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Abstract
Significance testing for genome‐wide association study (GWAS) with increasing 
SNP density up to whole‐genome sequence data (WGS) is not straightforward, be-
cause of strong LD between SNP and population stratification. Therefore, the ob-
jective of this study was to investigate genomic control and different significance 
testing procedures using data from a commercial pig breeding scheme. A GWAS 
was performed in GCTA with data of 4,964 Large White pigs using medium density, 
high density or imputed whole‐genome sequence data, fitting a genomic relationship 
matrix based on a leave‐one–chromosome‐out approach to account for population 
structure. Subsequently, genomic inflation factors were assessed on whole‐genome 
level and the chromosome level. To establish a significance threshold, permutation 
testing, Bonferroni corrections using either the total number of SNPs or the number 
of independent chromosome fragments, and false discovery rates (FDR) using either 
the Benjamini–Hochberg procedure or the Benjamini and Yekutieli procedure were 
evaluated. We found that genomic inflation factors did not differ between different 
density genotypes but do differ between chromosomes. Also, the leave‐one‐chro-
mosome‐out approach for GWAS or using the pedigree relationships did not ac-
count appropriately for population stratification and gave strong genomic inflation. 
Regarding different procedures for significance testing, when the aim is to find QTL 
regions that are associated with a trait of interest, we recommend applying the FDR 
following the Benjamini and Yekutieli approach to establish a significance threshold 
that is adjusted for multiple testing. When the aim is to pinpoint a specific mutation, 
the more conservative Bonferroni correction based on the total number of SNPs is 
more appropriate, till an appropriate method is established to adjust for the number 
of independent tests.
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1  |   INTRODUCTION

Genome‐wide association studies (GWAS) aim to associate 
single nucleotide polymorphism (SNP) with a trait of interest 
in order to get a better understanding of the genetic architec-
ture and to improve the accuracy and persistency of genomic 
prediction (VanRaden, Tooker, O'Connell, Cole, & Bickhart, 
2017). A SNP is classified as associated SNP when it exceeds 
a significance threshold usually expressed as the –log10 (p‐
value). These associated SNPs could however also be a false 
positive, leading to wrong conclusions about the genetic ar-
chitecture underlying a trait or to a suboptimal subset of SNPs 
for genomic prediction. With the increasing number of SNPs 
used for GWAS, especially up to imputed whole‐genome se-
quences (iWGS), the number of false‐positive associations is 
expected to increase and choosing an appropriate significance 
threshold becomes an issue. Although the whole concept 
of significance thresholds should not be misused to assume 
causality and reproducibility of SNP effects (Baker, 2016; 
Wasserstein, Schirm, & Lazar, 2019), it is a useful concept for 
animal breeding to preselect and differentially weight SNPs 
in across‐breed genomic prediction (Raymond et al., 2018).

One approach to reduce the number of false positives is 
genomic control based on the genomic inflation factor. The 
genomic inflation factor expresses the deviation of the dis-
tribution of the observed test statistic compared to the distri-
bution of the expected test statistic. High genomic inflation 
factors are caused by population stratification, strong link-
age disequilibrium (LD) between SNPs, strong association 
between SNPs and phenotypes, and systematic bias (Devlin 
& Roeder, 1999; Hinrichs, Larkin, & Suarez, 2009; Reich & 
Goldstein, 2001; Zheng, Freidlin, & Gastwirth, 2006). Within 
livestock populations, we deal with genotype data that are 
imputed to higher density SNP data or even to whole‐genome 
sequence data, and also with individuals that are closely re-
lated to each other. Henceforth, the question is how the ge-
nomic inflation factor is affected in a GWAS with such data. 
Furthermore, different LD patterns across chromosomes may 
exist (Veroneze et al., 2013), and therefore, we would also ex-
pect different genomic inflation factors across chromosomes. 
To our knowledge, this has not been investigated yet.

