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The accurate prediction of genetic networks using computational tools is one of the greatest challenges in the postgenomic
era. Recurrent Neural Network is one of the most popular but simple approaches to model the network dynamics from time-
series microarray data. To date, it has been successfully applied to computationally derive small-scale artificial and real-world
genetic networks with high accuracy. However, they underperformed for large-scale genetic networks. Here, a new methodology
has been proposed where a hybrid Cuckoo Search-Flower Pollination Algorithm has been implemented with Recurrent Neural
Network. Cuckoo Search is used to search the best combination of regulators. Moreover, Flower Pollination Algorithm is applied
to optimize the model parameters of the Recurrent Neural Network formalism. Initially, the proposed method is tested on
a benchmark large-scale artificial network for both noiseless and noisy data. The results obtained show that the proposed
methodology is capable of increasing the inference of correct regulations and decreasing false regulations to a high degree. Secondly,
the proposed methodology has been validated against the real-world dataset of the DNA SOS repair network of Escherichia
coli. However, the proposed method sacrifices computational time complexity in both cases due to the hybrid optimization
process.

1. Introduction

A gene regulatory network (GRN) represents the regulatory
behaviour or dependencies among a group of genes inside a
cell. A GRN is characterized by a directed graph in which
nodes denote genes, and regulatory dependencies among
genes are depicted by directed edges between the corre-
sponding nodes. There are two types of interaction, namely,
activation and inhibition. This kind of network is unique for
particular functions within a cell. Thus, the study of GRN
is essential to ascertain the genetic causes of a particular
disease. As a consequence of this, scientists can venture into
the development of new and improved techniques for the
treatment of a disease [1].

Nowadays, DNA microarrays [2, 3] are extensively uti-
lized for the investigation of finding reasons for different
illnesses. A microarray dataset contains the gene expression
levels of millions of genes of a species under investigation,
at a particular condition or set of conditions. Time series
microarray database consists of changes in the expression of
geneswith time in response to somedisease-causing events or
any form of treatment at different time points. This includes
essential information regarding the dynamic behaviour as
well as the dependencies of genes.

In this work, RecurrentNeural Network (RNN) [4] which
is a closed loop Neural Network with a delayed feedback
has been used to model dynamics and dependencies of the
genetic system from temporal genetic data. Using suitable

Hindawi Publishing Corporation
Advances in Bioinformatics
Volume 2016, Article ID 5283937, 9 pages
http://dx.doi.org/10.1155/2016/5283937

http://dx.doi.org/10.1155/2016/5283937


2 Advances in Bioinformatics

optimization methods, RNN based GRN can be inferred for
the purpose, where the objective function of optimization
is chosen so that it becomes proportional to the training
error. Different metaheuristics techniques, namely, Genetic
Algorithm (GA) [5], Particle SwarmOptimization (PSO) [6],
𝐾-Means Population-Based Incremental Learning (KPBIL)
[7], Invasive Weed and Artificial Bee Colony (ABC) [8], PSO
andAntColonyOptimization (ACO) [9], Bat Algorithm [10],
have been implemented to infer GRNs from the time series
microarray data. Computational reconstruction of GRN is
essentially a reverse engineering problem. All the approaches
mentioned above are tested against both small-scale artificial
and real-life GRNs. However, Noman et al. [11] proposed
Decoupled Recurrent Neural Network, which was trained
by Differential Evolution (DE), where a penalty term or
L1 regularizer was introduced into the objective function
to balance between the accuracy of the parameters and
the actual network structure. The model mentioned above
[11] is very efficient in finding all the valid regulations and
accurately reproducing the dynamics of both of the small
networks studied. However, the main disadvantage of this
model is that the given model predicts a large number of
false regulations for more extensive or larger networks. The
balance between fitness value and actual network structure
for large-scale networks is the primary concern of the reverse
engineering problem of GRN, and it is still an open area of
research.

In this paper, a hybrid Cuckoo Search (CS)-Flower
Pollination Algorithm (FPA), CS-FPA, is proposed for the
inference of GRNs from time-series data. FPA is used to
train the RNN parameters, and CS is introduced to find the
biologically plausible network architecture to select the best
combination of genes that are responsible for modifying the
expression of each gene. The preliminary notions of RNN,
CS, and FPA are discussed in the next section. The details
of the fitness function of FPA for decoupled RNN and the
learning process for finding the actual structure of a GRN
using CS are discussed in Section 3. Next, the effectiveness
of the proposed CS-FPA based RNN model is tested against
a large artificial GRN without the presence of noise as well as
with noisy data. The result is also compared with other state-
of-the-art methods. The conclusion is given in Section 4.

