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Abstract: This study aims to assess the potential association of MBL2 gene single nucleotide poly-
morphisms (SNPs) to Chlamydia trachomatis infection. We analysed a selected sample of 492 DNA
and serum specimens from Dutch Caucasian women. Women were categorized into four groups of
infection status based on the results of DNA and antibody tests for C. trachomatis: Ct-DNA+/IgG+, Ct-
DNA+/IgG−, Ct-DNA−/IgG+, and Ct-DNA−/IgG−. We compared six MBL2 SNPs (−619G > C (H/L),
−290G > C (Y/X), −66C > T (P/Q), +154C > T (A/D), +161A > G (A/B), and +170A > G (A/C)) and
their respective haplotypes in relation to these different subgroups. The −619C (L) allele was less
present within the Ct-DNA−/IgG+ group compared with the Ct-DNA−/IgG− group (OR = 0.49;
95% CI: 0.28–0.83), while the +170G (C) allele was observed more in the Ct-DNA+/IgG+ group as
compared with the Ct-DNA−/IgG− group (OR = 2.4; 95% CI: 1.1–5.4). The HYA/HYA haplotype
was more often present in the Ct-DNA−/IgG− group compared with the Ct-DNA+/IgG+ group
(OR = 0.37; 95% CI: 0.16–0.87). The +170G (C) allele was associated with increased IgG production
(p = 0.048) in C. trachomatis PCR-positive women. This study shows associations for MBL in immune
reactions to C. trachomatis. We showed clear associations between MBL2 genotypes, haplotypes, and
individuals’ stages of C. trachomatis DNA and IgG positivity.

Keywords: Chlamydia trachomatis; MBL2 polymorphisms; IgG

1. Introduction

Chlamydia trachomatis is the most prevalent bacterial sexually transmitted infection
(STI) worldwide. The course of infection is variable; a recently acquired infection can
have an active course, may be asymptomatic, or can be self-limiting. Untreated infections
have a severe impact on the health of a patient owing to the possible development of
late complications such as pelvic inflammatory disease, tubal pathology, and ectopic
pregnancy [1].

The innate immune response is, similar to any other infectious disease, the first line of
defence against infection by C. trachomatis [2]. Mannose-binding lectin (MBL) is an acute
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phase protein produced by the liver and has a central role in the innate immune response;
MBL recognises and binds to patterns of glycoproteins present on microorganisms enabling
opsonisation [3]. This C-type serum lectin binds to the 40 kDa major outer membrane
protein of C. trachomatis, hampering invasion and infection of the host cell [4]. After binding
of MBL to the outer member protein, a conformational change in mannose associated
serine proteases (MASP-1 and MASP-2) occurs, which activates the lectin pathway of
the complement system [5]. The MASP proteases cleave C4 and C2, generating C4b2a
complexes that have C3 convertase activity [6,7]. MBL functions in close proximity to
immunoglobulins (Ig) and facilitates opsonisation by macrophages [8].

The gene encoding the human MBL protein, MBL2, is located on chromosome 10
(10q11.2-q21). This MBL2 gene incorporates four exons encoding a cysteine-rich region
as well as a glycine-rich, collagen-like region (exon 1 and 2); a “neck” region (exon
3); and a carbohydrate-binding domain (exon 4) [9,10]. Six single-nucleotide polymor-
phisms (SNPs) of MBL2 have been described [11]; that is, two SNPs in the promoter
region: −619 G > C (H/L), −290 G > C (Y/X); one SNP at the 5’ untranslated region within
the leader sequence: −66 C > T (P/Q); and three SNPs in exon 1: +154 C > T (A/D),
+161 A > G (A/B), and +170 A > G (A/C). Figure 1 shows the rs-numbers and the relative
positions of the SNPs on the gene. The promoter alleles are in strong linkage disequilibrium
with the SNPs in exon 1, which generally results in seven haplotypes: HYPA, LYPA, LYQA,
LXPA, HYPD, LYPB, and LYQC [12]. The fourth position in the haplotype, A, B, C, or D, is a
combination of the three polymorphisms in exon 1, with A being the wild-type allele in all
three positions and B, C, or D representing an SNP in the corresponding locus.
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There is a strong association between the genotype of the MBL2 gene and the level of
MBL protein production. The haplotypes HYPA and LYQA are associated with high concen-
trations of MBL; LYPA and LXPA with intermediate/low concentrations; and HYPD, LYQC,
and LYPB with MBL deficiency [11,13,14]. It has been shown that SNPs in exon 1 reduce
the functionality of the protein and decrease MBL concentrations, thereby greatly reducing
its complement-activating ability [15,16]. Serum MBL concentration is a determinant of
susceptibility to infectious diseases and of disease outcome, and shows a strong correlation
with allelic variants of the gene [11,13,17,18]. For example, it has been shown that children
with exon 1 variants of the MBL2 gene were more susceptible to meningococcal disease
than children with wildtype alleles [19].

