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Stroke is one of the leading causes of mortality, and survivors experience serious
neurological and motor behavioral deficiencies. Following a cerebral ischemic event,
substantial alterations in both cellular and molecular activities occur because of
ischemia/reperfusion injury. Wnt signaling is an evolutionarily conserved signaling
pathway that has been manifested to play a key role in embryo development and
function maintenance in adults. Overactivation of Wnt signaling has previously been
investigated in cancer-based research studies. Recently, abnormal Wnt signaling
activity has been observed in ischemic stroke, which is accompanied by massive
blood–brain barrier (BBB) disruption, neuronal apoptosis, and neuroinflammation within
the central nervous system (CNS). Significant therapeutic effects were observed after
reactivating the adynamic signaling activity of canonical Wnt signaling in different cell types.
To better understand the therapeutic potential of Wnt as a novel target for stroke, we
reviewed the role of Wnt signaling in the pathogenesis of stroke in different cell types,
including endothelial cells, neurons, oligodendrocytes, and microglia. A comprehensive
understanding of Wnt signaling among different cells may help to evaluate its potential
value for the development of novel therapeutic strategies based onWnt activation that can
ameliorate complications and improve functional rehabilitation after ischemic stroke.
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INTRODUCTION

Stroke is the leading cause of disability and mortality worldwide and is classified as ischemic or
hemorrhagic. Ischemic stroke accounts for 87% of all stroke incidences and is defined as the
interruption of blood flow to the brain due to blockage of the cerebral artery, causing severe damage
to focal brain tissue (Collaborators, 2019). Patients who survive the initial ischemic attack often suffer
from associated complications, such as hemiparesis, cognitive deficits, and dependency in daily
activities, the rehabilitation of which has always been a challenging issue (Richards et al., 2015).
According to an estimation put forth by the American Heart Association/American Stroke
Association, the total economic cost to the society for stroke is likely to rise up to $184.1 billion
for the year of 2030 (Collaborators, 2019).
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Vascular recanalization remains the primary therapeutic
option (Powers et al., 2019). To date, thrombolytic therapy
with intravenous recombinant tissue-type plasminogen
activator (rtPA) is recommended within the first 3–4.5 h.
Thrombolysis beyond the time window has a certain
recanalization ability, but the main side effects of intracerebral
hemorrhage increase concomitantly (Emberson et al., 2014). As
for embolization of larger vessels (anterior circulatory arterial
occlusion), which accounts for one-fourth of all ischemic strokes,
intravenous thrombolysis has a low recanalization rate of about
13–20% (Ma et al., 2019). Therefore, rtPA thrombolysis paired
with mechanical thrombectomy has become the first line therapy
for large vessel occlusion. According to the American Heart
Association, mechanical thrombectomy is prescribed in cases
where indications of middle cerebral artery embolism or
internal carotid artery embolism are evident within 6 h of
symptom onset (Alawieh et al., 2017). More recently,
screening by imaging methods has shown that patients with
penumbra can also benefit from mechanical thrombectomy
16–24 h after the onset of symptoms (Albers et al., 2018).
Additionally, to achieve recanalization as soon as possible,
there are studies on mechanical thrombectomy that skip
intravenous thrombolysis (DIRECT-MT, DEVT) and show
non-inferiority (Yang et al., 2020). In addition to vascular
recanalization therapy, the treatment of acute ischemic stroke
includes antiplatelet and anticoagulant therapies, improvement of
microcirculation, lipid control, and neuroprotection (Phipps and
Cronin, 2020).

