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Background Seasonality of any infectious disease is important for

its control and monitoring. While influenza seasonality in people

has been evaluated extensively, this question has not been studied

well in swine populations.

Objective The goal of this study was to investigate seasonality of

influenza in swine, using diagnostic submissions to a diagnostic

laboratory.

Methods Two thousand seven hundred and eleven virological

tests within 685 submissions and 5471 serological tests within 193

submissions in Ontario swine between 2007 and 2012 were

included in the study and converted to total monthly number of

virological and serological submissions, and the number of

positive submissions. Data were analyzed by time-series

decomposition, fixed-effect Poisson, random-effect Poisson

regression with month as uncorrelated and correlated random

effects.

Results All approaches identified seasonality in virological

submissions (P < 0�02) with peak in January and April, and a

trough in July, but were not able to detect seasonality of influenza-

positive virological submissions (P > 0�13). Seasonality of positive

serological submissions was identified only if independence between

months was assumed (P < 0�03). Almost 50% of serological

submissions had evidence of exposure to H3N2 and H1N1.

Conclusions Thus, this study identified evidence of seasonality in

influenza-like disease in swine herds, but not in circulation of

influenza virus. Evidence of seasonality in exposure to influenza was

dependent on assumptions of between-month correlation. High

exposure to H3N2 and H1N1 subtypes warrants more detailed

investigation of within-herd influenza virus circulation. The study

provides initial insight into seasonality of influenza in swine and

should be followed with herd-level studies.
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Introduction

Seasonality of any infection has profound implications for its

transmission, and ultimately for monitoring and control

programs. In human health, seasonality of many diseases is

well studied, particularly influenza. It is generally accepted

that in temperate regions, seasonal influenza in people peaks

in the winter months1,2 although causes of such seasonality

are still not completely understood.3–6 In contrast to human

populations, existence of influenza seasonality in swine

populations is not well studied. A general consensus among

experts seems to be that swine influenza in the northern

hemisphere has historically been a disease that peaked in the

fall and early winter months, but that such seasonal pattern

diminished with the advent of modern swine production

systems.7 Nonetheless, little information based on quantita-

tive data is currently available to describe a pattern of

influenza in swine over different seasons. One study that

explicitly addressed influenza seasonality in pigs was carried

out recently in four European countries between 2006 and

2008.8 No evidence of between-season differences in pro-

portion of influenza-exposure-positive pigs or farms could

be found based on sampling that was restricted to summer

and winter periods only. Seasonality of influenza has also

been studied using diagnostic data from monitoring sys-

tems.2,9 A recent study from Minnesota used such an

approach in swine populations.10 It therefore would be of

interest to study influenza seasonality in Ontario swine using

a similar approach where such data exist. In Ontario, type A

influenza in swine is a common endemic infection, and

veterinary practitioners regularly submit samples to diag-

nostic laboratories in order to investigate clinical problems
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suggestive of infection with influenza virus. The objective of

this study is to investigate the existence of seasonality of

influenza in Ontario swine based on diagnostic submissions

to the largest Ontario Animal Health Laboratory between

May 2007 and December 2012.

Materials and methods

Laboratory submissions and data processing
Data on submissions for diagnostic tests for influenza in

swine in Ontario between May 2007 and December 2012

were received from the Animal Health Laboratory (AHL,

University of Guelph, Guelph, Ontario, Canada). May of

2007 was the month when a new data management system

was implemented in the laboratory. The data received

consisted of 9639 records, equivalent to individual test

results, within 955 unique submissions (Figure 1). Of these

records, 3460 individual samples within 254 submissions

were tested with more than one test. Ninety-two records were

the results of the same test performed on the same sample

but were reported on different scales, and they were excluded

from analysis (Figure 1). Results of tests submitted as a part

of monitoring and research submissions were also excluded

from the analysis, with a rationale that monitoring and

research submissions might not be motivated by influenza-

like disease in a herd, leaving only the test results from

diagnostic submissions for analysis.