2. Theoretical Background

We have discussed the fundamental theoretical concepts of
RNN, CS, and FPA, in this section, for a better understanding
of the proposed methodology.

2.1. Preliminaries of RNN. The RNN model [12] is a closed
loop Artificial Neural Network that has a delay variable,
between the outputs of each neuron in the output layer of
the RNN, to each of the neurons in the input layer, which
is suitable to model temporal behaviour or dynamics of data
(Figure 1). For a canonical RNNmodel [4–9, 11] it is assumed
that each of the total 𝑁 output neurons in the unit is a gene
expression value of next time instant 𝑒

𝑖
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Figure 1: A neuron in the RNN model [7].

the same genes; thus they interact with each and every one
in regenerative way:

𝑒
𝑖 (𝑡 + Δ𝑡) =
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𝑖
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where 𝑖 = 1, 3, . . . , 𝑁.

(1)

Here,𝑓(⋅) is usually a sigmoid function;𝑓(𝑧) = 1/(1+𝑒
−𝑧
)

is used as a classification function; and 𝑤
𝑖,𝑗

is the weight of
inputs of the RNN model, and it stands for the type and
strength of the regulatory interaction of the 𝑗th gene with
the 𝑖th gene. From the point of view of a GRN, each node
corresponds to a gene, and a connection between two nodes
defines their interaction. The weight values can be either
positive, negative, or zero;𝑤

𝑖,𝑗
is the most significant term for

a GRN as the value of𝑤
𝑖,𝑗
is the connecting weight of an edge

of the GRN, which represent the connections between gene-
𝑖 and gene-𝑗. A positive value of 𝑤

𝑖,𝑗
represents activation

of gene-𝑖 by gene-𝑗, a negative value denotes repression or
inhibition of gene-𝑖 by gene-𝑗, and 𝑤

𝑖,𝑗
= 0 means that

gene-𝑗 has no regulatory control on gene-𝑖. The term 𝛽
𝑖

represents the basal expression level or a bias term, and 𝜏
𝑖

is a time constant (delay) of the 𝑖th gene; Δ𝑡 is incremental
time instance; in this work it is always set as 1.Thus, any RNN
model can be expressed by a set of 𝑁(𝑁 + 2) parameters,
Ω = {𝑤

𝑖,𝑗
, 𝛽
𝑖
, 𝜏
𝑖
}, where 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

2.2. Preliminaries of Cuckoo Search (CS) Optimization. Yang
[13] first proposed Cuckoo Search optimization [14–18] based
on brood parasitism of cuckoo birds that reproduce their
eggs by utilizing nests of other host birds. These birds have
the ability to use other birds for raising the new generation.
Cuckoo lay their eggs, one ormore than one, in the nest of the
host birds in their absence using Lévy flight. Lévy flight [19]
is an important characteristic of CS. Levy flight is defined as
a random movement done by the birds with a step value of
distributed probability. While new solution 𝑥

𝑡+1 for a cuckoo
𝑖, Lévy flight is performed as

𝑥
𝑡+1

𝑖
= 𝑥
𝑡

𝑖
+ 𝛼 ⊕ Lévy (𝜆) . (2)
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Table 1: RNN model parameters of large artificial network [11].