In addition to applying genomic control, choosing an ap-
propriate significance threshold can also control the number 
of false positives. A significance threshold of −log10 (p‐
value) >7.2 (Welter et al., 2013) is commonly accepted in 
human genetic studies, while there is no commonly agreed 
threshold for livestock studies, such as for a pig breeding 
population. Permutation testing is a method to derive a em-
pirical significance threshold that accounts for multiple test-
ing and allows for the statistical dependence between SNPs 
(Churchill & Doerge, 1994). However, permutation testing is 
computationally intensive, especially when a large number of 
SNPs are involved in a large population.

Less computationally intensive approaches to account for 
multiple testing, which could cause an higher number of false 
positives, involve adjusting the significance threshold for ei-
ther the family‐wise type 1 error rate or the false discovery 
rate (FDR). The family‐wise type 1 error rate aims to mini-
mize the probability of finding at least one false positive. The 
family‐wise type 1 error rate is usually controlled by applying 
a Bonferroni correction that adjusts the significance thresh-
old by the number of independent tests. In livestock, the num-
ber of independent tests is usually defined as the total number 
of SNPs or as the number of independent chromosome frag-
ments, defined as regions of the genome that explain unique 
genetic variation (Duggal, Gillanders, Holmes, & Bailey‐
Wilson, 2008; Ricard et al., 2017). Using the total number of 
SNPs can result in too conservative thresholds because it vio-
lates the assumption of independency between tests (Duggal 
et al., 2008; Nicodemus, Liu, Chase, Tsai, & Fallin, 2005). In 
contrast to the Bonferroni correction, the FDR does not aim 
to control the probability of finding at least one false posi-
tive but allows a proportion of the positive results to be false. 
Two commonly used FDR adjustments, among others, are the 
Benjamini and Hochberg (Benjamini & Hochberg, 1995) ap-
proach and the Benjamini and Yekutieli approach (Benjamini 
& Yekutieli, 2001).

In published studies in pig populations, threshold values 
for −log10 (p‐value) ranged from 3.3 to 6, using either no 
multiple testing correction, a Bonferroni correction, the false 
discovery rate, or genomic control (Do et al., 2013; Hao et al., 
2017; Le, Christensen, Nielsen, & Sahana, 2017; Ma et al., 
2013; Sahana, Kadlecová, Hornshøj, Nielsen, & Christensen, 
2013; Sanchez et al., 2014; van Son et al., 2017). Therefore, 
the objective of this study was to investigate genomic control 
and different significance testing procedures using data from 
a commercial pig breeding scheme to establish guidelines for 
significance testing in a GWAS using either medium‐density 
genotypes, high‐density genotypes or imputed WGS (iWGS).

2  |   MATERIALS AND METHODS

2.1  |  Data
The data set for a Large White (LW) line was provided by 
Topigs Norsvin. The data set included precorrected pheno-
types for number of teats of 4,964 Large White (LW line) 
pigs (Lopes et al., 2017), medium‐density genotypes (34,588 
SNPs) and high‐density genotypes (491,169 SNPs). High‐
density genotypes were imputed to WGS with Beagle 4.0 
(Browning & Browning, 2009), using a multi‐line reference 
population of 168 animals of which 32 individuals originate 
from the LW line (van den Berg et al., 2019). After imputa-
tion and quality control, 10,212,687 SNPs that had a Beagle 
imputation accuracy (R2) > 0.6 were considered for iWGS 
and the average Beagle R2 was 0.93.
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2.2  |  Single‐SNP genome‐wide 
association study
A single‐SNP GWAS was performed for medium density, 
high density and imputed WGS (iWGS), applying a mixed 
linear association model with a leave‐one‐chromosome‐out 
(LOCO) approach as implemented in GCTA version 1.25.2 
(Yang, Manolio, et al., 2011; Yang, Zaitlen, Goddard, 
Visscher, & Price, 2014). The model was as follows:

where y is a vector of the phenotypes, µ is the mean, b is the 
fixed effect of the SNP tested for association, x is a vector of 
the SNP genotypes coded as 0, 1 or 2, u is a vector of random 
polygenetic effect and e is a vector of residuals. The residu-
als were distributed following a normal distribution N(0,Iσe