Data on virological tests were the results of different

procedures, including real-time RT-PCR, immunohisto-

chemistry, and virus isolation, that could be applied on

Figure 1. Flow of data in the study. Gray boxes indicate number of records that were excluded from the analysis, with the reason for exclusion.
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different or on the same sample within the submission. Any

test that indicated a positive result for influenza virus or type

A influenza virus, or a specific subtype of type A influenza

virus was considered as a positive individual virological test.

Then, the number of virological tests performed and the

number of positive virological tests were determined for each

submission. Findings of individual tests that indicated a

result that was “suspicious” (n = 12) or “weak-positive”

(n = 9) were considered as negative tests. At least one

positive virological test for influenza virus, type A influenza

virus, or for any influenza virus subtype was used to declare a

submission as positive for influenza virus.

Data on serological tests also consisted of results by

different procedures, including hemagglutination inhibition

(HI) tests for H1 and H3, IDEXX H1, IDEXX H3, and

IDEXX all influenza A antibody ELISA, that could be

applied on different or on the same sample within a

submission. Any test that indicated a positive result for

exposure to type A influenza, or a specific subtype, or

specific variant of influenza virus was considered as an

individual test. Then, the number of serological tests

performed and the number of positive serological tests were

determined for each submission. For hemagglutination

inhibition tests, a cutoff point of ≥1:36 was used to declare

a positive test result. The cutoff point was selected with

intention to have high specificity. With the same idea in

mind, results that were reported as “suspicious” (n = 116)

were defined as negative in this analysis. At least one

positive serological test for exposure to type A influenza

virus, or to any influenza virus subtype, or to any influenza

virus variant was used to declare a submission as positive

for exposure to influenza virus. In addition, exposure to a

specific subtype of influenza virus was determined in an

identical manner using results of serological tests that could

be interpreted at the subtype level (i.e., H3- or H1-specific

ELISA, and HI assays based on different H3N2 – [A/ Swine/

Ontario/33853/05, A/Swine/Texas/4199-2/98], or H1N1 –
[A/Swine/ North Carolina/01, A/Swine/Ontario/5/81] vari-

ants). Thus, HI assays for H3N2 were based on the

hemagglutinin of the cluster I (A/Swine/Texas/4199-2/98)

and cluster IV (A/ Swine/Ontario/33853/05) viruses of the

triple-reassortant H3N2 lineage11, whereas HI assays for

H1N1 were based on the hemagglutinin of the classical

swine H1N1 viruses.

The number of total submissions for virological and

serological tests, as well as the number of positive submis-

sions on virological and serological tests, was then aggregated

to a monthly level resulting in four individual datasets

consisting of the number of outcomes per month. Each

dataset was converted to a continuous monthly time series

consisting of the number of submissions or number of

positive submissions for virological and serological submis-

sions and analyzed separately.

Statistical analysis
Data for all 4 outcomes were first decomposed into trend,

season, and residual component using the STL (seasonal,

trend, and irregular components using loess) algorithm in R

2�15�0. The algorithm is based on the loess smoothing12. The

smoothing window for season was set for 7 months and for

trend was 15 months. A set of ordinary Poisson and negative

binomial regression models with number of monthly

submissions for four outcomes were constructed. Each set

consisted of a model with only a fixed effect of month, or

additionally of linear, quadratic, or cubic effect of year

centered to 2010. The model with the lowest Akaike

information criterion (AIC) was considered to be the final

fixed-effect model for a particular outcome. The fixed effect

of month was then tested using a likelihood ratio test.

Following this, an identical set of Poisson regression models

with month as a random effect was fitted. The best model

was selected on the basis of the lowest AIC. The significance

of the random effect was evaluated by comparison of the

random-effect model with the ordinary Poisson regression

model using the likelihood ratio test.