Owing to the effect of MBL2 polymorphisms on susceptibility to infectious diseases,
we aim to evaluate the role of these six known SNPs in the MBL2 gene to a C. trachomatis
infection. We will divide our study population into four biological subgroups and assess
the role of these six SNPs, and we will determine the role of the SNPs in the production
of IgG.

2. Results
2.1. Study Sample Characteristics

The median age of women in this analysis was 23 years (15–32 years). A total number
of 65 (13%) samples were PCR positive, 73 (15%) samples were IgG positive, 139 (28%) sam-
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ples were positive for both parameters, and 215 (44%) samples were negative for both C. tra-
chomatis DNA and IgG. The median IgG response was 100 (50–1600). In total, 216 (44%) sam-
ples were obtained from women who reported STI-related symptoms and 159 (32%) had
co-infection with other microorganisms upon inclusion; in particular, Candida albicans was
prevalent (n = 144).

2.2. SNP Distribution

All genotypes analysed in this study were in Hardy–Weinberg equilibrium. Table 1 shows
the overall SNP distribution and distribution of SNPs in relation to C. trachomatis infection.

Table 1. SNP distributions at three stages of Chlamydia trachomatis infection.

Chlamydia trachomatis Infection

Overall SNP
Distribution Ct-DNA+/IgG+ Ct-DNA+/IgG− Ct-DNA−/IgG+ Ct-DNA−/IgG−

n = 492 (%) n = 139 (%) n = 65 (%) n = 73 (%) n = 215 (%)

−619 G > C GG 203 (41) 59 (42) 28 (43) 39 (53) * 77 (36)
GC 224 (46) 67 (48) 30 (46) 24 (33) 103 (48)
CC 65 (13) 13 (9.4) 7 (11) 10 (14) 35 (16)

−290 G > C GG 301 (61) 88 (63) 35 (54) 41 (56) 137 (64)
GC 167 (34) 45 (32) 29 (45) 27 (37) 66 (31)
CC 24 (4.9) 6 (4.3) 1 (1.5) 5 (6.8) 12 (5.6)

−66 C > T CC 280 (57) 76 (55) 36 (55) 41 (56) 127 (59)
CT 187 (38) 51 (37) 27 (42) 28 (38) 81 (38)
TT 25 (5.1) 12 (8.6) 2 (3.1) 4 (5.5) 7 (3.3)

+154 C > T CC 430 (87) 122 (88) 58 (89) 63 (86) 187 (87)
CT 60 (12) 15 (11) 7 (11) 10 (14) 28 (13)
TT 2 (0.4) 2 (1.4) 0 (0.0) 0 (0.0) 0 (0.0)

+161 A > G AA 386 (78) 108 (78) 49 (75) 57 (78) 172 (80)
AG 99 (20) 28 (20) 15 (23) 15 (21) 41 (19)
GG 7 (1.4) 3 (2.2) 1 (1.5) 1 (1.4) 2 (0.9)

+170 A > G AA 459 (93) 123 (89) 63 (97) 69 (95) 204 (95)
AG 32 (7) 15 (11) 2 (3.1) 4 (5.5) 11 (5.1)
GG 1 (0.2) 1 (0.7) 0 (0.0) 0 (0.0) 0 (0.0)

* p < 0.05 (past infection vs. no infection).