2) 
with σe

2 being the residual variance. The random polygenetic 
effect followed a normal distribution u ~ N(0,Gσg

2), where 
G is the genomic relationship matrix (Yang, Manolio, et al., 
2011) for which the chromosome of the SNP tested is ignored 
and σg

2 is the genetic variance.

2.3  |  Genomic control
The chi‐square test statistics, needed for the computation of the 
genomic inflation factors, were calculated from the p‐values as-
suming 1 degree of freedom. The genomic inflation factor was 
defined as the median of the observed chi‐squared test statis-
tics divided by the expected median of the corresponding chi‐
squared distribution and was computed for each chromosome 
separately and for the whole genome for the different densities.

2.4  |  Definition of the significance threshold
Three approaches to establish significance thresholds were 
evaluated: (a) permutation testing, (b) the Bonferroni cor-
rection and (c) the FDR. The definition of the significance 
threshold was expressed as the –log10 (p‐value). The estab-
lished significance thresholds were compared between me-
dium‐density, high‐density and iWGS genotypes.

The permutation test followed the procedure for the es-
timation of the experimental critical values that was pro-
posed by Churchill and Doerge (1994). The phenotypes were 
randomly shuffled and subsequently used for a single‐SNP 
GWAS analysis. A total of 1,000 permutations were per-
formed, and the maximum –log10 (p‐value) of each per-
mutation was recorded. The –log10 (p‐value) significance 
threshold was defined as the 95th percentile of the ordered 
recorded values. Using either medium‐density genotypes, 
high‐density genotypes or iWGS, the permutation test was 
performed for only 3 chromosomes to limit the computational 

costs. Chromosomes 4, 7 and 10 were chosen to represent dif-
ferent levels of association.

The Bonferroni correction divides the probability of hav-
ing at least one false‐positive result when the null hypothesis 
(H0) is true (α) by the number of independent tests. In this 
study, α was set to 0.05. The number of independent tests was 
either the total number of SNPs or the number of independent 
chromosome fragments. The number of independent chro-
mosome fragments (Me) was calculated as follows (Goddard, 
Hayes, & Meuwissen, 2011):

where G is the genomic relationship matrix computed fol-
lowing the first method of VanRaden (2008) with SNPs of all 
chromosomes. Goddard et al. (2011) showed that this estima-
tion of Me is equal to the inverse of the average LD (measured 
as r2) across the whole genome.

Thresholds adjusted for the FDR were established using 
two different procedures. The first procedure evaluated was a 
three‐step strategy proposed by Benjamini and Hochberg 
(BH) (Benjamini & Hochberg, 1995). First, the p‐values were 
ordered in ascending order. Second, k was determined as the 
rank of max

{

p(i) < i
𝛼

m

}

, with α = 0.05, and m being the total 

number of SNPs. Third, the p‐value at rank k was defined as 
the threshold and all SNPs with a rank smaller than k are de-
clared significant. The second procedure evaluated was pro-
posed by Benjamini and Yekutieli (BY) (Benjamini & 
Yekutieli, 2001). This procedure followed the same steps as 
the BH one, except that k was defined as the rank of 

max
�

p(texti) < i
𝛼

m∗
∑m

i=i

1

i

�

. Both false discovery rates were es-

timated using the R package “mutoss” (Blanchard et al., 
2010).

3  |   RESULTS

3.1  |  GWAS
In comparison with lower densities, more peaks are observed 
with iWGS (Figure 1). These peaks become also higher and 
more pronounced. The strongest peak found with all den-
sities was located at approximately 103.4 MB on chromo-
some 7 and had a maximum –log10 (p‐value) of 28.5 using 
iWGS. Furthermore, highly significant peaks were found 
with all densities at chromosomes 2, 6, 10 and 12.