𝑤
𝑖,𝑗

𝑤
1,14

= −15, 𝑤
5,1

= 10, 𝑤
6,1

= −20, 𝑤
7,2

= 15, 𝑤
7,3

= 10, 𝑤
8,4

= 20, 𝑤
9,5

= −20, 𝑤
9,6

= 10, 𝑤
9,17

= 10, 𝑤
10,7

= −10,
𝑤
11,4

= −15, 𝑤
11,7

= 15, 𝑤
11,22

= −15, 𝑤
12,23

= 10, 𝑤
13,8

= 20, 𝑤
14,9

= 15, 𝑤
15,10

= −10, 𝑤
16,11

= 15, 𝑤
16,12

= −15,
𝑤
17,13

= −20, 𝑤
19,14

= −15, 𝑤
20,15

= 10, 𝑤
21,16

= −20, 𝑤
23,17

= −10, 𝑤
24,15

= −15, 𝑤
24,18

= −20, 𝑤
24,19

= 15,
𝑤
25,20

= −10, 𝑤
26,11

= 20, 𝑤
26,28

= 20, 𝑤
27,24

= −15, 𝑤
27,25

= 10, 𝑤
27,30

= 15, 𝑤
28,25

= −15, 𝑤
29,26

= 10, 𝑤
30,27

= 15,
others 𝑤

𝑖,𝑗
= 0.0

𝛽
𝑖 𝛽

𝑖
= 5 for 𝑖 = {2, 5, 6, 10, 16, 24, 28}, 𝛽

𝑖
= −5 for 𝑖 = {15, 17, 27} otherwise 𝛽

𝑖
= 0

𝜏
𝑖 𝜏

𝑖
= 10 for 𝑖 = {1, 2, . . . , 30}

Here 𝛼 > 0 is the step size; ⊕means entrywise multiplica-
tions. Levy flights essentially provide a random walk and the
random steps are drawn from a Lévy distribution [13, 19] as
follows:

Lévy (𝜆) ∼ 𝜆Γ (𝜆) sin (𝜋𝜆/2)
𝜋

1

𝑠1+𝜆
. (3)

In this equation, Γ(𝜆) is the standard gamma function.
This distribution is valid for large steps 𝑠 > 0. For optimiza-
tion problems, one cuckoo nest corresponds to one solution
of an optimization problem. When the host bird recognizes
the alien eggs, the host bird may destroy the eggs or may
leave its nest and build a new nest with a certain probability
𝑝
𝑎
. To avoid this, cuckoos learn to make eggs similar to the

host bird’s eggs. However, the highest quality nest with eggs
(i.e., best solutions) will be selected to move over to the next
generation where the quality of an egg or fitness of a solution
is simply proportional to the value of objective function.

2.3. Preliminaries of Flower Pollination Algorithm (FPA). FPA
[20] is typically associated with the transfer of pollen for
reproduction or flowering of plants, and pollinators such
as insects, birds, and bats are mainly responsible for such
transfer. FPA [21–23] is a recently proposed metaheuristic
that is based on some simplified rules for pollination. Biotic
cross-pollination can be assumed as a process of global
pollination, and pollen carrying pollinators follow Lévy
flights during transport (Rule 1). For local pollination, abiotic
pollination and self-pollination are used (Rule 2). Pollinators
may develop flower reliability, which is proportional to the
resemblance of two flowers, that is, reproduction probability
(Rule 3). The switching of local to global pollination can
be controlled by a switch probability 𝑝 ∈ [0, 1], slightly
biased towards local pollination (Rule 4). Here, each pollen
or flower corresponds to a solution of the optimization
problem being considered.

Global and local pollination (i.e., search) are done accord-
ing to the following two equations [21], respectively:

𝑥
𝑡+1

𝑖
= 𝑥
𝑡

𝑖
+ 𝛾 Lévy (𝜆) (𝑔∗ − 𝑥

𝑡

𝑖
) , (4)

𝑥
𝑡+1

𝑖
= 𝑥
𝑡

𝑖
+ 𝜀 (𝑥

𝑡

𝑗
− 𝑥
𝑡

𝑘
) . (5)

Here, 𝑥𝑡
𝑖
is the pollen 𝑖 or solution vector 𝑥

𝑖
at iteration 𝑡, 𝛾

is the scaling factor to control the step, 𝑔
∗
is the current best

solution found among all solutions at the current iteration,
𝑥
𝑡

𝑗
and 𝑥

𝑡

𝑘
are pollens from the different flowers of the

same plant species, and 𝜀 stands for random walk step size

within a uniform distribution in [0, 1]. The reason behind
selecting FPA as optimization method is that it gives better
convergence and accuracy than other popular metaheuristic
techniques [21].

3. Methodology

The RNN formalism is based on a set of parameters, 𝑤
𝑖,𝑗
,

𝛽
𝑖
, 𝜏
𝑖
, which we refer to as RNN model parameters in

this work. The reverse engineering of GRNs from temporal
microarray data requires finding the optimum values of the
RNN parameters with the help of optimization techniques
such that the training error is minimized.