The above studies suggest that the ischemic penumbra still has
great therapeutic potential for neuroprotection. The Wnt
pathway is part of an evolutionarily conserved intracellular
signal transduction cascade that regulates multiple processes
crucial for cell proliferation, differentiation, migration, and fate
decision during development (Schulte and Bryja, 2017; Eubelen
et al., 2018). Recently, several studies have reported the
mechanism by which Wnt/β-catenin signaling is regulated in
the adult brain and serves as an endogenous protective
mechanism against the central nervous system (CNS) diseases
(Schulte and Bryja, 2017; Menet et al., 2020; Cheng et al., 2022). In
this review, we discuss the recent research updates on the
regulatory mechanism of the classical Wnt (Wnt/β-catenin)
signaling pathway and summarize the biological functions of
the cells (endothelial cells, neurons, oligodendrocytes, microglia,
and astrocytes) affected by stroke pathology. Furthermore,
various therapeutic studies targeting the Wnt/β-catenin
signaling pathway have been conducted. This review provides
insights into the potential and the value of the Wnt/β-catenin
signaling pathway as a therapeutic target for ischemic stroke.

ACUTE PATHOLOGY IN POST-ISCHEMIC
STROKE

Several studies suggest that a series of biochemical reactions occur
within a few minutes after ischemia/reperfusion, causing strong
oxidative stress and excitotoxic damage to the brain tissue
(Chamorro et al., 2016). Meanwhile, circulating immune cells

(mostly neutrophils) rapidly adhere to the endovascular cortex of
the ischemic region and infiltrate the brain parenchyma by
releasing proteolytic enzymes and matrix metalloproteinases
(MMPs) to affect the integrity of the blood–brain barrier
(BBB) (Wang et al., 2021a). The innate immune mechanism of
neutrophils can also release large amounts of reactive oxygen
species (ROS) through respiratory burst which may damage
vascular endothelial cells (Wang et al., 2021a). Days after the
primary stroke and transient ischemic attack, more circulating
immune cells (monocytes/macrophages and T lymphocytes)
enter the brain parenchyma, and along with local microglia,
release a large number of inflammatory factors, such as tumor
necrosis factor α (TNF-α), interleukin 1-β (IL-1β), and
interleukin 6 (IL-6), which cause serious inflammatory damage
to the glia and neurons, ultimately leading to neuronal apoptosis
and necrosis (Wang et al., 2021b; Qiu et al., 2021). Large amounts
of dead cell debris form damage-associated molecular patterns
(DAMPs), which further activate the immune response and cause
damage to the brain tissue (Figure 1).

PROGRESS IN DRUG DEVELOPMENT
TOWARD ISCHEMIC STROKE

Owing to the complexity of the physiological and pathological
mechanisms of the human brain, drug development to ameliorate
ischemic stroke is acknowledged as a very challenging task.
Thousands of lead compounds that show promising
therapeutic effects in preclinical trials rarely show sufficient
efficacy during the trial phases (O’Collins et al., 2006). In
2020, a combination of Edaravone and Dexcamphenol
(Xianbixin) showed promising results for the treatment of
acute ischemic stroke in clinical trials. Innovation of the
therapeutic strategy relies on powerful dual targets against free
radicals and inflammation. The only new drug approved for
stroke over the past 5 years, Xianbixin, which blocks cascading
damage in the brain tissue during ischemia/reperfusion injury,
provides new insights into the development of drugs for ischemic
stroke. Therefore, signaling pathways that exist in a variety of
brain cells and exert their corresponding protective effects will be
more suitable as drug targets for treatment of stroke.

THE INTRACELLULAR TRAFFICKING OF
WNT SIGNALING

Previous studies in drug development have shown that a single
protective mechanism cannot completely block the cascading
damage after ischemic stroke; therefore, it is difficult to achieve
adequate therapeutic effects (Moskowitz et al., 2010; Zhou et al.,
2018). The treatment for stroke requires multiple protective
mechanisms. In recent years, the Wnt signaling pathway has
been shown to play an important regulatory role in maintaining
cerebrovascular and neural cell functions (Menet et al., 2020).
The Wnt signaling pathway is widely found in invertebrates and
vertebrates and is a highly evolutionarily conserved signaling
pathway. It plays a crucial role in the early development of
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embryos, organogenesis, and maintenance of normal
physiological functions in adults (Schulte and Bryja, 2017; Jean
LeBlanc et al., 2019; Routledge and Scholpp, 2019).