3.2  |  Genomic control
The genomic inflation factors at a whole‐genome level were 
all higher than 2 (average about 2.50) and were similar for 

(1)y=1�+xb+u+e

(2)Me =
1

Var
(

Gij

)
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the medium density, high densities, and iWGS. At the chro-
mosome level, the genomic inflation factors also remained 
constant across the different densities (Figure 2), although 
genomic inflation factors varied between chromosomes, from 
0.98 to 4.18 (Figure 2). Using a threshold of –log10 (p‐value) 
> 5 for iWGS, 67,784 SNPs were considered as significant 
without genomic control, 2,154 with genome‐wide control 
and 1,362 with chromosome‐specific genomic control. To in-
vestigate potential causes for these high genomic inflation fac-
tors, first the average genomic inflation factors over the 1,000 
permutations were calculated for the chromosomes 4, 7 and 

10. Values were around 1 and remained constant across chro-
mosomes and densities (Table 1). Thus, when the association 
between genotype and phenotype was broken down with per-
mutation testing, the genomic inflation factors decreased to 1.

Second, we also fitted three highly significant SNP (Table 
2) on chromosome 2, 7 and 10 as fixed effect in the GWAS 
with medium‐density SNPs. By fitting the highly signif-
icant SNP as fixed effect, the peaks in the Manhattan plot 
disappeared (Figure 3), indicating that the association was 
removed. Although the genomic inflation factor dropped 
with at least 22% compared to the model without the most 

F I G U R E  1   Manhattan plots for 
the number of teats using either medium‐
density, high‐density or iWGS genotypes

F I G U R E  2   Inflation factors per 
chromosome and the total genome found 
with medium density, high density and 
iWGS
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significant SNP as fixed effect (Figure 4), the genomic in-
flation factors were still not close to unity (that is, all above 
1.5). Finally, the analysis was re‐run with the same phenotype 
and iWGS data sets but using a pedigree relationship matrix 
or a genomic relationship matrix based on all iWGS markers. 
Using the pedigree relationship matrix resulted in genomic 
inflation factors close to those obtained with the LOCO ap-
proach (Figure 5). However, using a genomic relationship 
matrix based on all iWGS markers resulted in all genomic 
inflation factors per chromosome close to 1 (Figure 5).

3.3  |  Significance thresholds
Permutation testing was used to set the baseline value for the 
significance threshold for –log10 (p‐value). The significance 
thresholds found with permutation testing for the medium‐
density SNP chip were 4.1 and increased to 5.5 when the 
marker density increased to iWGS. In contrast to the genomic 
inflation factors, significance thresholds were constant across 
chromosomes (Table 1).

The level and behaviour of the significance threshold 
were dependent on the number of independent tests applied 
to the Bonferroni correction. When the total number of SNPs 
was used as the number of independent tests, the threshold 
increased from 5.8 to 8.3 when moving from medium den-
sity to iWGS (Table 3). However, the significance thresholds 
remained constant at about 3.6 when the total number of in-
dependent chromosome fragments was used as the number 
of independent tests (Table 3), because the total numbers of 
independent chromosome fragments were also constant at ap-
proximately 200 across densities.

Using the FDR, the significance threshold remained more 
constant, at about 2.50 across the different SNP densities 
when using the BH procedure, while a slight increase was 
observed, from 4.19 to 4.54, with increasing marker density 
when using the BY procedure.