3.1. Model Used for Validation. We choose a large artificial
network with 30 genes, to investigate the inference capability
of the proposed algorithm. This network structure is very
sparse in nature, and it has already been studied in [11].
The parameters of this architecture were chosen arbitrarily
as shown in Table 1 where there are only 36 connections or
regulations in the network; for example, 𝑤

1,14
= −15, signi-

fying an edge (a regulatory relationship) that exists between
Gene 1 and Gene 14 in the GRN, and the negative value
implies that Gene 14 inhibits or suppresses the expression of
Gene 1. Any negative value denotes inhibition or repression
while a positive value implies activation.The numerical value
has only mathematical significance for the RNN formalism
implemented here. Only the nature of the value of 𝑤

𝑖,𝑗
, that

is, whether 𝑤
𝑖,𝑗
< 0, 0, or > 0, has biological significance.

The parameters 𝛽
𝑖
and 𝜏

𝑖
also have no significance in

the biological structure of a GRN. They are required for
the mathematical modelling of the RNN formalism. They
basically determine the bias and rate of change of dynamics
for a particular gene. Using (1), 5 time series datasets, with
50 time points in each, are generated for learning of RNN
assuming that Δ𝑡 = 1. These time series data are used as the
training data, represented by a gene expression matrix where
each column indicates a gene and each row indicates a time
point; the data in each cell means the gene expression level of
a particular gene at a particular time point.

The corresponding GRN is shown in Figure 2, where
arrow-head and T-head denote activation and suppression,
respectively, for positive and negative weights, respectively,
between any two genes.

3.2. Decoupled Recurrent Neural Network Training. In all
optimizationmethods, an objective/fitness function is used to
measure the quality of a solution. One of the most regularly
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Figure 2: GRN using RNN parameters as described in Table 1.

implemented estimation criteria is the squared error that is
defined as follows:

𝑓𝑜𝑏 =

𝑀

∑

𝑘=1

𝑁

∑

𝑖=1

𝑇

∑

𝑡=1

(𝑒cal,𝑘,𝑖,𝑡 − 𝑒exp,𝑘,𝑖,𝑡)
2

. (6)

In the above equation, 𝑁 is the number of genes in the
GRN, 𝑇 is the number of sampling instances of the observed
gene expression data, and 𝑀 is the number of training
datasets; 𝑒cal,𝑘,𝑖,𝑡 is the numerically calculated gene expression
value of the 𝑖th gene at time 𝑡, for the 𝑘th dataset; 𝑒exp,𝑘,𝑖,𝑡
is the actual gene expression level of the 𝑖th gene at time
𝑡, for the 𝑘th dataset. The function 𝑓𝑜𝑏 represents the total
squared error between the calculated and experimental gene
expression data.

Thus, the training of the RNN model parameters is,
in essence, a nonlinear optimization problem. The primary
objective is to determine the optimal RNN parameters such
that the mean square error is minimised, and the calculated
gene expression data fits with the observed gene expression
data. Since, for 𝑁 genes, 𝑁(𝑁 + 2) parameters must be
determined to find the solution of a set of equations as in
(1), the RNN model parameter search space is of 𝑁(𝑁 + 2)-
dimensional space (here 960). However, this space becomes
too computationally expensive in the case of large-scale
genetic networks. Therefore, the problem of inferring a GRN
from temporal expression data is decoupled or divided into
several subproblems corresponding to each of the genes.Now,
the objective of each subproblem corresponding to 𝑖th gene
is to find the values of decoupled RNN model parameters
whichminimizes the prediction.Thus,we define the objective
function for the 𝑖th gene only as

𝑓𝑜𝑏
𝑖
=

𝑀

∑

𝑘=1

𝑇

∑

𝑡=1

(𝑒cal,𝑘,𝑖,𝑡 − 𝑒exp,𝑘,𝑖,𝑡)
2

. (7)

Hence, to solve the differential equation (1), the number of
RNN parameters needed to determine is only (𝑁+2) param-
eters for the 𝑖th gene only. Thus, this decoupling method
divides a𝑁(𝑁 + 2)-dimensional problem𝑁 subproblems of
dimension (𝑁 + 2). Accumulating the (𝑁 + 2) parameters of
all 𝑁 genes, the overall structure of the RNN model can be
achieved which in turn will define the inferred GRN.