Wnt signaling is a complex regulatory network consisting of
two branches: canonical and non-canonical pathways (Eubelen
et al., 2018; Routledge and Scholpp, 2019). The canonical Wnt
signaling pathway, also known as the Wnt/β-catenin signaling
pathway, begins with the binding of the ligand of Wnt protein
with the receptors of Frizzled (FZD) and low-density lipoprotein
receptor-related proteins 5 and 6 (LRP5/6), which activates a
series of complex biochemical reactions and blocks the
cytoplasmic β-catenin degradation pathway, thereby enabling
β-catenin accumulation in the cytoplasm. After accumulation
in the nucleus, β-catenin assembles with T cytokines (TCF/LEF)
to form a transcription complex, which ultimately regulates the
expression of target genes (Routledge and Scholpp, 2019).

Wnt proteins were discovered 30 years ago, with 19 Wnt
proteins clustered into 12 subfamilies and distributed in
tissues and organs across the body (Clevers and Nusse, 2012).
It is noteworthy that in addition to Wnt proteins, the activity of
theWnt/β-catenin signaling pathway is also regulated by a variety
of extracellular signaling molecules, such as Dickkopf proteins
(DKK1-4; competitively inhibits Wnt proteins by binding to
LRP5/6) and secreted Frizzled-related proteins (sFRPs; inhibits
Wnt signaling by directly binding to Wnt protein) (Wang et al.,
2000; Zorn, 2001). Seib et al. found that the expression of Dkk1
gene in mouse neural stem cells in the sub granular zone

increased with age and inhibited Wnt signaling activity, while
neural stem cell-specific Dkk1 knockout significantly increased
Wnt signaling activity and adult neurogenesis in aged mice (Seib
et al., 2013). Similarly, Zhu et al. found that the expression of
Dkk3 in neural stem cells in the subventricular zone was
upregulated with age, and neurogenesis and olfactory function
were downregulated in aged mice (Zhu et al., 2014). In another
study, it was found that sFRP3 is highly expressed in the dentate
gyrus and inhibits the proliferation of neural stem cells in the sub
granular zone (Jang et al., 2013). Cho et al. showed that the
knockdown of sFRP3 in the dentate gyrus significantly improved
adult neurogenesis in a mouse model of premature aging induced
by the mitotic checkpoint kinase BubR1 gene mutation (Cho
et al., 2019). The extracellular and intracellular Wnt/β-catenin
signaling pathways are shown in Figure 2.

IMPLICATIONS OF WNT/Β-CATENIN
SIGNALING PATHWAY WITHIN NEURAL
VASCULAR UNIT DURING ISCHEMIC
STROKE

The CNS, including the brain and spinal cord, is characterized by
a highly active metabolism and high sensitivity to extraneous
substances. To maintain normal function and the
microenvironment, blood vessels within the CNS have special

FIGURE 1 | Cellular mechanisms of cerebral ischemia/reperfusion injury. After stroke, dying cells from ischemic brain tissue begin to produce damage-related
molecular patterns (DAMPs), which induced circulating neutrophils to infiltrate into ischemic brain parenchyma. Neutrophils released matrix metalloproteinases (MMPs),
reactive oxygen species (ROS) and pro-inflammatory factors, accelerate their infiltration and damage the vascular endothelial cells and extracellular basal membrane,
which induced brain edema and even hemorrhagic transformation. A large number of inflammatory factors and ROS can also stimulate the overactivation of
microglia, which further aggravates neuronal damage caused by neuroinflammation and leads to neuronal death.
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functions that other tissue vessels do not. A notable function is
maintaining the blood–brain barrier (BBB) (Liebner et al., 2008;
Jean LeBlanc et al., 2019). The BBB, which mainly exists in small
arteries, capillaries, and veins, blocks circulating cells and
molecules from the brain parenchyma and discharges
metabolites or exotic substances to maintain the low
permeability of the cerebrovascular system. Structurally, the
BBB mainly refers to the layer of cerebrovascular endothelial
cells in direct contact with blood, which in turn closely combines
with perivascular cells, extracellular matrix membranes,
astrocytes, and a small number of neurons. In the NVU, these
cells and noncellular matrix components interact with
endothelial cells, which play an important role in supporting
and regulating BBB functions (Schaeffer and Iadecola, 2021).