Finally, the model identified as the best random-effect

Poisson regression model was refitted in the Bayesian

framework with month as a Poisson regression model and

with month as a correlated random effect using spatial

conditionally autoregressive (CAR) model13. The observed

count of submissions (Oij) in year i (i = 2005. . .2012) and

month j (j = 1. . .12) was based on a Poisson distribution

with mean (lij).
ðOijÞ�PoissonðlijÞ

logðlijÞ ¼ aþ bi þ uj

where a is the intercept, b is a the coefficient for the fixed

effect of a year, where applicable, and u is a temporally

structured random effect with variance r2.

Use of spatial CAR models to assess seasonality was

advocated before14. In the CAR model, the random effects

were correlated in a sense that a specific month was adjacent to

a month preceding and following the month of interest itself.

Uninformative priors were used for the intercept (a~flat),
fixed linear effect of year b ~ [Normal (0, 0�000001) when

necessary, and the variance (specified as precision s ~ Gamma

(0�5, 0�0006)]. Initial burn-in for 2 chains was based on 10E6

iterations, and an additional 5*10E6 iterations were used to

produce the posterior distribution. Median, 2�5th, and 97�5th
percentile were used to represent the estimate and 95%

probability interval (PI) for each parameter of interest,

including the random month effect. Offset was not used in

thesemodels becausemonthly counts were of primary interest.

To evaluate whether the proportion of positive tests within

a submission showed any evidence of seasonality, random-

intercept Poisson regression models were also fitted for the
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total number of positive samples as outcome, and number of

tests as an offset. The linear, quadratic, and cubic effect of

centered year was evaluated, and the best model was selected

on the basis of the lowest AIC. Models with random effect of

month only, and random effect of submission and month

were considered. Random month effect was tested using the

likelihood ratio test. Random-effect models were fitted using

Gaussian quadrature method in a commercial software

(STATA 10.1 SE; StataCorp LP, College Station, TX, USA) or

using WINBUGS 1.4.3 (MRC Biostatistics Unit, Cambridge,

UK) for models with correlated random effects. Proportion

of exposure to different subtypes was assessed descriptively.

Results

Monthly counts of submissions and positive
submissions
Figure 1 depicts the exclusion and processing of diagnostic

data received from the AHL. A total of 854 diagnostic

submissions were available for analysis with 659 (77�2%)

requesting virological tests, 169 (19�8%) requesting only

serological tests, and 26 (3%) requesting both virological and

serological tests. Only 13% of submissions that had a

serological test request also had a virological tests requested.

Out of diagnostic samples submitted for serological assays,

33�8% had missing information about age; 0�5% was from

boars, 10�3% from gilts or sows, 10�3% from finisher pigs,

2�6% from nursery or weaner pigs, and 42�6% only specified

swine. For submissions made for sows/gilts, 12/20 had some

history comments, with 8/12 indicating sudden outbreak of

mostly respiratory disease, whereas 4/12 suggested submis-

sion of specimens from younger age-groups.

Of 2271 virological tests (Table 1), ~75% of tests were

based on a type of polymerase chain reaction (PCR) test

(Table 1). With more than 90% of all serological tests, the

subtype-specific ELISA was the most common serological

test used in the study (Table 1). Although the same sample

could have been tested with different serological or virolog-

ical tests in a sequential manner, this was not taken into

account for this analysis and different tests applied to the

same sample were counted as individual tests. The median

number of total virological tests performed per submission

was 1 (IQR = 2; min = 1, max = 91, mean = 3�1). The

median number of total serological tests performed per

submission was 20 (IQR = 25; min = 1, max = 120).

Figure 2 depicts the result of time-series analysis for all 4

outcomes performed by the stl algorithm and includes

observed data, trend, and a cumulative effect of seasonal

effect and trend. Figure 3 depicts only the seasonal effect

from this analysis for the submissions based on virological

(upper panel) and serological (lower panel) submissions. For

virological submissions, several peaks could be observed as a

result of this analysis. January was the month with peak

seasonal effect of virological submissions in 3 years and was

the second highest in 2 years. May was the month with the

peak number of virological submissions in 3 years, and April

was the month with second highest number of virological

submissions in 3 years. A trough in number of virological

submissions typically occurred in July or August (Figure 3).