3.3. CS and FPA Hybridization. Real-life GRNs are sparsely
connected; that is, very few connections exist among genes,
and the measured data are also very noisy. Thus, for GRN
inference problems, it is expected that the values of amajority
of the weight parameters are zero. Nevertheless, it is found
that though the complexity is reduced up to a certain limit by
using a decoupled strategy, it may lead to different solutions.
Each solution may have very low error value depending on
the different connectivities or structures among the genes in
the GRN and the corresponding values of the kinetic param-
eters. This is known as the overfitting problem that occurs
mainly due to the nonlinearity of the RNN methodology,
large search space, and a large number of parameters (here 32
for the decoupled RNN formalism, i.e., still quite large) to be
optimized.Thus, to overcome this problem in real-life genetic
networks, a balance between prediction error minimization
and actual regulatory structure of GRN needs to be achieved.

The proposed Cuckoo Search-Flower Pollination Algo-
rithm hybrid approach utilizes a single-layer RNN formalism
to determine the weights of the edges between the input and
output layers of RNN,with the help of FPA thatminimizes the
error between the calculated and experimental gene expres-
sion profiles. This RNN structure is hybridized with a new
metaheuristic CS algorithm for creating hypothetical inter-
connections or regulatory edges among genes by selecting the
best combination of affecting/regulatory genes.Moreover, the
maximum connectivity of each gene is restricted to 𝐼max as it
is observed that real-life GRNs are sparsely connected; that is,
very few genes participate in actual regulations.

In our present problem, we have chosen the value of
𝐼max = 3; that is, we assume that at most any three genes
can affect any single target gene. CS technique has been
introduced to detect these three regulatory genes, and FPA
is used to know the weight of the RNN model where these
three regulatory genes act as the input node of RNN and the
target gene acts as the output node.The RNN is implemented
to determine how the gene expression levels of those three
genes, at a particular time point, affect the target gene’s
expression value at the next time instance. Assuming this,
we assign the value of 𝑤

𝑖,𝑗
to be zero except for those

three regulatory genes and the search space thus becomes 5-
dimensional (3 weight, 1 bias, and 1 delay parameter). It may
be possible that, for a particular regulatory gene set, one or
more 𝑤

𝑖,𝑗
becomes zero after optimization using FPA. This

implies no regulation for those genes with zero value of 𝑤
𝑖,𝑗
.

The CS is initialized randomly with a population of
different solutions or eggs on the different random nest,
and the quality of each egg in the host nest is calculated
using FPA based RNN to observe the impact of regulatory
genes on other genes in the GRN as part of one gen-
eration. However, we initialized with a population of 10,
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each consisting of 3 different combinations of genes starting
from (1, 2, 3), (4, 5, 6), . . . , (28, 29, 30).This type of predefined
initialization is used as it increases the probability of covering
all regulatory genes without repetition. Search range for the
model is chosen as previous work [11] like 𝑤

𝑖,𝑗
= [−25, 25],

𝛽
𝑖
= [−10, 10], and 𝜏

𝑖
= [0, 15], respectively.

The quality of a host nest or fitness of a solution is simply
proportional to the objective function that is the resultant
error of RNN for the set of particular genes or nest. FPA
always tries to minimize the training error by optimizing the
value of theRNNmodel parameters.During training of RNN,
each pair in the training dataset contains the gene expression
values for only 3 regulatory genes from the one time instance
of the microarray data to be the input values to the RNN
model, and the expression value of the target gene at the next
time instance of the microarray data is the target output of
the RNN.This helps to reduce the execution time by reducing
the unnecessary calculations corresponding to nonregulatory
genes.Moreover, it is observed that during optimization if the
fitness value for FPA based RNN becomes less than 1 × 10−8;
then it gives the almost actual value of the parameters of RNN
for the regulatory genes. Therefore, a stopping criterion is
introduced to minimize the execution time of the algorithm;
that is, if the fitness value for a particular gene set becomes
less than 1 × 10−8 after some iterations, the program stops
execution instantly. Moreover, the corresponding genes set
becomes the desired output.