The Wnt/β-catenin signaling pathway plays a critical
regulatory role in regulating cerebrovascular development and
BBB formation during embryonic development. This is
determined by the following three aspects: 1) deficiency of the
endothelial Wnt/β-catenin signaling pathway affects the
development of cerebrovascular and BBB, but does not affect
the development and function of other organs and tissues
(Stenman et al., 2008; Daneman et al., 2009); 2) knockout of
Wnt7a/7b (which shows the highest expression in the brain
tissue) or receptor Fzd4,2,7, LRP5/6, receptor activator GPR124
in endothelial cells, or Ctnnb1 (β-catenin) can lead to abnormal
cerebrovascular development and BBB function (Cullen et al.,
2011; Wang et al., 2012; Zhou et al., 2014); and 3) upregulation of
theWnt signaling activity significantly upregulates the expression

of BBB-function-related genes in cultured endothelial cells
(Liebner et al., 2008).

In recent years, many studies have shown that the activity of
the Wnt/β-catenin signaling pathway in ischemic brain tissue is
significantly decreased in animal models of cerebral ischemia-
reperfusion. Clinically, some genetic variants of Lrp6 may be
correlated with the risk of ischemic stroke (Calvier et al., 2022).
Additionally, the levels of plasma DKK1 have been reported to be
higher in patients with acute ischemic stroke than in healthy
individuals (He et al., 2016; Zhu et al., 2019; Stavrinou et al.,
2021). Systematic investigation of all types of cells in the brain
affected by the downregulation of Wnt signaling is still lacking.
However, studies have shown that in cerebrovascular endothelial
cells, neurons, pericytes, astrocytes, microglia, and
oligodendrocytes, Wnt signaling not only regulates their
survival and proliferation but also affects their unique
biological functions.

Cerebrovascular Endothelial Cells
As the first barrier for peripheral tissue and blood components to
enter the brain parenchyma, cerebrovascular endothelial cells are
the core components of the BBB and have a series of special
structural and molecular characteristics that determine the high
selective permeability of the BBB. High expression of intercellular
tight junction proteins is one of the main characteristics of
cerebrovascular endothelial cells. Claudin-5, occludin, and
scaffold protein ZO-1/2 are responsible for anchoring the
former two proteins to the cytoskeleton (Zhao et al., 2015). A

FIGURE 2 | Schematic diagram of Wnt/β-catenin signaling pathway in inactivated, activated and deactivated states. In the quiescent Wnt/β-catenin-dependent
pathway (Wnt Off), β-catenin undergoes continuous ubiquitination in the absence of Wnt protein by the destruction complex. In this state, Wnt target genes are
suppressed by Groucho and TCF/LEF transcription factors. Upon Wnt binding to FZD receptors and the co-receptor Lrp5/6 and formed a ligand-receptor complex
called the “signalosome,”which further recruit the intracellular Dvl and components of the destruction complex to the cell membrane (Wnt On). This would prohibit
the formation of destruction complex and thus prevents the degradation of β-catenin and allowing its nuclear translocation. β-catenin would subsequently bind with TCF/
LEF transcription factors to inhibit their DNA binding. Wnt target genes, such as Axin2 and Nkd1, are disinhibited to transcript. Some extracellular molecules could inhibit
the formation of signalosome. For example, DKKs can competitively bind to LRP6, while sFRPs can directly bind to Wnt proteins and reduce the activity of signal
transduction.
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study has shown that the liposolator-induced lipoprotein receptor
LSR (angulin-1) is specifically overexpressed in the BBB and acts
as a tight junction protein between the three cells to enhance BBB
function (Sohet et al., 2015).