2.3. Association of SNPs and Stadium of Infection

We observed a significant difference in the carriage of the C (L) allele of the −619 SNP
between the Ct-DNA−/IgG+ and Ct-DNA−/IgG− groups (p = 0.027). This observation
was also shown in multivariate analysis for the Ct-DNA−/IgG+ group (OR: 1.5; 95% CI:
1.0–2.3; p = 0.036).

Distribution analysis between the Ct-DNA+/IgG− group and Ct-DNA−/IgG− group
shows reduced carriage of the −290 C (X) allele in the Ct-DNA−/IgG− group (ptrend = 0.067).

Logistic regression analysis shows increased carriage of the +170 G (C) allele in the
Ct-DNA+/IgG+ group compared with the Ct-DNA−/IgG− group, although this did not
reach statistical significance (p = 0.06).

The SNP distribution did not differ significantly between the Ct-DNA−/IgG+ group
and the Ct-DNA+/IgG− group. No significant differences in SNP distribution were
observed when comparing the Ct-DNA+/IgG− group and the Ct-DNA+/IgG+ group.

No differences were observed when the Ct-DNA+/IgG− and Ct-DNA+/IgG+ groups
were combined and compared to the Ct-DNA−/IgG+ group or Ct-DNA−/IgG− group,
nor when these latter groups were combined in both univariate and multivariate analyses.
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2.4. Effect of Homozygous and Heterozygous Carriage of Alleles and Susceptibility to Infection

Comparisons were made between homozygous and heterozygous carriage of alleles
in order to assess susceptibility to infection. The following observations were made:
the −619 C (L) allele was significantly more often present in the Ct-DNA−/IgG+ group
compared with the Ct-DNA−/IgG− group (OR: 0.49, 95% CI: 0.28–0.83; p = 0.009). Another
difference was observed comparing carriage of the +170 G (C) allele in the Ct-DNA+/IgG+
group compared with the Ct-DNA−/IgG− group (OR: 2.4, 95% CI: 1.1–5.4; p = 0.027).

In the multivariate analysis, carriage of the −619 C (L) allele was statistically associated
with the Ct-DNA−/IgG− group compared with the Ct-DNA−/IgG+ group (aOR: 0.49;
95% CI: 0.28–0.83; p = 0.009). Moreover, for the Ct-DNA+/IgG+ group compared with the
Ct-DNA−/IgG− group, carriage of the +170 G (C) allele was significantly associated with
the Ct-DNA+/IgG+ infection group (OR: 2.4; 95% CI: 1.1–5.4; p = 0.031).

When comparing Ct-DNA+/IgG− to Ct-DNA+/IgG+, we see a statistical association
for carriage of the +170 G (C) allele for the Ct-DNA+/IgG+ group (aOR: 4.1; 95% CI:
0.9–18.4; p = 0.048).

2.5. Haplotype Frequencies and Associations with Susceptibility

The haplotype distribution among all subgroups is summarized in Table 2. The
haplotype HYA/HYA was more often present in the Ct-DNA−/IgG− group compared
with the Ct-DNA+/IgG+ infection group (OR: 0.37, 95% CI: 0.16–0.87; p = 0.019). No other
associations were observed for individual haplotype versus other haplotypes.

Table 2. Haplotype frequencies for the three stages of Chlamydia trachomatis infection.

Ct-DNA+/IgG+ Ct-DNA+/IgG− Ct-DNA−/IgG+ Ct-DNA−/IgG−
MBL Production n = 139 (%) n = 65 (%) n = 73 (%) n = 215 (%)

HYA/HYA High 7 (5.0) * 4 (6.2) 6 (8.2) 27 (13)

HYA/LYA 22 (16) 12 (19) 8 (11) 37 (17)

HYA/LXA 19 (14) 8 (12) 5 (6.8) 26 (12)

LYA/LYA 10 (7.2) 2 (3.1) 8 (11) 13 (6.0)

LYA/LXA 14 (10) 12 (19) 13 (18) 23 (11)

LXA/LXA Low 6 (4.3) 1 (1.5) 5 (6.8) 12 (5.6)

HYA/O 19 (14) 9 (14) 9 (12) 28 (13)

LYA/O 21 (15) 7 (11) 7 (9.6) 25 (12)

LXA/O Deficient 12 (8.6) 9 (14) 9 (12) 17 (7.9)

O/O 9 (6.5) 1 (1.5) 3 (4.1) 7 (3.3)

* OR: 0.37, 95% CI: 0.16–0.87; p = 0.019 (Ct-DNA+/IgG+ vs. Ct-DNA−/IgG−).