Sometimes, it is found that if any solution does not
consist of the actual regulatory genes, then the convergence
is very slow which may increase the execution time as it is
not able to go below the value 1 × 10−8 even after a large
number of iterations. Therefore, another alternative stopping
criterion is also imposed which can be stated as follows: if
the difference between current best fitness value and fitness
value of the (current-200)th iteration is less than 1 × 10−10,
then the program execution will also stop. Better host nest
with better quality eggs of each generation will move to the
next generations. After successful completion of all iterations,
we have a set of regulatory genes which can affect the target
genemost.This process is repeated for all 30 genes one by one
to get the final GRN structure.

Here inputs are the time series data, generated by (1),
using parameters as shown in Table 1, and the outputs are
a combination of 3 regulatory genes (𝑗th) for a particular
target gene (𝑖th) along with the value of regulatory weights,
that is, 𝑤

𝑖,𝑗
, corresponding to those 3 regulatory genes for

which the minimum or optimum fitness value is achieved.
It is worth mentioning that for a target gene we always
get a combination of three responsible genes, but this does
not mean that during GRN reconstruction there will always
be regulatory edges from those regulatory genes towards
target gene. The existence of a directed edge in a network
also depends on the weights between target and regulatory
genes. If amplitudes of weights are zero or very small, there
will be no edges for the target gene; that is, there will be
noninteraction. Small perturbation of obtained weights from
actual one can be ignored unless and until it does not change
the polarity or sign, that is, the type of regulation. Moreover,
small values ofweights can be considered as zero. It is believed

that if the number of iterations and population size are large
enough, these small perturbations can also be avoided, but
execution time will also increase consequently. Thus, during
reconstruction of GRN, both the set of regulatory genes and
the value of the corresponding gene’s weights must be kept in
mind. The pseudocode of this CS-FPA hybrid is given as in
Algorithm 1.

3.4. Results for Artificial Dataset. After execution of the pro-
posedmethodology, we get the hypothetical interconnections
among genes regarding weights of the RNN model. Now,
the performance of any inference algorithm for GRN is
measured regarding sensitivity (𝑆

𝑛
), specificity (𝑆

𝑝
), accuracy,

and Matthews Correlation Coefficient (MCC) [11, 24] which
are defined as follows:

𝑆
𝑛
=

TP
TP + FN

,

𝑆
𝑝
=

TN
TN + FP

,

Accuracy =
TP + TN

TP + TN + FP + FN
,

MCC

=
(TP × TN) − (FP × FN)

√(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)
.

(8)

TP (True Positive) denotes the number of correctly
predicted regulations, and TN (True Negative) represents the
number of properly predicted nonregulations. FP (False Posi-
tive) denotes the number of incorrectly predicted regulations,
and FN (False Negative) represents the number of falsely
predicted nonregulations by the inference algorithm. All the
experiments have been performed using MATLAB R2009b,
running on Windows 7 with an Intel© Dual Core processor
and 2GB of RAM. In this work, both noiseless and noisy data
are considered for the construction of the artificial network to
validate the proposed algorithm. Validation of the proposed
method is achieved in terms of correct prediction of RNN
model parameters, that is, correct prediction of regulations
in the GRN.The artificial time series datasets generated using
(1) are used as training inputs.

For the reconstruction of a GRN consisting of 30 genes,
we need an adjacency matrix (here weight matrix of RNN) of
30 × 30 dimension. In this case, there are only 36 regulations,
that is, 36 nonzero value of weights (see the Supplementary
Material available online at http://dx.doi.org/10.1155/2016/
5283937). For noiseless data, usingRNNmodel, we found that
the proposed algorithm can predict 32 regulations correctly
compared to those which were present in actual GRN, and
also includes only four unwanted regulations.Thus, TP = 32,
FP = 4, FN = 4, and TN = 860. It is found that the proposed
algorithm is able to detect maximum correct regulations or
TPs with a very good accuracy (for maximum cases, the
fitness value went below 10

−8). Though this method only
detects 4 false regulations, 4 true regulations are alsomissing.
Nevertheless its inference capability or performance is quite
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For gn (gene) = 1 : 30
Initialize the population para with 𝑛 = 10 host nests (solutions) with
dimension 𝐼max = 3 that is (1, 2, 3); (4, 5, 6); . . . , (28, 29, 30).
For 𝑛 = 1 : 10
Calculate fob (fitness value) for all 10 solutions using RNN and FPA;
If (𝑓𝑜𝑏