Appropriately activeWnt signaling is essential for maintaining
the BBB, both structurally and functionally. A variety of co-
receptors on the surface of endothelial cells can affect signal
transduction through interaction with Wnt receptors. For
instance, Reck, a GPI-anchored membrane protein, and
Gpr124, an orphan G-protein-coupled receptor, have been
implicated in Wnt7a/Wnt7b mediated canonical Wnt signaling
in the CNS vascular development and functional maintenance.
Cho et al. showed that cerebral vascular endothelial cell-specific
knockout of Reck impairs CNS angiogenesis and BBB integrity
(Cho et al., 2017). Another study showed that the disruption of
BBB integrity under acute brain ischemia/reperfusion (I/R) was
significantly weakened in mice with conditional knockout of
endothelial Gpr124, a Wnt7-specific coactivator of Wnt/β-
catenin signaling, which could be rescued by genetic activation
of endothelial β-catenin (Chang et al., 2017). A follow-up study
showed that the variants of Gpr124 and Wnt7a are associated
with an increased risk of hemorrhagic transformation in patients
with acute ischemic stroke after intravenous thrombolysis (Ta
et al., 2021). Mechanistically, Reck binds with low micromolar
affinity to the intrinsically disordered linker region of Wnt7. This
process is manifested as the interaction between Gpr124 and
Dishevelled, which aggregated Gpr124 with Reck-Wnt7 into
Wnt/Frizzled/Lrp5/6 complex, resulting in increased local
availability of Wnt7 for downstream signaling (Eubelen et al.,
2018). Most recently, an engineered Wnt7a mutant lacking the
C-terminal domain and an embedded Frizzled-contact site could
retain partial but selective activity on the Gpr124/Reck-
containing receptor complexes of endothelial cells. From a
therapeutic standpoint, this artificial Wnt protein can
specifically target Gpr124/Reck to repair the BBB in rodent
ischemic stroke and glioblastoma models (Martin et al., 2022).
The above studies define a modality to repair the BBB by
reactivating the endothelial Wnt/β-catenin signaling, which,
therefore, may have potential therapeutic value in other CNS
diseases, such as multiple sclerosis, epilepsy, and Alzheimer’s
disease.

The endothelial tight junctions and extracellular basal
membrane ensure low passive transportation between blood
and brain parenchyma. Apart from this, the profoundly low
rate of transcytosis is also an important property of BBB.
Although Wnt signaling has not been shown to influence
transcytosis in BBB, in blood–retinal barrier (BRB), Wnt
signaling directly regulate the transcription of an endothelium-
specific transcytosis inhibitor called major facilitator superfamily
domain-containing protein 2a (MFSD2A), in a Wnt/β-catenin-
dependent manner. Mice lacking either the Lrp5 or the Wnt
ligand Norrin exhibit increased retinal vascular leakage and
enhanced endothelial transcytosis (Wang et al., 2020).
Therefore, it can further be suggested that the Wnt/β-catenin
signaling pathway possibly influences the CNS endothelium
integrity by affecting the transcytosis mechanism as well
(Wang et al., 2020; Yemanyi et al., 2021).

Neuron
Wnt signaling pathway has been well-established to play a
critical role in neural development, axonal outgrowth,
synaptogenesis, fate decision, and survival (Lie et al., 2005;
Kuwabara et al., 2009; Alves dos Santos and Smidt, 2011).
Dysregulation of Wnt/β-catenin signaling has also been
observed in many distinct pathologies, including hepatic
fibrosis, tumor growth, and ischemic stroke (Mastroiacovo
et al., 2009; Okamoto et al., 2011; Clevers and Nusse, 2012).
However, whether Wnt/β-catenin signaling plays a role in the
functional maintenance of mature neurons and changes under
pathological conditions such as neuronal injury have not been
thoroughly examined. It has been reported that sustained
overexpression of Wnt by lentivirus ameliorates deficient
motor behavior, and increases neuronal survival by
promoting axon regeneration and inhibiting astrocytic scar
formation in a spinal cord injury model (Suh et al., 2011). As
for ischemic stroke, intranasal administration of Wnt-3a
protein has been found to reduce cerebral infarction and
neuronal apoptosis, which may be mediated through the
dephosphorylation of GSK-3β, which in turn increases
nuclear β-catenin and relieves overactive caspase-3 through
Foxm1 after ischemia/reperfusion injury (Wei et al., 2017;
Matei et al., 2018). Interestingly, the dephosphorylation of
GSK-3β has been shown to influence the expression of
apoptotic/cell death-related and survival/neurotrophic
genes, which may contribute to the pro-neuronal survival
effects of Wnt/β-catenin signaling (Tang et al., 2010).