2.6. Association of SNPs with Immune Response

All PCR-positive women (n = 204) were included in this sub-analysis; 65 were IgG
antibody negative and 139 were IgG positive. When comparing the distribution of SNPs
with presence of IgG titre in C. trachomatis-positive women, carriage of the +170 G (C) allele
was associated with presence of IgG in those C. trachomatis-positive women (p = 0.048, 3%
vs. 12%), but median titre did not differ significantly between +170 AA (AA) and *G (*C)
alleles (median IgG titre +170 AA (AA): 100 (range 0–1600), median IgG titre +170 *G (*C):
100 (range 0–400); Mann–Whitney U p = 0.32). No other associations for SNPs and IgG
response were observed. Coinfection with other diagnosed microorganisms proved not to
be a confounding factor.

3. Discussion

This study confirms an effect of polymorphisms in the MBL2 gene in susceptibility
to infection and the humoral IgG response to C. trachomatis infection. We divided our
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study population into four biological subgroups (Ct-DNA+/IgG+, Ct-DNA+/IgG−, Ct-
DNA−/IgG+, and Ct-DNA−/IgG−) and have observed different associations between
these subgroups. By introducing these subgroups, we were able to investigate the role of
the MBL2 SNPs in different possible stages of infection. It is known that genetic variants
of the gene and associated variation in MBL concentration influence the susceptibility to
and outcome of a wide variety of infectious diseases [17,19,20]. However, the associations
described in this report are, especially with regard to the humoral response, the first for
C. trachomatis infection.

The observed SNP frequency distribution was similar to that observed in other studies
performed in Europe [12,14]. Our first observation was an association with carriage of the
−619 C (L) allele and the Ct-DNA−/IgG+ group. This allele was significantly less common
in the Ct-DNA−/IgG+ group compared with the Ct-DNA−/IgG− group. If we consider
the different subgroups as stages of infection, this finding may indicate that carriage of the
wildtype −619 GG (HH) genotype is involved in clearance of the infection, even though we
do not find an association when comparing the SNP between the Ct-DNA−/IgG+ group
and Ct-DNA+/IgG+ group. One can hypothesize that, within the Ct-DNA−/IgG+ group,
there is a subgroup that had a reactive infection (Ct-DNA+/IgG+) and a subgroup that
has cleared the infection spontaneously. Within the Ct-DNA−/IgG+ group, 34 patients
(47%) out of 73 are carriers of the mutant −619 C (L) allele, and 39 patients (53%) out of
73 carry the −619 G (H) allele. We observed that 58% of the patients in the Ct-DNA+/IgG+
group were carriers of the mutant −619 C (L) allele. Hypothetically, 20 patients out of the
34 patients (59%) in the Ct-DNA+/IgG− group have had a reactive infection, whereas
14 (41%) cleared the infection without treatment. As such, we hypothesize that 36% of
the total group of C (L) allele carriers in the Ct-DNA−/IgG+ group cleared the infection,
which is plotted in Figure 2. By means of this method, we observe a theoretically larger
association between patients who clear infection (within the Ct-DNA−/IgG+ group) and
the Ct-DNA−/IgG− group (OR: 0.20, 95% CI: 0.10–0.39; p < 0.0001) in comparison with
the association between the Ct-DNA−/IgG+ and Ct-DNA−/IgG− groups, which may
explain why we did not find any association between the Ct-DNA−/IgG− group and the
Ct-DNA+/IgG+ group.
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Ct-DNA+/IgG−, and Ct-DNA−/IgG+ groups. The Ct-DNA−/IgG+ group can be theoretically
subdivided into patients having had a reactive infection in the past that has been treated (green bar),
and patients having cleared the infection without treatment (red bar). This is represented in the
fourth position of the figure. Patients clearing the infection (red bar) have a frequency of the C (L) allele
significantly less often than the Ct-DNA−/IgG− individuals (OR: 0.20, 95% CI: 0.10-0.39; p < 0.0001).