Based on this analysis, the seasonal effect in the number of

positive virological submissions was much lower than for

number of submissions, with consistently observed slight

peaks in November, January, and April–May.

For serological submissions, there appears to be a first

peak of submissions in the period between November and

January that was consistently observed across the study

period, followed by another peak in July. For the number of

positive serological submissions, the pattern seemed to be

congruent with the number of serological submissions, but

another peak in March was consistently observed. Seasonal

deviations, although consistently observed, were only mod-

erate.

For the number of virological submissions, a fixed-effect

negative binomial model indicated that month was associated

with number of submissions (P = 0�011, Table 2). Similarly,

the random-effect model with uncorrelated random effect

suggested that the random effect of month was statistically

significant (P = 0�001). In the Bayesianmodel with temporally

correlated random effects, the magnitude of variance was

smaller in comparisonwith amodelwith uncorrelated random

effects (Table 2. Figure 4 depicts the random effect of each

month over the entire study period expressed as rate ratios in

comparison with an average month (i.e., rate ratio = 1).

Table 1. Frequency of diagnostic tests used in the Animal Health

Laboratory between 2007 and 2012

Tests for detection of antigen or nucleic acid N %

ELISA antigen 50 2�2
Direct fluorescent antibody test (A) 50 2�2
Immunohistochemistry (A) 391 17�2
PCR 565 24�9
Real-time PCR 1140 50�2
Typing 75 3�3
Total 2271 100�0

Tests for detection of antibodies N %

ELISA H1N1 2634 47�4
HI A/Swine/North Carolina/01 (H1N1) 23 0�4
HI A/Swine/Ontario/5/81 (H1N1) 54 1�0
ELISA H3N2 2538 45�7
HI A/Swine/Ontario/33853/05 (H3N2) 207 3�7
HI A/Swine/Texas/4199-2/98 (H3N2) 15 0�3
MultiS-screen type A 83 1�5
Total 5554 100�0
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Estimates from the random-effect model with uncorrelated

random effects were expressed as estimates and 95% confi-

dence intervals, and estimates from the Bayesian models were

expressed as medians from the posterior distribution and 95%

probability interval based on 2�5th and 97�5th percentile.

Number of submissions was expected to be higher than in the

averagemonth in January andwas expected to be lower than in

an average month in July and in August. As expected, the

model with temporally correlated random effects smoothed

the relative risk estimates, but the seasonality pattern for the

number of virological submissions was very similar between

the random effect with uncorrelated and correlated random

effects. The expected number of virological submissions from

the fixed-effect model, random effect with uncorrelated, and

random effect with correlated random effects is depicted in

Figure 5 (upper left panel).

For number of positive virological submissions, no

association between the month and the number of positive

submissions could be identified (Table 2, Figures 4 and 5).

Once correlation between the neighboring months was

accounted for, the expected number of positive submissions

was almost identical across all months (Figure 5, right upper

panel).

For number of total serological submissions, there was

association between the month and the number of positive

submissions based on a fixed-effect Poisson and a random-

effect Poisson model (Table 2, Figure 4 and 5). Figure 5

indicated that the highest expected number of serological

submissions was in March, January, and July. However,

accounting for correlation between months in the Bayesian

Poisson model considerably decreased posterior distribution

of between-month variance. In essence, accounting for

correlation between random month effects weakened any

seasonal effect that was apparent before correlation between

months was accounted for.

An almost identical result to the one obtained for total

serological submissions was obtained for the number of

positive serological submissions (Table 2, Figures 4 and 5,

right lower panel). In the unadjusted analysis, temporal

autocorrelation for up to lag three was positive for number

of virological submissions, number of serological submis-

sions, and number of positive serological submissions, and

negative (and very small) for number of positive virological

submissions. Once adjusted for linear year effect, autocor-

relation for number of serological submissions and number

of positive serological submissions was generally negative for

up to lag three (data not shown), whereas autocorrelation for

virological tests remained similar to unadjusted temporal

autocorrelation.