Although Wnt3a protein-mediated Wnt/β-catenin signaling
activation showed a decent neuronal effect, due to its
hydrophobicity, Wnt3a can barely exert any biological
function through systematic administration without a
cosolvent, such as detergents (e.g., CHAPS) or solubilizers
(e.g., MβCD), which makes it almost impossible to conduct
clinical studies. Therefore, genetic engineering-based Wnt
surrogates may be a promising strategy for the development of
BBB protective drugs in the future.

Oligodendrocytes
The white matter consists of axons, oligodendrocytes, and
astrocytes, which are the most common injury sites for
ischemic stroke (Qian et al., 2016). Neuronal axons are
wrapped in myelin sheets, which are critical for the accuracy
and speed of nerve signal conduction. Therefore, axonal damage
is often accompanied by a reduction in myelin sheaths, known as
demyelination, which accounts for the loss of oligodendrocytes.

To achieve remyelination after brain injury, oligodendrocytes
must develop from oligodendrocyte precursor cells (OPCs). Wnt/
β-catenin appears to play a crucial role in spatiotemporal
regulation of oligodendrocyte differentiation (Garcia-Martin
et al., 2021). A recent study employed transplantation of OPCs
in a transient middle artery occlusion (MCAO) model and found
significant functional angiogenesis and increased myelin basic
protein expression (Wang et al., 2021c). Furthermore, this
process is likely dependent on angiogenesis induced by
Wnt7a-mediated activation of the Wnt/β-catenin signaling
pathway.
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Microglia
As the dominant immune cells in the CNS, microglia are well-
characterized for their secretory and phagocytic properties. More
importantly, microglia express various immunological receptors,
which endow them with a Janus face to function in both positive
and negative manner towards neurons. For instance, triggering
receptor expressed in myeloid cells 2 (TREM2) is a pattern
recognition receptor expressed in myeloid cells, including
microglia. TREM2 was found to prohibit β-catenin

degradation, thereby activating the canonical Wnt pathway
(Meilandt et al., 2020). Genetically, TREM2 mutations cause
abnormalities in Wnt/β-catenin signaling and microglial
overactivation, which in turn increases the risk of Alzheimer’s
disease (Huang et al., 2022).

From the perspective of neurogenesis, microglia were found to
selectively engulf synapses based on specific chemokine signals
such as CR3/CX3CL1. CX3CL1 interacts with its receptor,
fractalkine, specifically expressed on neurons, and thus
activates microglia by phagocytosis (Cardona et al., 2006;
Paolicelli et al., 2011). This process is important for
maintaining an adequate number of synapses and to promote
the formation of neuronal circuits. Interestingly, when the Wnt/
β-catenin signaling pathway is suppressed in neurons, fractalkine
expression decreases substantially, causing synapse degeneration.
Therefore, Wnt signaling may play a role in microglial-involved
synapse modification.

Furthermore, when the CNS is confronted with pathological
conditions such as neurodegenerative diseases or ischemic stroke,
the deleterious circumstance can enhance the combination of the
complement fragment C1q and synapses, which causes the over-
activation of microglial phagocytosis towards synapses and
eventually damages the neuronal cells (Mercurio et al., 2022).
Dying neurons undergo p53-mediated apoptotic signaling
pathway, which leads to the expression of the downstream
target gene Dkk1 and further inactivates the Wnt/β-catenin
signaling pathway (Wang et al., 2000). Meanwhile, deleterious
substances from the eliminated synapses increase the delivery of
inflammatory factors from microglia and further aggravate
microglial inflammation and synapse damage.