We observed a difference in the distribution of the +170 G (C) allele; that is, the G (C)
allele was more often present in women included in the Ct-DNA+/IgG+ group than those
in the Ct-DNA−/IgG− group. The G (C) allele corresponds to an inadequate MBL and
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low MBL-producing haplotype. When combining the haplotypes corresponding to high-
producing, low-producing, and deficient haplotypes, we did not observe any difference in
distribution comparing the subgroups to the Ct-DNA−/IgG− group. This may be because
of the division of ten haplotype combinations over the four subgroups, resulting in low
haplotype frequencies per subgroup. Our third observation was the relation between the G
(C) allele at position +170 and host IgG antibody production against C. trachomatis. This is
relevant to know because increased susceptibility to C. trachomatis and prolonged infection
may increase the chances of developing late complications [21]. Finally, we observed
statistical trends in the Ct-DNA+/IgG− group and the Ct-DNA+/IgG+ group.

In vitro models support the role of MBL2 in susceptibility to C. trachomatis infection. A
previous in vitro study has shown the inhibitive role of MBL to Chlamydia spp. infections,
including to C. trachomatis and Chlamydia pneumoniae infections, suggesting MBL has an
influence on immunity to these infections [4]. Sziller et al. [22] observed, in a group of
Hungarian women with proven tubal infertility, a significantly higher frequency of the B
allele (+161 G) than in healthy controls. They hypothesize that a defect in first-line defence
due to the polymorphism in MBL2 contributes to persistence of the bacterium, which leads
to damage of the Fallopian tubes. We do not find any association with this allele. This is
not contradictory, as we did not assess the fertility of women in our analysis. It is possible
that the role and/or mechanism of MBL is different for acquiring the infection than in
complicating the course of disease. Two studies performed by Laisk and colleagues [23,24]
investigated haplotypes in relation to C. trachomatis-induced tubal factor infertility (TFI)
and observed that low-producing haplotypes (LXA/LXA, HYA/O, and LYA/O) were risk
factors for developing TFI. They did not discover any association between MBL-deficient
haplotypes or the very-low-producing haplotypes and TFI.

A relation between MBL deficiency and IgG has been observed previously by Roos et al. [25].
They pre-incubated mannose-coated plates with purified IgG or IgM antibodies and mea-
sured C4 deposition, a complement protein, upon addition of MBL-deficient serum. C4
concentrations were similar to that of MBL-sufficient serum, indicating a restorative role
of antibodies for complement activation. This immunological redundancy may explain
the variable inter-individual clinical outcome of disease in MBL-deficient persons, and has
been proposed previously [26,27].

Carriage of an SNP in exon 1 reduces the functionality of MBL and additionally
decreases MBL serum concentrations [15,16]. We have shown that patients carrying the
G (C) allele at +170 were more likely to produce IgG antibodies than patients who had
well-functioning MBL. Although this study has a relatively low number of patients with
this allele, we believe that the observation is biologically plausible as the structural defect in
MBL can be compensated for in vitro [28]. Laisk et al. [24] have also observed that the high-
producing haplotype HYA/HYA was associated with TFI independent of C. trachomatis
infection, but they could not confirm their previous results [23] when analysing MBL2
genotypes and C. trachomatis-induced TFI [24]. We also find an association with this
haplotype, albeit a protective one. Taking these results together, it seems that a high-
producing haplotype is protective for C. trachomatis infection because of its complement
activating ability, but also increases the risk of tubal pathology. This is an indication that
MBL is important in immunity for C. trachomatis, but needs to be tightly regulated to
prevent collateral damage.

