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ARTICLE INFO ABSTRACT

Keywords: The Electrochemical sensor based on carbon-clay paste electrode (CCPE) was constructed for
Electrochemical sensor sensitive determination of Tetracycline (Tc). The mineralogical composition, morphology,
Tetracycline

structure and performance of CCPE were characterized using X-ray diffraction powder, Fourier
transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Cyclic Vol-
tammetry analysis. The CCPE is constituted of two types of clay having the ratio 1/1 and 2/1
characteristic of kaolinite and montmorillonite clay respectively. Its porous structure is ascribed
to the presence of graphite. The CCPE exhibited a good electrocatalytic activity towards the
oxidation of Tc. The electrochemical kinetics and mechanism of Tc were proposed, showing that
Tc electrocatalytic oxidation reaction was controlled by diffusion process and took place in three
steps. A low concentration of Tc was detected by amperometry with the linear ranges of
0.5uM-0.8 pM (R% = 0.98), the sensitivity was 8.01 pA/uM.cm? the limit of detection and
quantification were 5.16x10 3pM(S/N = 3) and 1.72x10 2uM respectively. Thus, the proposed
electrode provides a promising and prospective CCPE sensing platform for the detection of Tc in
the environment.

Electrode

Cyclic voltammetry
Square wave voltammetry
Carbon-clay

1. Introduction

In recent years, electrochemical applications have favored the development of new composite materials that help in the design of
electrochemical sensors, thus implying strong applications in various fields [1-4]. These sensors are generally made from various
important materials such as carbon to detect organic compounds [5,6]. In this context, graphite is used as a basic support to modify
electrodes due to its good physico-chemical properties [7,8]. It is an abundant bioavailable material obtained from vegetable residues
[9] or from waste materials such as batteries [10]. Among the various adsorbents, clays and its based composites have derived a large
adsorbent family endowed with the natural physicochemical properties, high specific surface area, extraordinary cation exchange
capacity (CEC) and cation exchange selectivity, surface hydrophilicity, surface electronegativity, etc., and thus drawing widespread
attention on environmental remediation nowadays [11,12]. The development of these new materials has been the subject of several
studies in the electroanalysis of heavy metals [13,14], biomolecules [15], which open significant avenues for the design of electro-
chemical sensors [16]. Electrochemical sensors have interesting features such as good sensitivity, high selectivity, fast response, low
cost, easy implementation and no pretreatment of the analyte [17-19]. However, other methods are also used for the detection of Tc
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such as: high performance liquid chromatography [20,21], capillary electrophoresis [22], electrochemiluminescence [23,24], UV
visible spectrophotometry [25-27], and high resolution mass spectrometry (HRMS) [28-30], but they are costly and not easy to
implement. Electrochemical sensors have low ohmic resistance [31] and are directly applied to detect emerging pollutants in drinking
water including organic molecules such as drugs [32]. The management of organic molecules such as antibiotics after use is a real
problem of environmental pollution and is at the origin of the rapid growth of bacteria [33,34], hence the need to develop more
reliable techniques for their detection and eradication (see Table 1).

The environmental pollution caused by antibiotics such as Tc is of concern to humanity [35,36]. Tc is a biomolecule with thera-
peutic properties [37-39]. Its constant use favors its release into water since there is no control before releasing it into the environ-
ment. This allows it to be stored in drinking water due to the excess of released substances creating a public health hazard [40,41], such
as liver and pancreatic dysfunction in rats [42], hepatic steatosis causing liver dysfunction and severe liver failure leading to death in
men [43]. The maximum limit value for Tc in milk prescribed by the European Union is 100 pg/kg [44].

The objective of this work is to design and characterize a CCPE by developing an amperometric sensor for the detection of Tc by
cyclic voltammetry in aqueous solution.

2. Experimental
2.1. Material and chemical reagents

The clay material was collected in the Far North region (Cameroon), more precisely in the locality of Mokolo with the following
geographic coordinates: Latitude: 10°43'59’N, Longitude: 13°49'0.9"’E, Altitude: 799 m, Precision: £9 m. These clays are also used by
the local people for pottery. After sampling, the treatment processes were carried out according to Stockes’ law as described in the
literature [45]. The graphite used was taken from a recycling of battery residues, and then crushed and washed with 1 M hydrochloric
acid. This purification method was inspired by previous work [10]. The paraffin oil used as a binder was purchased from the research
laboratory Sisco pvt. Ltd, India. The acetic buffer solution (0.1 M, pH = 5) was prepared from sodium ethanoate and ethanoic acid
solution. Acetic acid, sodium acetate and ethanol were purchased from Sigma-Aldrich. Tc was used in the pharmaceutical form.