Within-submission proportion of positive samples
The Poisson regression model that tested association between

the proportion of positive virological tests within a submis-

sion indicated that the random month effect was not

Figure 2. Time-series analysis. Observed data (black thin lines), smoothed trend (dashed red line), and sum of the smoothed trend and seasonal

component based on the stl algorithm for 4 outcomes considered in the study of swine influenza in Ontario.
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Figure 3. Seasonal component based on the stl algorithm for number of virological submissions (upper panel, solid line), number of positive virological

submissions (upper panel, dashed line), number of serological submissions (lower panel, solid line), and number of positive serological submissions (lower

panel, dashed line) based on submissions to the Animal Health Laboratory between 2005 and 2012.

Table 2. Final multivariable Poisson or negative binomial models for 4 different outcomes on the basis of influenza submissions data from the Animal

Health Laboratory

Outcome Covariate

Fixed-effect Poisson or negative

binomial

Random Poisson with uncorrelated

random effect

Random Poisson with

correlated random effect

Estimate 95% CI P Estimate 95% CI P Estimate 95% PI

N submissions

for virology

Intercept 2�64 2�36 2�92 <0�01 2�30 2�17 2�43 <0�01 2�30 2�22 2�38
Year – – – – – – – – – – –

Month* – – – 0�011 0�038 0�011 0�130 <0�01 0�026 0�004 0�112
N-positive

submissions

on virology

Intercept �0�14 �1�02 0�73 0�75 0�85 0�67 1�03 <0�01 0�85 0�69 1�00
Year 0�11 0�02 0�21 0�02 0�11 0�01 0�21 0�02 0�11 0�01 0�21
Month* – – – 0�138 0�020 0�000 0�965 0�274 0�003 0�000 0�104

N submissions

for serology

Intercept 0�19 �0�47 0�85 0�57 0�87 0�66 1�09 <0�01 0�89 0�71 1�05
Year �0�25 �0�34 �0�16 <0�01 �0�24 �0�34 �0�15 <0�01 �0�24 �0�33 �0�15
Month* – – – 0�023 0�052 0�008 0�324 0�055 0�005 0�000 0�156

N-positive

submissions

on serology

Intercept �0�14 �0�90 0�61 0�71 0�48 0�20 0�76 <0�01 0�51 0�29 0�71
Year �0�31 �0�42 �0�20 <0�01 �0�31 �0�42 �0�20 <0�01 �0�42 �0�31 �0�20
Month* – – – 0�008 0�095 0�018 0�489 0�028 0�006 0�000 0�272

*For the fixed-effect model, month was treated as a fixed effect and tested statistically using partial likelihood ratio test. For random-effect models,

month was treated as a random effect, and estimates of variance were provided. For the model with uncorrelated random effects, statistical

significance was evaluated on the basis of comparison with a model with no random effect.
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statistically significant, and the variance for month was

almost negligible. In contrast, the Poisson regression model

that tested association between the proportion of positive

serological tests within a submission indicated that the

random month effect (Figure 6) was statistically of marginal

significance (P = 0�06). Magnitude of variance for this

model at the submission level was 1�57 (1�4–2�16), whereas
the variance at the month level was 0�13 (0�02–0�65) in

a model that contained centered linear effect of year. The

estimates of random month effects from the latter model,

together with their 95% confidence limits, are depicted

in Figure 6. Submissions that were submitted to the

Figure 4. Random month effects from Poisson models with uncorrelated (hollow circles) and temporally correlated (gray circles) random effects for 4

different outcomes expressed as rate ratios where the baseline is an average month represented by a black horizontal line with origin at 1�0.

Figure 5. Expected monthly count of submissions for 4 different outcomes on the basis of fixed-effect model (hollow circles), random-effect Poisson

model with uncorrelated random effect (light gray circles connected with solid line), and random-effect Poisson model with temporally correlated random

effects (dark gray circles connected with dashed line) for the year 2010.
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participating laboratory were expected to have the highest

within-herd positivity in March, followed by June although

none of them was statistically different than an average

month.