The effect of significance threshold on the number of 
SNPs above a significance threshold is illustrated in Figure 
6, and there was an obvious effect of genotype density on the 
number of identified significant SNPs. Figure 7 shows the 
number of QTL regions (a region includes all SNPs within 
a 0.5 Mb region to the left and right of the most significant 
SNP) is also highly dependent on genotype density and sig-
nificance threshold. For example, for iWGS, the number of 
QTL regions was equal to 36 with a significance threshold of 
8.3 (that is, with the Bonferroni correction based on the total 
number of SNPs), to 264 with a signification threshold of 5.4 
(that is, a threshold obtained from the permutation test) and 
to 977 with a significance threshold of 3.6 (that is, with the 

T A B L E  1   Significance thresholds and genomic inflation factors 
from permutation testing of chromosomes 4, 7 and 10 for medium and 
high densities and iWGS

Chromosome Density Thresholda
Genomic inflation 
factorb

4 Medium 4.178 0.997 (0.198)

High 4.927 1.004 (0.204)

iWGS 5.469 0.991 (0.196)

7 Medium 4.232 1.003 (0.207)

High 4.922 1.003 (0.201)

iWGS 5.449 1.005 (0.210)

10 Medium 4.100 1.003 (0.194)

High 4.743 0.988 (0.188)

iWGS 5.426 0.988 (0.185)
ap‐value thresholds are expressed as –log10 (p‐values). 
bAverages and standard deviation within brackets over 1,000 permutations. 

T A B L E  2   Details on the top 4 QTL used as a fixed effect in the 
GWAS model

Chromosome Positiona −log10(p‐value) SNP effect

2 125.63 9.1 −0.13

7 103.5 26.6 0.34

10 525.9 11.5 −0.15
aPosition is given in mega base pairs (MB). 

T A B L E  3   Significance thresholds of a Bonferroni correction using the total number of SNPs or the number of independent chromosome 
fragments for medium and high densities and iWGS

 

Bonferroni_totala Bonferroni_Me
b FDR_BHc FDR_BYd

# SNP Thresholde Me
f Thresholde Thresholde Thresholde

Medium density 34,588 5.84 198.9 3.60 2.48 4.19

High density 491,169 6.99 193.4 3.59 2.44 4.38

iWGS 10.2 M 8.31 223.4 3.65 2.57 4.54
aBonferroni_total = 0.05/total number of SNPs. 
bBonferroni_Me = 0.05/ Me. 
cThe false discovery rate (FDR) computed following Benjamini and Hochberg (1995) (BH). 
dThe false discovery rate (FDR) computed following Benjamini and Yekutieli (2001) (BY). 
eSignificance thresholds are expressed as –log10 (p‐values). 
fMe is the number of independent chromosome fragment calculated with the formula proposed by Goddard et al. (2011). 
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Bonferroni correction based on the number of independent 
chromosome fragments).

4  |   DISCUSSION

The objective of this study was to evaluate and compare dif-
ferent statistical testing procedures in order to minimize the 
chance of finding false positives for a GWAS using data from 
a commercial pig line.

Genomic inflation factors in this study were high (that is, all 
above 2), suggesting that we need to adjust for population strat-
ification in the data. Accounting appropriately for population 
stratification is important to avoid strong genomic inflation and 

consequently avoid false positives (Cardon & Palmer, 2003; 
Hinrichs et al., 2009; Patterson, Price, & Reich, 2006; Price et 
al., 2006). In other GWAS using commercial pig lines, the ge-
nomic inflation factors were much lower (Diniz et al., 2014; 
Lopes, Bastiaansen, Harlizius, Knol, & Bovenhuis, 2014; Luo 
et al., 2012; Sanchez et al., 2014). For example, Lopes et al. 
(2014) found genomic inflation factors of 1.13 for the number 
of teats using 60K Large White genotypes. The difference be-
tween literature and this study was likely not due to a different 
density of SNPs since the genomic inflation factors did not vary 
between the densities used in this study. Instead, we showed 
that the LOCO approach in GCTA is a likely reason for the 
genomic inflation in our population. With the LOCO approach, 
the genomic relationship matrix used to account for population 