Astrocytes
As a major component in CNS, astrocytes play an important role
in maintaining brain function. Astrocytic abnormality has been
observed in many CNS diseases, such as Alzheimer’s disease,
multiple sclerosis, and hemorrhagic stroke. It has been shown
that the receptor of Wnt7b, Frizzled-7 was widely expressed
among cells in CNS, including endothelial cells, neurons, and
astrocytes. In an experimental intracerebral hemorrhage model in
mice, activation of Wnt signaling by Frizzled-7 modified by
CRISPR substantially reduced cerebral edema, BBB leakage,

FIGURE 3 | The potential implications of Wnt/β-catenin among cells
from ischemic brain. After an ischemia incident, the microenvironment in
ischemic brain leads to decreased activity of Wnt/β-catenin signaling pathway.
The regulatory mechanisms of which include increased level of Dkks and
sFRPs, which leads to increased BBB disruption, neuronal apoptosis,
demyelination, and overactivation of microglia.

TABLE 1 | Pharmacological agents target Wnt/β-catenin in experimental stroke.

Agents Models Proposed Mechanisms References

lithium chloride Transient MCAO in mice; Brain
hemorrhage in mice

Inhibitor of GSK-3 Ji et al. (2021); Song et al. (2022)

TWS119 Permanent MCAO with hypoxia
treatment in mice

Specific inhibitor of GSK-3β Song et al. (2019)

6-bromoindirubin-3′-oxime Transient MCAO with rtPA treatment in
mice

Inhibitor of GSK-3 Jean LeBlanc et al. (2019)

Gpr124/Reck/Fz1 Transient MCAO in mice Engineered Wnt7A fusion protein Martin et al. (2022)
Wnt3a protein Transient MCAO in mice Wnt3a protein with cosolvent Matei et al. (2018)
Wnt1 protein Activation of Akt1 Chong et al. (2010)
Sulindac Permanent MCAO in rat upregulated the expression of Dvl, beta-catenin, and

downregulated APC
Xing et al. (2012)

Dkk-1 antisense
oligonucleotides

Permanent MCAO in mice Cappuccio et al. (2005); Mastroiacovo
et al. (2009)
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and associated behavioral deficiency, while downregulated
expression of Frizzled-7 markedly aggravated the above
phenomenon. Further, it was found that the activation of
Frizzled-7-mediated Wnt/β-catenin signaling mostly takes
place in the perihematomal endothelial cells, neurons, and
astrocytes (He et al., 2021). The potential implications of Wnt/
β-catenin among cells from ischemic brain are depicted in
Figure 3.

CONCLUSION

The Wnt/β-catenin signaling pathway has been proved to be
involved in a variety of physiological and pathological processes.
More recently, several preclinical studies have found a decline in
Wnt signaling activity after stroke onset, and activators of the
Wnt/β-catenin signaling pathway have shown encouraging
therapeutic effects. Current mechanisms of action aiming at
stimulating the Wnt/β-catenin signaling pathway mainly
include inhibitors of GSK-3β phosphorylation, engineered Wnt
proteins, antagonists of Wnt inhibitors (DKKs, SFRs), and
agonists towards the co-receptor of Wnt receptors (Table 1).
However, extensive studies are needed to investigate the
metabolic characteristics and safety of the protein molecules
used. Lithium chloride is extensively used in clinical practice
to treat bipolar mood disorders. Recently, lithium has also been
used as an inhibitor of GSK-3β, which is a chemical activator of
the Wnt/β-catenin signaling pathway. The administration of
lithium exhibits a protective effect on BBB function, as
observed in an experimental mice for ischemic stroke (Ji et al.,
2021; Song et al., 2022). Therefore, future clinical studies are

needed to evaluate the systematic effects and safety of targeting
the Wnt/β-catenin signaling pathway for the treatment of
ischemic stroke. Moreover, because BBB breakdown also
occurs in metastatic encephaloma, leukemia, and toxic or
metabolic encephalopathy, it is worthwhile to investigate the
therapeutic potential of Wnt activators in diseases involving
BBB dysfunction.
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