Exposure to different subtypes
Table 3 indicates that out of all submissions that used

serological tests for exposure to H1N1 and H3N2, almost

49% of submissions were detected as positive to both

subtypes. Figure 7 depicts the cross-tabulation between

within-submission proportion positive to H1N1 and H3N2

for submissions that were tested for exposure to the two

subtypes. The within-herd prevalence was rounded to the

nearest 10%. From the figure, it is apparent that there is

varying degree of within-herd positivity, with multiple herds

displaying high positivity for exposure to both subtypes. In

34 submissions, typing using PCR was performed. The

median number of typing requested per submission was one

(interquartile range = 1, mean = 2�1, maximum = 18). Ten

submissions had typing requested on more than one sample.

In all 10 cases, only a single subtype was detected. Of 34

submissions, 12 (35%) were detected with H1N1 subtype, 21

(62%) with H3N2, and one (3%) with N2 subtype with

untyped hemagglutinin. Temporal distribution of detections

is presented in Figure 8.

Discussion

A number of unique features of herds, premises, and

management are characterizing influenza virus dynamics in

swine populations, and they cannot be taken explicitly into

consideration in this type of analysis, although they might

have large impact on transmission and seasonality. Swine

demographic is very dynamic with a high birth rate that

could currently reach as high as 30 pigs produced per sow per

year, contributing to high inflow of susceptible animals.

Contemporary swine production is based on high standards

Figure 6. Random month effect for proportion of positive samples on

serological tests. Total number of positive serological tests in a submission

was used as the outcome and the total number of serological tests carried

out as the exposure in this Poisson regression model with random effect

of month and submission on the intercept.

Table 3. Number and proportion (%) of diagnostic serological

submissions positive for exposure to H1N1 and H3N2 influenza virus

subtype between 2007 and 2012.

H3N2 �ve H3N2 +ve Total

H1N1 �ve 42 (25�3) 25 (15�1) 67 (40�4)
H1N1 +ve 18 (10�8) 81 (48�8) 99 (59�6)
Total 60 (36�1) 106 (63�9) 166 (100)

Figure 7. Within submission positivity for exposure to H3N2 and H1N1

influenza virus subtype on the basis of serological diagnostic data for

samples submitted to the Animal Health Laboratory between 2007 and

2012.

Figure 8. Monthly count of subtypes of influenza virus detected through

the Animal Health Laboratory database between 2007 and 2012.
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of external biosecurity aimed to limit transmission of

infectious diseases between systems and flows within systems,

but also allowing for planned mixing and different degree of

contact within systems. Multiple subtypes or variants

endemically circulate in swine, often in the same systems

or herds. This could generate opportunities for reassortment,

but also can elicit varying degree of cross-protection with

ultimate effect on transmissibility. Finally, the unit of interest

for testing and for infection control is typically a population

rather than individual. All of the above could have influence

on the strength of seasonality measures, which in this study

was assessed on the basis of 4 outcomes.

Seasonality of diagnostic submissions aimed for detection

of influenza virus was the only parameter that showed

seasonality regardless of the analytical approach. This

suggests existence of month-to-month variability in the level

of influenza-like disease in Ontario swine herds. The pattern

was characterized with peaks in January and April, then

sudden decrease with a trough in July, and with subsequent

steady increase in the number of submissions between July

and December. Reasons for this are not clear from this

analysis, but we hypothesize it could be attributed to the

disease ecology itself, and to the way that disease is

monitored. In temperate regions, influenza in people regu-

larly peaks in winter months.2 This pattern has been

attributed in part to a combination of cold temperature

and particularly low absolute humidity during winter5 and

has been supported through analysis of aggregated data from

monitoring systems15, modeling studies15, and mechanistic

experimental models.16,17 A comparable research is currently

not available in swine to the best of our knowledge. The

direct comparison of results of this study to human

populations cannot be carried out for reasons stated in

general comments. The level of interest is a herd rather than

individual, which inevitably has impact on the number of

cases reported and ultimately the strength of seasonality

indicators. A peak in April is more surprising although

consistent with a recent report from Minnesota.10 Due to

indoor housing of pigs, the impact of external environment

on animals is mediated through building design and

ventilation system. Ventilation systems in different types of

swine barns could have differing capacities to maintain the

recommended microclimate under varying external condi-

tions. Months such as April are expected to have variability

in external temperatures, which could in turn influence the

microclimate in barns and thereby influence the transmission

of influenza virus, or clinical expression of influenza.