F I G U R E  3   Manhattan plot of GWAS without (upper) or with 3 QTL as fixed effect (lower)
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stratification only included the other chromosomes than the 
one where the tested SNP is located. It has been shown that 
the LOCO approach improves the power of GWAS in human 
studies (Lippert et al., 2011; Listgarten et al., 2012; Yang et 
al., 2014) because the tested SNP is not double fitted in the 
model. However, in human studies, most individuals are often 
unrelated, while in livestock breeding populations, many strong 
family relationships exist. For example, in this data set, each 

individual had on average 2.2 full sibs and 42 half‐sibs. This 
complicated family structure is also illustrated by the eigenval-
ues of the genomic relationship matrix computed using the me-
dium‐density genotypes (Figure 8). It can be observed that a few 
eigenvalues explain a relatively large proportion of the variance 
(e.g., the 10 first largest eigenvalues explain >17% of the vari-
ance). Therefore, our results confirm that the LOCO approach 
does not account appropriately for the population stratification 

F I G U R E  4   Genomic inflation factors of GWAS without (grey) or with 3 QTL as fixed effect (Blue)

F I G U R E  5   Inflation factors found per 
chromosome and across the whole genome 
using a pedigree relationship matrix (A 
matrix), a genomic relationship matrix based 
on the leave‐one‐chromosome‐out approach 
(LOCO G) and a genomic relationship 
matrix based on all iWGS markers (Full G)



      |  425van den BERG et al.

in a pig breeding population and probably also in many other 
livestock populations used for a GWAS. Furthermore, we 
showed that the pedigree relationship matrix does not account 
appropriately for the population stratification neither. Hence, 
fitting a genomic relationship matrix using all chromosomes 
might be more appropriate than the other options and might 
diminish the need to adjust for population structure.

Although the genomic inflation factors did not differ a lot 
between the different SNP densities, genomic inflation fac-
tors varied largely across the chromosomes. A likely expla-
nation might be that there was a different level of association 
between the SNP on the chromosome and the trait of interest. 
Strong association between SNP and the trait of interest can 
cause inflation of the test statistic in the neighbouring regions 
because of LD between these SNPs, and many more SNPs 
were significant when an average genomic control was per-
formed across the chromosome. Therefore, we suggest that 
genomic control should be applied per chromosome.

4.1  |  Definition of the significance threshold
Permutation testing is a method to derive empirical thresh-
olds that can be used to validate thresholds found with less 
computationally intensive approaches, such as the Bonferroni 
correction or the FDR. The procedure for permutation test-
ing used in this study assumed that the observations are 

independent (Churchill & Doerge, 1994). Because the 900 
principal components suggest that there are many families 
(Patterson et al., 2006), it is likely that with 1,000 permuta-
tions, the dependency between observations between family 
members is broken down and the assumption of the inde-
pendence between observations is fulfilled.

The empirical thresholds established by permutation test-
ing were used as a reference to validate the thresholds es-
tablished by the less computationally intensive Bonferroni 
correction and FDR. Based on the empirical thresholds, it 
was expected that the significance threshold increased with 
increasing SNP density. However, the significance threshold 
based on the Bonferroni correction using the total number of 
SNPs was much higher than the empirical thresholds; that is, 
the threshold based on the Bonferroni correction increased 
from 5.84 to 8.31, whereas the empirical thresholds increased 
from 4.1 to 5.5. The assumption that the total number of 
SNPs is equal to the number of independent tests is too con-
servative, since there is LD between the SNPs.