𝑛
< 1 ∗ 10

−8)
Break;

End if;
End for;

If (minimum (fob) > 1 ∗ 10
−8)

For 𝑗 = 1 : max iteration (100)
Randomly select a cuckoo (𝑘th) avoid current best;
Randomly generate another nest (𝑠th) keeping current best nests by Lévy flights;
If (𝑓𝑜𝑏

𝑠
< 𝑓𝑜𝑏

𝑘
)

𝑘 is replaced by the news solution;
End if;
If (𝑓𝑜𝑏

𝑘
< 1 × 10

−8)
Break;
End;
Discard the worse nests with a fractional probability (𝑝

𝑎
= 0.25);

Keep the highest quality nest that is best solution with best fitness value;
Rank the available solutions and locate the current best;

End for;
End if;

End for;
Post-processing and visualization of GRN;
Function fob (para, gn)

Initialize a rnnpara population of nf (30) with dimension df (5) pollen randomly with a switch probability 𝑝
𝑓
= 0.8

Find the fitness fun for all solutions and best pollen among them
For (tf <MaxGeneration (2000))
For 𝑖 = 1 : nf
If rand < 𝑝

𝑓
,

Draw 𝑎 (df -dimensional) step vector L which obeys a Lévy distribution
Global pollination via equation (4)

Else
Draw 𝜖 from a uniform distribution in [0, 1]

Randomly choose jf and kf among all the solutions
Do local pollination via equation (5)

End if
Evaluate fitness fun of new solutions of pollens

If new solutions are better
Update them in the population

End if
End for
Find store the best fitness of current iteration
If ((bestfitness (tf ) < 1 ∗ 10

−8) ‖ ((𝑡𝑓 > 500) && ((bestfitness (𝑡𝑓 − 200) − bestfitness (tf )) < 1 ∗ 10
−10)))

Break
End if

End for
Return bestfitness

End fob
Function fun (rnnpara, para, gn)

Define𝑀 (5) times series data with 𝑇 (50) sample point
Calculate the gene expression value of next time instance using equation (1)
Determine the squared error using equation (7)
Return error

End fun

Algorithm 1
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Table 2: A comparative study of the performance of the large-scale artificial network.

Data type Method TP TN FP FN 𝑆
𝑛

𝑆
𝑝

Accuracy MCC

Noiseless CS-FPA 32 860 4 4 0.889 0.995 0.991 0.884
DE [11] 22 861 3 14 0.611 0.996 0.981 0.725

5% noise CS-FPA 32 845 19 4 0.889 0.978 0.974 0.735
DE [11] 11 848 16 25 0.305 0.981 0.954 0.329

satisfactory and better than other state-of-the-art methods
like DE [11].

Next, we add 5% random noise to the initial training
dataset and apply the CS-FPA hybrid algorithm to it to
check the robustness against noise like real-world data. It is
observed that, in the presence of noise, the number of FPs
increased significantly. However, it can still identify all the
TPs (previously inferred) with good accuracy. For noisy data,
TP = 32, FP = 19, FN = 4, and TN = 849. Table 2 shows
a comparative study of the performance of the proposed
methodology with earlier work with respect to specificity and
sensitivity.

It is quite interesting to observe that performance (in
terms of sensitivity) of CS-FPA does not change for detecting
true positive regulations in the presence of noise whereas
sensitivity of DE [11] drastically falls to very low value in
the presence on noise that denotes inability of DE [11] for
finding actual regulation in the presence of noise. Moreover,
specificity, accuracy, and MCC are better than DE [11], and
values of these parameters do not change significantly due
to noise though some false regulations are included into
the GRN. However, due to a parallel implementation of
two metaheuristic for one problem, overall computational
time complexity is still significant although several break
conditions are applied to minimize the execution time as
much as possible which is 1.5 hours on average for this large
network model.