Nonetheless, these same environmental conditions could

also influence transmissibility and morbidity due to other

infections with respiratory involvement in pigs, and those are

numerous. Examples of such infectious agents that have been

endemic during the study period in the source population

are porcine reproductive and respiratory syndrome virus

(PRRSV), Mycoplasma hyopneumoniae, and porcine circovi-

rus type two. Although clinical diseases due to the latter two

infectious agents are generally controlled through effective

vaccines at present time, production issues that would

prompt diagnostic submissions have been frequent during

the study period. Thus, some of the patterns that have been

seen in this study could also be due to cases with initially

incorrect clinical diagnosis, or as a part of submissions that

requested tests for multiple respiratory pathogens at the same

time. Some behavioral factors may also contribute, although

likely inconsequentially, to this pattern due to vacation times

during summer, winter holidays in December, and possible

fieldwork in spring and fall. Interestingly, the pattern for the

number of virological submissions in this study was in partial

agreement with an observed pattern of virologically positive

submissions in Minnesota.10 In the latter study, a spring peak

(April) was observed as well, but the highest peak of positive

submissions was in the fall (October) and relatively low

number of submissions in January.

In contrast, no seasonality in the number of positive

virological submissions per month could be identified in this

study population. This is in agreement with a general

statement that seasonality of infection has been lost with the

advent of modern production systems.7 However, it also

must be pointed out that expected and observed values for

the number of positive submissions were generally low, and

perhaps not sufficient to detect differences between months.

A seasonal increase based on 2 years of data was detected in

Minnesota10, but the number of virologically positive

submissions was considerably higher than in this study. It

is worth noting that a descriptive pattern based on the stl

algorithm, as well as fixed-effect model Poisson model, also

suggested a peak in November, which agrees with the

findings of the Minnesota study. Exclusion of data from

certain years had an impact on the peak month when the

spring increase in submissions of virological tests was found.

Nonetheless, such models, based on a subset of data, also

predicted an increase in virological submissions between

April and June. Similarly, exclusion of certain years did not

influence general predictions for virus-positive samples, but

had an impact on whether this effect was found to be

statistically significant. Thus, studies from multiple laboratories

servicing similar study regions, and preferably over a longer

period of time, should be considered for similar future

investigations.

In principle, seasonality of influenza virus circulation

cannot be inferred on the basis of results from serological

assays, without additional demographic and clinical infor-

mation. This is because a serologically positive response,

measured at one point in time, is a result of exposure to

influenza virus at an unknown point in the past. Longevity of

antibodies also depends on the type of antibodies, the type of

serological assay used, and probably on the age of animals,
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among other things. Examination of comments made at the

time of submission suggested that submitted serological

samples were obtained from a variety of age-groups and

scenarios, but did not provide clear answers about the most

typical scenario that prompted submission of specimens.

Nonetheless, we provided results of the same analysis for

serological assays for comparison purposes.

Discordant conclusions could be reached about seasonality

of serological exposures on the basis of different data analysis

approaches. In analysis that assumed independence of

months, some evidence of seasonality existed, whereas in

the analysis that assumed that months were correlated, no

evidence of seasonality could be detected. A technical

explanation of this issue is in the nature of temporal

autocorrelation. Once adjusted for the yearly trend, the

correlation up to lag three was negative. This negative

correlation between adjacent months was taken into account

in Bayesian models with correlated random effects, and likely

contributed to extensive smoothing that resulted in absence

of seasonality in these models. In general, monitoring data

based on serological assays are less accurate in identifying the

timing of exposure to influenza virus than data based on

virological tests because there could be a considerable time

lag between the exposure to the virus and submission to a

diagnostic laboratory. The results of this study are likely

influenced by this, because only 13% of serological submis-

sions requested virological test for influenza at the time

submission was carried out, which may suggest that majority

of serological submissions were made at a time when virus

was not expected to be found.