The Bonferroni correction with the number of independent 
chromosome fragments did account for an average LD be-
tween SNPs across the genome. However, even though using 
the number of independent chromosome fragments to repre-
sent the LD structure of the data better, the significance thresh-
olds did not increase with increasing SNP density and the 
thresholds were quite low compared to those ones established 

F I G U R E  6   Number of SNPs with 
a significance level above a range of 
significance thresholds (without correction) 
for medium density (grey), high density 
(blue), and iWGS (orange)
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with permutation testing, for example, 5.4 with permutation 
testing and 3.4 with the Bonferroni correction for iWGS. 
Dudbridge and Gusnanto (Dudbridge & Gusnanto, 2008) 
also reported underestimated significance thresholds when 
the number of independent chromosome fragments was used 
with the Bonferroni correction. They argued that using princi-
pal component analysis to estimate the number of independent 
chromosome fragments might not be an appropriate method, 
and therefore, the thresholds were lower than expected. In this 
study, the number of independent chromosome fragments was 
defined as the inverse of the variance of the off‐diagonal ele-
ments of the genomic relationship matrix. However, it could be 
argued that this method might be not appropriate because it as-
sumed uniformity of LD patterns across the genome (Goddard 
2009). This assumption is not valid because LD patterns differ 
across chromosomes (Figure 9). Ignoring the variation in LD 
patterns could lead to an underestimation of the number of in-
dependent chromosome fragments and subsequently to under-
estimated thresholds, especially with iWGS.

4.2  |  Applications
The aim of this study was to investigate different approaches 
to test for significance in a GWAS with iWGS. The number 

of false positives can be minimized by a combination of ap-
plying genomic control and then choosing an appropriate 
threshold. We expected the combination of the genomic con-
trol and the FDR to result in an overestimation of the sig-
nificance thresholds. Additional analysis confirmed that the 
combination of FDR and genomic control inflates the signifi-
cance threshold, because the FDR threshold was 4.54 without 
considering genomic control (Table 3), and increased to 7.64 
with considering first genomic control (result not shown). We 
hypothesize the high thresholds were caused by an entangle-
ment of theory behind genomic control and FDR. Genomic 
control corrects p‐values for their deviations from the ex-
pected distribution. Also, the FDR establishes a new distri-
bution by applying a cut‐off for p‐values that do not follow 
the expected distribution under the null hypothesis. So, both 
genomic control and FDR rescale the expected distribution 
and thus they are confounded in their underlying procedures.

Fitting the full genomic relationship matrix based on all 
chromosomes might alleviate the need for genomic control. 
When the aim is to find QTL regions that are associated with 
a trait of interest, we recommend to use the FDR following 
the BY approach to establish a significance threshold that is 
adjusted multiple testing. When the aim is to pinpoint a spe-
cific mutation, the more conservative Bonferroni correction 

F I G U R E  7   Number of QTL regions with a significance level above a range of significance thresholds (without correction) for medium 
density (grey), high density (blue) and iWGS (orange)
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based on the total number of SNPs appears more appropriate. 
However, it is still not satisfying that adjusting for the total 
number of SNPs is needed to account for increasing number 
of tests with iWGS, and a more appropriate method to deter-
mine the number of independent test is required.

5  |   CONCLUSION

The objective of this study was to compare different sig-
nificance testing procedures and to establish guidelines for 
significance testing in a GWAS using either medium‐density 

F I G U R E  8   Cumulative proportion 
of variance explained in the genomic 
relationship matrix by its eigenvalues

F I G U R E  9   LD decay on chromosome 2, 7 and 10 between medium‐density SNPs. LD was measured as r2 between SNP in bins of 50 kilo‐
base pair (KB)
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genotypes, high‐density genotypes or iWGS for a commer-
cial pig population. We found that genomic inflation fac-
tors did not differ between different densities but did differ 
between chromosomes. In addition, a genomic relationship 
matrix based on the leave‐one‐chromosome‐out approach 
does not account appropriately for population stratification 
and gave strong genomic inflation in this pig breeding pop-
ulation. Based on our results, we recommend to use either 
genomic control in combination with Bonferroni correction 
(using the total number of SNPs and depending on the aim 
of the study, relax the significance level) or the FDR without 
applying genomic control. Fitting the full GRM based on all 
chromosomes might alleviate the need for genomic control.
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