The strengths of this study are that we used clearly defined subgroups on the ba-
sis of the presence of C. trachomatis DNA and/or specific IgG serum titres. We show
associations of SNPs in different stadia of the infection, which indicates the significant
immunological role of MBL to C. trachomatis infection, and may possibly have an effect on
the clinical outcome.

This study has several limitations. Despite the sample size, the frequency of variants
of exon 1 is relatively low, making it difficult to link susceptibility to C. trachomatis to
one of these mutations. Additionally, their impact at the population level is expected
to be limited because of the low frequency of these exon 1 SNPs in this population [29].
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Furthermore, data on other confounding factors, such as Mycoplasma genitalum infection,
bacterial vaginosis, birth control, and C. trachomatis virulence and load, are not available
and may have influenced the results.

Creating biological subgroups was preferred over combining individuals based on
parameters defining C. trachomatis infection, despite its potential limitations. For example,
it is unknown when the individuals from the Ct-DNA−/IgG+ group were infected with
C. trachomatis, or whether individuals from the Ct-DNA−/IgG− group actually had expo-
sure. Moreover, not every infected individual will generate an antibody response, so this
may have introduced some bias.

More research should be performed to assess the role of MBL to susceptibility to
C. trachomatis. Larger, prospective studies should be conducted to gain further insight
into the hypothesized immunological redundancy of antibodies and its effect on infection
when an individual has an MBL2 genotype coding for low or deficient MBL. Although an
association between MBL and IgG production has not been observed, studies assessing
this can be of interest because C. trachomatis serovars can induce different serological
responses [30,31].

The results obtained from immunogenetic studies such as this one are of high relevance
for public health and healthcare in general. Our results contribute to the understanding
of disease pathogenesis of C. trachomatis infection, and our findings provide new insights
into the immunological pathways that may contribute to the variable clinical course of
the infection. Studies investigating SNPs in, for example, interleukin pathways are of
similar importance and enhance the knowledge of chlamydial infection. Furthermore, our
results may be integrated with existing immunogenetic knowledge, possibly aiding in the
development of targeted and personalized approaches in the prevention, diagnosis, and
treatment of the infection [28,32,33].

To conclude, this study suggests a role for MBL in immunological response to C. tra-
chomatis. We observed associations of MBL2 genotype and the stage of infection, and a clue
for possible immunological redundancy was observed.

4. Materials and Methods
4.1. Sample Collection

A total of 492 samples were randomly selected from a previous case-control study [20].
Those samples were obtained from Dutch Caucasian women (age 15–35 years old) attending
the STI outpatient clinic in Amsterdam, the Netherlands. Ethnicity (Dutch Caucasian) was
self-reported and by means of questionnaires, which has been shown to be highly valid
and representative in this context [34]. Upon inclusion, cervical swabs and serum samples
were obtained from these women. Moreover, demographical, clinical, and laboratory data
were available including age, symptoms, presence of coinfection systematically tested
(including Candida albicans, Neisseria gonorrhoeae, and Trichomonas vaginalis), results of PCR
test for C. trachomatis (COBAS Amplicor), and the C. trachomatis-specific serum IgG titre
(medac Diagnostika).

4.2. Ethical Approval

The Medical Research Involving Human Subjects Act (WMO, Dutch Law) stating
official approval of the study by the Medical Ethical Committee does not apply to our
collected anonymous human material (MEC Letter reference: #10.17.0046). The previous
case-control study [35], from which the samples in this study were selected, was approved
by the University’s Medical Ethical Committee. All participants of that study provided
informed consent to use their samples anonymously for future research.

4.3. Laboratory Tests

The methods used for the detection and extraction of C. trachomatis DNA and deter-
mination of IgG serum titres have been described elsewhere [35]. In short, C. trachomatis
detection was performed with COBAS Amplicor (Hoffman—La Roche, Basel, Switzerland)
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from DNA extracted from the cervical swab and was determined positive with when the
Ct value was below 40. DNA for the MBL genotyping assay was extracted from peripheral
blood mononuclear cells (PBMCs) by means of the isopropanol isolation method; a mixture
of PBMC in PBS, nuclisense lysisbuffer, and glycogen was incubated for 30 min at 65 degrees
Celsius and left to cool at room temperature. Isopropanol was added to the mixture and
the samples were centrifuged. The supernatant was discarded and the remaining pellets
were washed twice with 75% EtOH. The pellets were dissolved in T10 and stored for later
analysis. The presence of IgG was determined with a C. trachomatis-specific ELISA (medac
Diagnostika, Hamburg, Germany). Samples with a titre of ≥1:50 were considered positive.