A very similar seasonal pattern, with second peak in June

rather than in July, was also present for within-submission

seroprevalence of influenza. Despite its marginal statistical

significance, existence of this pattern warrants further

investigations to better understand seasonality of influenza

infections within swine farms. A previous serological study

could not detect any seasonality in proportion of serologi-

cally positive pigs or herds8, when sampling was stratified on

the basis of two broadly defined seasonal periods (winter and

summer).

An interesting contrast to this was the absence of any

evidence of seasonality in within-submission positivity on

virological submissions. This can be explained by several

distinct characteristics of samples submitted for virological

influenza testing in pigs under field conditions: (i) risk-based

sampling can be easily utilized during the acute phase of

illness by targeting individuals and populations within an

affected herd expressing typical clinical signs, (ii) pooling of

individual samples is frequently practiced to increase diag-

nostic or surveillance sensitivity and to decrease cost of

testing. The consequence of both of these approaches is to

have high, or at least consistent, submission-level sensitivity

that should not change between months.

A considerable proportion of diagnostic submissions in

this study had samples from animals that were exposed to

both influenza virus subtypes, which is in line with findings

in other studies.8 Nonetheless, this result has to be

interpreted with some caution because the majority of test

results were based on subtype-specific ELISA, and because

the timing of exposure to different subtypes was unknown.

Previous work demonstrated that subtype-specific ELISA

generally does not detect antibodies elicited with variants of

another subtype.18 Nonetheless, exposure to H1N2 influenza

virus was found to induce some cross-reactivity on H3N2-

specific ELISA in the same report.18 Thus, possibility of

cross-reactivity between different subtypes in the current

study cannot be completely excluded. Nonetheless, a con-

siderable proportion of herds had high exposure on both

ELISA tests, which is arguably less likely due to cross-

reactivity but to exposure to different subtypes. If two

subtypes circulate concurrently in swine populations, this

could result in co-infection with different viruses in the same

animal and therefore create necessary conditions for reas-

sortment to occur. Evidence of exposure of herds to the two

influenza virus subtypes seemed to be consistent since the

start of the study period in May 2007, which was 2 years after

emergence of the triple-reassortant H3N2 virus (trH3N2) in

Ontario.11,19 However, timing of exposure to different

subtypes could not be elucidated. Interestingly, in a limited

number of subtyping performed for diagnostic purposes,

only viruses of identical subtype within the same submission

were identified. This could either be due to low number of

typing requests, or due to different times when exposure

occurs. Previous studies identified various patterns of

influenza virus circulation in a herd20–22, some of which

could be contributed to the herd type, mixing patterns, or

possibly circulation of drifted variants of the same subtype

with unknown cross-reactivity. More detailed longitudinal

studies are needed to understand cocirculation of different

influenza viruses within swine herds.

A number of limitations exist in this study. It is based on

passive monitoring data, which in itself could be biased and

driven by different behavioral factors that could not be taken

into consideration during the analysis stage. Any change in

sampling or in testing strategies could have influenced the

results of the study. Similarly, any outbreak or epidemic of

novel influenza viruses could also influence the results of this

study. The study is ecological in nature, and seasonally forced

transmission has to be investigated further within specific

herds over a prolonged period of time.

In conclusion, the seasonality of submissions with peak in

January and April, and trough in July were detected, whereas

significant seasonality of positive virological findings which

should be most indicative of seasonal circulation of influenza

virus could not be detected. Contradictory findings were

found with respect to seasonality of serological submissions,

Seasonality of influenza in swine
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depending on whether correlation between months was

taken into consideration. Almost 50% of diagnostic serolog-

ical submissions had evidence of exposure to two common

influenza virus subtypes, H3N2 and H1N1.
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