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Abstract: Many reports of the intestinal microbiota of grass carp have addressed the microbial response
to diet or starvation or the effect of microbes on metabolism; however, the intestinal microbiota
of crisp grass carp has yet to be elucidated. Moreover, the specific bacteria that play a role in the
crispiness of grass carp fed faba beans have not been elucidated. In the present study, 16S sequencing
was carried out to compare the intestinal microbiota in the fore-, mid- and hind-intestine segments of
grass carp following feeding with either faba beans or formula feed. Our results showed that (1) the
hind-intestine presented significant differences in diversity relative to the fore- or midintestine and
(2) faba beans significantly increased the diversity of intestinal microbiota, changed the intestinal
microbiota structure (Fusobacteria was reduced from 64.26% to 18.24%, while Proteobacteria was
significantly increased from 17.75% to 51.99%), and decreased the metabolism of energy, cofactors
and vitamins in grass carp. Furthermore, at the genus and species levels, Acinetobacter accounted for
15.09% of the microbiota, and Acinetobacter johnsonii and Acinetobacter radioresistens constituted 3.41%
and 2.99%, respectively, which indicated that Acinetobacter of the family Moraxellaceae contributed to
changes in the intestinal microbiota structure and could be used as a potential biomarker. These results
may provide clues at the intestinal microbiota level to understanding the mechanism underlying the
crispiness of grass carp fed faba beans.
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1. Introduction

An accidental discovery was made in the early 1970s in Dongsheng Town, Guangdong Province,
China, that feeding crisp grass carp (Ctenopharyngodon idellus C.et V) that had reached a certain level
of maturity faba beans led to carp that exhibited more hardness and crispiness in its muscles than
ordinary grass carp, and this diet has since become popular. The crisp mechanism of grass carp may be
due to a certain factor in faba beans that activates the TGF-β/Smads signaling pathway to regulate type
I collagen in muscles, which is the main type of collagen and is closely related to changes in muscle
properties [1–3]. Furthermore, a proteomic profile demonstrated that muscle fiber hyperplasia was
closely related to a protein-protein network of 12 muscle component proteins, and the abundance of
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the fatty acid degradation and calcium signaling pathways was reduced. In addition, the pentose
phosphate pathway-induced metabolism of grass carp was downgraded, which led to hemolysis after
grass carp were fed only whole faba beans [4]. In addition, many studies also focused on various
associated subjects, such as the muscle nutrient composition and microstructure, growth performance,
blood physiological and biochemical characteristics involved in the crisp process [3,5–7]. These studies
helped reveal the mechanism of muscle crispiness in grass carp.

The intestinal microbiota participates in many important physiological processes of the host,
such as growth, digestion, mucosal immunity system development, and protection against disease,
and has integrated and coevolved with the host [8–10]. There are many reports on the intestinal
microbiota of grass carp from the perspectives of the composition and diversity of the bacterial
community [5,11–13]. Other studies have focused on responses of the microbiota to diet or starvation or
its effect on metabolism, and different intestinal segments have different microbiota that play different
roles [14–17]. However, only a few studies have focused on the intestinal microbiota of crisp grass
carp [18]. The intestinal microbiota and the specific bacteria that play a role in the crispiness of grass
carp fed faba beans remain unclear.

In this study, we set up a feeding trial for grass carp in which faba beans were used for the treatment
group and formula feed was used for the control group, and we investigated the corresponding intestinal
microbiota by using Illumina-based high-throughput 16S sequencing. The microbial profiles of the
fore-, mid- and hind-intestine segments in both groups were compared, and different microbiota were
analyzed to explore the causative mechanism of the potential crispiness of grass carp at the intestinal
microbiota level.