2.2. Characterization techniques and equipment

The X-ray diffraction pattern of the natural clay powder and the carbon-clay paste electrode was recorded with a Bruker D8-
Advance apparatus using Cu K alpha radiation (A = 1.54 A) with a diffraction angle of 20 which varied from 5 to 50°. The morpho-
logical features of the clay and modified electrode particle surfaces were obtained using a Hitachi (Japan) S-3000H instrument. The
infrared spectrum was recorded using a PERKIN-ELMER FTIR spectrometer (4000-400 cm ™). Electrochemical analysis were per-
formed using a potentiostat (model PGSTAT 100, Eco Chemie B.V., Ultrecht, Netherland) controlled by Volta lab master4 software and
an electrochemical cell. The working electrode was the carbon-clay paste; the reference electrode in silver chloride and the platinum
auxiliary electrode were used to detect the analyte in the solution. An Elico U 120 pH meter was used for pH measurement.

2.3. Preparation of the working electrode
The CCPE was prepared by mixing the clay (1g) thoroughly with the graphite powder (1g) using a porcelain mortar. Then, paraffin
oil (3.6 mL) and ethanol (3 pL) were added into the mixture. Subsequently, this homogeneous paste was manually inserted into the

cylindrical Teflon cavity (geometric surface of the working electrode with a diameter of 0.126 cm?). Electrical contact was established
with a carbon rod and the electrode was air dried for 3 h before electrochemical analysis.

2.4. Electrochemical measurement

Tetracycline was detected electrochemically by immersing the working electrode (CCPE) in an acetic buffer solution (0.1 M, pH =

Table 1

Comparison of Limit of detection of CCPE with other modified electrodes for detection of Tc.
Type of electrode Method Limit of Detection (LOD) Reference
ND-MS/GCE. DPV 2 pM [51]
MWCNT-COOH AdSDPV 0.36 yM [57]
MnWO,/f-CNF/GCE cv 0.24 yM [58]
rGO-ZnO-GCE SWvV 0.38 yM [59]
Benzene sourced graphene-gold nanoparticle cv 1.60 x 107! pM [60]
Au-g-C3N4 nanocomposites cv 0.03 pM [61]
CME Ads-DPCSV 0.004 pM [64]
SbFE SWCSV 0.15 pM [65]
CPE-mag-MIP SWV 0.15 yM [66]
EPPU/GCE SWV 1.01 x 1071 pM [671
CCPE SWV 5.16x10 7> uM Present work
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5) containing a known concentration of tetracycline. After 5 min of analyte accumulation at the working electrode with constant
stirring (500 rpm) and open circuit, electrochemical measurements were made by SWV, CV (in the potential range 0.35V and 1.15V)
and EIS. As for the study of the interference effect, with the exception of the concentrations of tetracycline and glucose, which were all
2 pM, the electrochemical measurements were carried out in the same way as described above.

3. Results and discussion
3.1. X-ray diffraction analysis

The structural and mineralogical analysis using X-ray diffraction of the natural clay and CCPE were presented in Fig. 1. The patterns
show almost identical peaks for both samples. The clay material consists of Smectite (5.92°), Kaolinite (12.23°), Montmorillonite
(27.97°; 34.92°), and carbon probably due to the presence of organic matter in the clay, Quartz and Feldspath [46]. After modification
of graphite by clay, an intense peak is observed at 26.62° characteristic of graphite in the reticular plane corresponding to the Miller
index (002) [10]. The characteristic peak of Smectite at 5.92° disappears after modification. This can be explained by the interfacial
interactions at the clay surface marked by the hydration of Kaolinite into halloysite whose peak is observed at 12.19° on the carbon
modified by the clay.

3.2. Functional group analysis using Fourier transform infrared spectroscopy

Fig. 2 below shows the FTIR spectrums of the natural clay and CCPE. The spectrum of the natural clay shows an average band
around 3500 cm ! and 3600 cm ™}, which is characteristic of the elongation vibration of the OH-groups attributed to the kaolinite [47].
The narrow band around 3300 cm™! characterizing elongation vibration of OH- groups bond and hydrophilic materials (OH-from
water absorbed between the clay sheets) of 2/1 types such as montmorillonite [48]. The peak located at 3700 cm ! characterized by a
weak band corresponds to the vibration of the Aluminium- OH group bond of the octahedral layer of clays typel/1 such as kaolinite
(AI-OH-AI). At 1650 cm ™}, a band is observed attributable to the OH- group of water stacked in the smectite type clay sheets. In the
spectrum of the carbon paste modified by clay, an intense elongation peak corresponding to the C—=C bond due to the modification of
the clay by the graphite is observed between 1600 and 1645 cm™. In both spectra, very intense and medium intense bands of
elongation vibration are observed between 900 and 1000 cm ™}, referring to the bonding of the Si-O group of quartz. The peaks located
between 750 and 800 cm ! is attributed to quartz. Several small bands located around 710 ecm ! and 520 cm ™! showing a deformation
vibration of kaolinite and Mg-O and Mg—OH vibration corresponding to montmorillonite respectively [49].

