not by an analytical framework or
computational power, but by the availability of compre-
hensive biological data. Biological data from long-term,
spatially and taxonomically comprehensive regional sur-
veys, such as the data sets from this study, are biased
toward temperate latitudes, especially the north Atlantic
Ocean (Poloczanska et al., 2016). In areas where data are
sparse, ‘assemble-then-predict’ approaches such as ours
may be more attainable compared to approaches requir-
ing model fitting to separate species because they have
greater power to detect shared patterns by pooling data
across rare species (Ferrier & Guisan, 2006). Emerging
techniques for quantifying marine biodiversity such as
eDNA metabarcoding (Djurhuus et al., 2020) could help
bridge the gap in data poor regions, provided that refer-
ence databases are sufficiently developed for confident
species identifications.

Regions that have started conservation planning with-
out or with little biological data need not necessarily
revise existing networks. MPA networks designed using
abiotic surrogates or incomplete biological data capture
conservation features better than randomly placed
reserves (Ban, 2009; Sutcliffe et al., 2015) and may provide
an adequate first-order approximation of biological
patterns (Rubidge et al., 2016; Sutcliffe et al., 2015). We
found that sites grouped solely based on compositional
similarity were broadly associated with geomorphic and
oceanographic features, suggesting that protecting such

features captures representative species assemblages to
some degree. However, updated classifications based on
biological data can inform gap analyses to prioritize site
selection for network expansion while minimizing con-
flicts with other stakeholders (Douglass et al., 2014;
Geange et al., 2017). We suggest prioritizing assemblage
types underrepresented in existing networks based on
their distinctiveness from other assemblages. Distinctive-
ness can be inferred with the hierarchical clustering
approach used here from the topological relationships
between assemblage clusters in the dendrogram. Gap ana-
lyses that maximize conservation benefits while reducing
user conflicts will become more critical as parties to the
Convention on Biological Diversity recalibrate to more
ambitious targets under a post-2020 biodiversity agree-
ment (Dinerstein et al., 2019; Visconti et al., 2019).

More ambitious conservation targets exacerbate the
need to improve shared stakeholder buy-in by demon-
strating the efficacy and benefits of protection measures.
In this study, we demonstrated how community-level
modeling can be consistently applied across regions to
summarize ecologically relevant patterns of spatial varia-
tion in marine assemblages and better support the prac-
tices and principles that advance the ecological objectives
of marine conservation planning (e.g., ecological coher-
ence, climate adaptation, monitoring and adaptive man-
agement). However, a framework to align ecological
objectives with positive socioeconomic outcomes that
would better translate the societal benefits of ecologically
coherent MPA networks has lagged behind (Rees
et al., 2018). Predictive mapping that moves beyond spe-
cies composition to characterize spatial variation in func-
tional trait diversity, functional redundancy, and
representative functional groups is an important exten-
sion of our work that will help bridge this connection.
This can be accomplished with emerging community-
level modeling techniques that flexibly incorporate func-
tional trait variation (Nieto-Lugilde et al., 2018). Func-
tional trait diversity may be tightly linked with ecosystem
functions and processes that in turn support the flow of
ecosystem goods and services that bolster human well-
being (Cadotte et al., 2011). Therefore, a predictive map-
ping application directed on functional traits would com-
plement our results focused on taxonomic composition.
Together these could support other formal processes to
identify and communicate tangible societal consequences
and benefits associated with levels of protection and rep-
resentativity within MPA networks (Rees et al., 2018).
Community-level modeling combined with a framework
that emphasizes social-ecological coherence of MPA net-
works may help build the social capital needed to ensure
comprehensive and lasting protection of marine ecosys-
tems and the benefits they provide.
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