3.5. Results for Real-Time Dataset of E. coli. Microarray
experiments on the SOS DNA repair network for E. coli [25]
were first done by the Uri Alon group [26]. The experimental
datasets are considered as the benchmark for the evaluation of
algorithms for reverse engineering of GRNs from real-world
datasets. In the SOS network, 8 genes were considered (uvrD,
lexA, umuD, recA, uvrA, uvrY, ruvA, and polB as shown in
Figure 3) due to their significant involvement in the process
ofDNA repair. During their experiments, theE. coli cells were
irradiated with UV light. Four experiments were performed
with different UV light intensities. Each experiment consists
of 50 time steps spaced by 6 minutes for each of the eight
genes. However, in this work, the first dataset with all eight
genes has been considered where it is being preprocessed by
neglecting first time point (zero) normalizing in the range
[0, 1].

Search range for the model is chosen as previous work
[11] like 𝑤

𝑖,𝑗
= [−10, 10], 𝛽

𝑖
= [−10, 10], and 𝜏

𝑖
= [0, 10],

respectively. For CS, the value of𝑁 is set as 2 as the number
of available genes is limited to 8 only and other parameter
settings remain the same. If we apply CS-FPA hybrid to
the SOS dataset, only 4 out of 9 potential regulations can

Table 3: Results obtained for the E. coli SOS DNA repair network.

uvrD lexA umuDC recA uvrA uvrY ruvA polB
uvrD 0 − 0 0 0 0 0 0
lexA + 0 0 0 0 + 0 0
umuDC − − 0 0 0 0 0 0
recA 0 − 0 0 − 0 0 0
uvrA 0 0 + 0 0 0 − 0
uvrY 0 0 0 − 0 0 0 +
ruvA 0 − 0 0 0 0 0 +
polB 0 0 − − 0 0 0 0

uvrA

umuDC

uvrD

polB

uvrY

ruvA

Activating repair
system

Sensing damagerecA

lexA

DNA damage

Figure 3: The graphical representation of the actual SOS network
for E. coli [7].

be appropriately predicted from the data, which are the
inhibition of lexA on uvrD, umuD, recA, and ruvA. Moreover,
it also includes 11 false regulations in the network which is a
disadvantage of this process.The results are shown in Table 3.

Furthermore, using two ormore time series does not yield
any enhancement for the results.The cause behind this is that
inference of real-time GRNs is an ill-posed problem that has
no unique solution. Noise andmeasurement error in this type
of real-time series microarray is another issue. This inherent
difficulty is a limitation of our proposed method.

4. Conclusion
Various researchers have already proposed numerous tech-
niques to solve the reverse engineering problem of GRNs
from temporal genetic expression data in the domain of
computational biology and bioinformatics. It is imperative to
enhance the accuracy of the inference algorithms as well as to
reduce the number of incorrect predictions (i.e., FPs) within
a plausible runtime.
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The RNN formalism is a very popular candidate for infer-
ring GRNs from microarray gene expression data regarding
biological plausibility and computational efficiency. In this
work, we have implemented the decoupled RNN model
where the regulatory parameters of each gene are calculated
independently in separate search instances. We incorporated
hybridized technique where two metaheuristics are paired to
obtain the RNN based GRN model with less search space,
less computational complexity, and more accuracy. In this
paper, hybridized CS-FPA is proposed for reconstruction of
GRNs where FPA is used to train the RNN parameters, and
CS is introduced to select the best combination of genes
that are responsible for modifying the expression of each
gene. Moreover, the maximum connectivity of each gene is
restricted to 𝐼max as it is observed that real-life GRNs are
sparsely connected; that is, very few genes participate in
regulations.

To prove the efficiency of this inference algorithm, it is
applied to a benchmark problem of the artificial networkwith
30 genes with and without noise. With the use of fewer data
points, CS-FPA based RNN can infer the network with very
high accuracy. However, in the presence of noise, the number
of FPs increases significantly, but it can still identify all TPs
(inferred in the noiseless scenario) with good accuracy. It is
also found that noise robustness is better than other existing
methods for artificial data. In the instance of the E. coli
dataset, it can detect only four true regulations and includes
some false regulations.

Another important observation that is apparent from our
results is that the proposed methodology can reconstruct
the large artificial GRNs more efficiently than that of real-
life GRNs. However, this needs further study on different
networks available to us, and the existing boundary of
our work validates this observation. In the future, various
regularization techniques, the inclusion of prior knowledge
aboutGRNs, and parallel computingmethodsmay be utilized
to improve the accuracy and speed further.
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