3.3. Analysis of morphology and microstructure using SEM

Fig. 3 shows two micrographs that provide information on the morphology of the electrode surface. The natural clay in Fig. 3(a)
shows a stacked layer of lamina separated each other and creating interfoliar distance. The modify graphite paste electrode depicted in
Fig. 3(b) shows the same observation as above, but the difference is due to the presence of pores on the surface of the material resulting
from the presence of graphite on the surface of the modified electrode. Thus, all this shows the porous character of graphite on the
surface of the electrode. In both cases, the presence of shiny layers of milky white color indicates the existence of quartz and the white
color subsequently indicates the existence of kaolinite. The SEM image presented in Fig. 3(c) shows a flat porous surface with a stack of
graphene sheets making up the graphite.

CCPE C(002)
CLAY

K Mt Mt

Intensity(a.u)
-— R
-
-
-—

5 10 15 20 25 30 35 40 45 50
2 theta (°)

Fig. 1. X-Ray diffraction pattern of natural clay and carbon-clay paste electrode.
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Fig. 2. FTIR spectrum of clay and carbon-clay paste electrode.

Fig. 3. SEM of: (a) clay, (b) Carbon-Clay paste, (c) Carbon Paste.
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3.4. Electroanalysis of tetracycline by cyclic voltammetry

3.4.1. Electrochemical behavior of Tetracycline on a CCPE

The electrochemical behavior of Tetracycline (15 pM) on the CCPE in acetic buffer solution (0.5 M, pH = 5) at a scan rate of 50 mV/
s is shown in Fig. 4. The cyclic voltammogram (CV) (a) and (b) represent the behavior of the modified electrode in the absence of Tc
and in the presence of the analyte respectively. In the absence of the analyte, no peak is observed on the CV. This implies that the
surface of the modified electrode does not contain any redox system and conducts the electric current perfectly in the electrolyte
solution used. In the presence of Tc at a concentration equal to 15 pM, the CV shows a quasi-reversible system with an intense peak in
the anodic scanning direction at Ep; = 0.75V due to the oxidation of the alcohol function into ketone of the Tc molecule and a less
intense peak due to the reduction of this same ketone function corresponding to a potential Epy = 0.41V. This oxidation process of the
alcohol function into ketone function occurs when the molecule passed through a transition state as described in the literature [50] and
whose potential is perceptible in the direction of the cathodic scan at Eps = 0.64V.

The CCPE has a good sensitivity towards Tc molecule, and the analysis of other parameters will allow a better study of the phe-
nomenon. However, a sketch of the mechanism is proposed in the following Fig. 5.

3.4.2. Effect of pH of the electrolyte solution

Fig. 6(a) shows the CV’s as a function of pH. The shifts of the potentials towards increasing values are noticeable with increasing
intensities of the oxidation peaks current, which suggests that the pH has a strong influence on the oxidation reaction. The value of pH
= 5 was chosen for further analysis because at this precise potential the alcohol group oxidizes with a high current peak. At higher pH
values, there is a potential shift which is probably present due to the oxidation of the amine function in the Tc molecule [51].

According to Fig. 6(a), the electrochemical reaction on the surface of the modified electrode in the presence of Tc is influenced by
the pH of the acetic buffer solution. This makes it possible to establish an equation between the oxidation potential as a function of pH
[52].

From the straight-line, a relationship between oxidation potential and pH (Fig. 6(b)) is given by the following equation:

Ejy=0.04pH + 0.47

The effect of different pH at CCPE in the presence of 15 pm Tc in 0.1 M PBS solution at scan rate of 50 mVs ™! as shown in Fig. 6(a),
which displays the defined redox peaks, depends on the pH value (2-10) and the maximum current peak was obtained for pH = 5 [53].
The corresponding calibration line in Fig. 6(b) shows a variation in the oxidation peak potential as a function of pH, with an intense
peak at pH = 5. This proves that in an acid environment there is a strong exchange of protons between the Tc and the electrode surface.
Above pH = 5, the phenomenon of adsorption and ion exchange is less pronounced, but the reactions between H* protons and hydroxyl
ions are favorable [54].