4.4. Genotype Analysis

The following polymorphisms were analyzed in this study: −619 G > C (L/H),
−290 G > C (Y/X), −66 C > T (P/Q), +154 C > T (A/D), +161 A > G (A/B), and +170
A > G (A/C). Genotyping of these six SNPs was performed as described elsewhere for a
different context, i.e., pre-term children and risk for nocosomial infections [29,36]. Real-time
PCR with four primer pairs and six probes was performed to determine the various alleles.
The PCR conditions were 2 min at 50 ◦C, 10 min at 95 ◦C, and 40 cycles of 15 s at 95 ◦C and
1 min at 60 ◦C [22]. Haplotypes were inferred with PHASE v2.1.1 and SNPHAP [37–39].

4.5. Subgroups for Analyses

We classified the patients in this analysis into four subgroups to assess susceptibility
for C. trachomatis. The first group includes women with both positive PCR and IgG
determinations (Ct-DNA+/IgG+). The second subgroup includes women with a positive
C. trachomatis PCR and negative IgG titre (Ct-DNA+/IgG−). The third subgroup includes
women with a positive C. trachomatis-specific IgG titre and negative PCR result. The fourth
subgroup represents women with both negative PCR and a negative C. trachomatis IgG titre
(Ct-DNA−/IgG−). Figure 3 is a flowchart showing the inclusion criteria and subgroups.
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To assess the role of MBL genotypes and haplotypes in initiating a humoral immune
response, the following analysis was conducted: genotype and haplotype distributions
were compared among women with a positive PCR result with and without IgG response
to assess the potential associations of MBL2 genotypes and haplotypes and serum IgG
response to C. trachomatis infection. The classification by Steffensen et al. was used
to correlate MBL haplotypes to MBL serum concentrations. In this classification, the
haplotypes HYA/HYA, HYA/LYA, LYA/LYA, HYA/LXA, and LYA/LXA are considered to
be associated with high MBL serum concentrations; the haplotypes LXA/LXA, HYA/O,
and LYA/O correlate with low MBL concentrations; and LXA/O and O/O correlate with
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MBL deficiency. Allele O in this context is any promoter combination with any mutant
allele of exon 1, whereas A in this context is any promoter combination with the wildtype
alleles of the three exon 1 SNPs. The role of the P/Q allele is limited for MBL concentrations,
so we did not include it in our haplotype [13].

4.6. Statistical Analyses

Descriptive statistics are provided and presented as the number (%) and median
(range). All SNPs were assessed for Hardy–Weinberg equilibrium to test for deviation
of Mendelian inheritance. Cross-tabulation of SNPs and haplotypes in women with and
without C. trachomatis infection was performed, including χ2 statistics. Forward conditional
multivariate regression analysis including all SNPs was used to observe associations found
in univariate analysis. Finally, χ2 statistics and multivariate regression analyses were
performed to assess the relation between the individual SNPs and dichotomised IgG
production. Owing to the limited number of SNPs, correction for multiple testing was
not performed to prevent underestimation of possible associations [40]. Analyses were
performed using SPSS 13.0 (SPSS Inc., Chicago, IL, USA). A p-value of less than 0.05 was
considered statistically significant, whereas 0.05 < p < 0.07 was considered a statistical trend.

Author Contributions: S.P.V.: sample analyses, data analyses, drafting the manuscript; R.P.H.P.: data
analyses, drafting the manuscript; A.C.: sample analyses, data analyses; H.J.C.d.V.: sample collection,
critically reading manuscript; S.O.: data/statistical analysis, coordinating S.P.V., critically revising the
manuscript; S.A.M.: study design, conception and coordination, critically revising the manuscript.
All authors have read and agreed to the published version of the manuscript.
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