The curve pH = f(I,) reflects a variety of Tc species in the electrolyte solution with probably the number of protons exchanged
during Tc degradation. This is in agreement with previous work describing the distribution of Tc species in aqueous solution as a
function of pH showing four ionization states of Tc as a function of their respective pKa [55]. The predominant species in the elec-
trolyte solution is the one corresponding to the highest oxidation current intensity hence the choice of pH = 5. However, this elec-
troanalysis process of Tc is done in three steps as illustrated by the following diagram (Fig. 7):

3.4.3. Effect of scan rate
This step is crucial to better elucidate the phenomenon taking place at the surface of the modified electrode. Fig. 8(a) shows the

Current/pA

0.4 0.6 0.8 1.0
Potential/Vvs.Ag/AgCl

Fig. 4. CV’s of the different electrodes: (a) CCPE in the absence of Tc, (b) CCPE in the presence of Tc (15 pM) in acetic buffer solution (0.1 M; pH =
5) under a scan rate of 50 mV/s.
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Fig. 5. Illustrative diagram of the redox mechanism of the Tc molecule at the CCPE.
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Fig. 6. CV’s recorded at the CCPE electrode in the presence of Tc (15 pM) at a scan rate of 50 mV/s: (a) at different pH (2; 3; 4; 5; 10), (b) the
corresponding calibration line for pH versus oxidation current and potential.
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Fig. 7. Illustrative diagram of the oxidation-reduction steps of Tetracycline at the CCPE electrode.
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CV’s at different scan rates (30, 80, 100, 130, 150, 180 and 230 mV s~1) in acetic buffer solution (0.1 M, pH = 5). The oxidation current
peaks increase linearly with the square root of the scan rate as shown in Fig. 8(b) which reflects that the process is diffusion phe-
nomenon [56].

Fig. 9(c) shows a linear function of oxidation potential vs scan rate E,, = f(v) giving a linear line equation as follows:

E,,=1.62x107*[] +0.72
With R> =0.93

And the intercept Epq = 0.72 V

The charge transfer coefficient (a,) and the number of electrons exchanged in this process is calculated using the electrokinetic data
in Fig. 9(d) and (e) following equation:

RT
— 1
"0 —anF M

R, F and T are thermodynamic parameters used in working conditions, ideal gas constant, Faraday constant and absolute tem-
perature respectively.

Thus, after calculation the found value of o, = 0.94 and substituting it into Eq. (1), the number of electrons exchanged during this
oxidation process of Tc is n = 0.99 ~ 1.

3.5. Electrochemical impedance spectroscopy (EIS)

The characterization of the carbon paste electrode (CPE) and the CCPE by EIS is a very effective method of analysis which allows
the electron transfer process in materials to be controlled [62]. Fig. 10 shows the Nyquist diagram in which CPE exhibits a curve similar
to an affine straight line with a center of curvature having a charge transfer resistance (Rct = 1025 Ohm). This behavior reflects
diffusion of the electrolyte constituents at the electrode surface, confirming the electron transfer process [63]. The CCPE curve is
characterized by a much larger parabolic arc at lower frequencies than the previous curve, with a center of curvature of charge transfer
resistance (Rct = 170 Ohm). This behavior shows that the CCPE electrode is favorable to redox reactions with partial diffusion during
this electrochemical process. It also revealed that electron transfer is very efficient after increasing conductivity.

3.6. Electroanalysis of tetracycline by square-wave voltammetry

3.6.1. Effect of interference

Fig. 11 shows a study of the selectivity of the CCPE electrode obtained by Square-Wave Voltammetry (SWV) in an acetic buffer
solution (0.1 M, pH = 5) in the presence of tetracycline and glucose, which we added to the reaction medium at equal concentration (2
pM). The electrochemical signals appear at peak potentials of —0.4V, 0.7V and 0.9V respectively for the oxidation of glucose, tetra-
cycline and Tc excipients [66]. This voltammogram makes it possible to preserve the electrochemical identity of each molecule, which
implement that the CCPE electrode detects both compounds but with a greater affinity towards glucose. It can be seen that the CCPE
electrode remains selective for each molecule studied.

3.6.2. Effect of concentration
Fig. 12 shows the SWV’s of Tc over a concentration range of 0.5 pM-0.8 pM in acetic buffer solution (0.1, pH = 5). The oxidation
current peaks increase linearly with concentration according to the equation:

I=1.01[T¢] - 0.32

with R? = 0.98.
The calculated limits of detection and quantification are equal to 5.16x10~2uM and 1.72x102 uM respectively.

4. Conclusion

The preparation of an amperometric sensor based on carbon paste and natural clay was successfully completed. The structural,
functional and electrochemical analysis showed that the modified electrode has a very good sensitivity and prompt response to the Tc
molecule. It also indicates that it is less expensive than similar devices previously reported and also easy to implement. It does not
require pretreatment of the analyte. Compared to the values found in the literature, the calculated values of the limit of detection and
quantification are very low. Considering these results, the amperometric sensor thus designed for the detection of Tc contributes
significantly to the improvement of research in electrochemistry and more particularly in environmental pollution control.
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