2. Materials and Methods

2.1. Fish and Sample Collection

A total of 50 grass carp with an initial mean weight of (546.3 ± 32.04 g) were randomly divided
into two groups (treatment and control group) and cultured in two ponds (6 × 2 × 1.2 m). The control
(C) group was fed a formulated diet (Tongwei, China), and the treatment (T) group was fed only
faba beans. Fish were fed twice daily at 8:30 and 17:00 for 90 days, and the feed rate was adjusted
each month to ensure that they consumed an amount equivalent to approximately 1% of their body
weight per day. Six grass carp were randomly collected from each group and the average weights
were approximately 1.3 kg for the C group and 0.8 kg for the T group. The entire intestinal tracts were
obtained, and the intestinal microbial samples from the fore-, mid- and hind-intestine segments (F, M
and H, respectively) were collected by careful scraping with a sterile spatula 2.0 mL cryotube. Each
sample was immediately frozen in liquid nitrogen and then transferred to a −80 ◦C refrigerator until
DNA extraction. All animal-involving experiments of this study were approved by the Animal Care
and Use Committee of South China Agricultural University (establishment date: 25 March 2014) with
the permission No. 20190136 and all efforts were made to minimize suffering.

2.2. DNA Extraction, PCR Amplification and Illumina HiSeq 2500 Sequencing

Microbial DNA was extracted from these samples by using the E.Z.N.A. stool DNA Kit
(Omega Biotek, Georgia, USA) according to the manufacturer’s protocols. The 16S rDNA V3-V4
region of the Eukaryotic ribosomal RNA gene was amplified by PCR using the primers 341F:
CCTACGGGNGGCWGCAG and 806R: GGACTACHVGGGTATCTAAT (where the barcode is an
eight-base sequence unique to each sample). PCR assays were performed at 95 ◦C for 2 min; followed
by 27 cycles at 98 ◦C for 10 s, 62 ◦C for 30 s, and 68 ◦C for 30 s; and a final extension at 68 ◦C for 10 min.

Amplicons were extracted from 2% agarose gels, purified using the AxyPrep DNA Gel Extraction
Kit (Axygen Biosciences, California, USA) according to the manufacturer’s instructions and quantified
using QuantiFluor-ST (Promega, Wisconsin, USA). Purified amplicons were pooled in equimolar
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amounts, and paired-end sequences (2 × 250) were obtained with an Illumina HiSeq 2500 system
(Illumina, California, USA) at Gene Denovo Biological Technology Co. Ltd. (Guangzhou, China).

2.3. Quality Control and Read Assembly

Raw reads were filtered to obtain high-quality clean reads, which were merged as raw tags using
FLASH [19] (v 1.2.11), with a minimum overlap of 10 bp and mismatch error rates of 2%. Then, raw tags
were filtered by the QIIME (V1.9.1) pipeline under specific filtering conditions to obtain high-quality
clean tags [20,21]. Clean tags were searched against the reference database to perform reference-based
chimera checking. All chimeric tags were removed, and effective tags were finally obtained for further
analysis. Raw read data have been submitted to the NCBI Sequence Read Archive (SRA) under the
accession number PRJNA563528.

2.4. OTU Cluster and Taxonomy Classification

The effective tags were clustered into operational taxonomic units (OTUs) of≥ 97% similarity
using the UPARSE pipeline [22]. The tag sequence with the highest abundance was selected as the
representative sequence within each cluster, and a Venn analysis was performed in R to identify unique
and common OTUs.

The representative sequences were classified into organisms by a naive Bayesian model using
an the Ribosomal Database Project classifier (Version 2.2) based on the SILVA (v128) database [23]
(https://www.arb-silva.de/).

2.5. Diversity Analysis and Functional Prediction

The Chao1, Simpson and other alpha diversity indexes were calculated in QIIME (V1.9.1) as
mentioned above. An OTU rarefaction curve and rank abundance curves were plotted in QIIME.
Statistics of the alpha index comparison between groups were calculated by Welch’s t-test and the
Wilcoxon rank test in R. The alpha index comparison among groups was computed by Tukey’s HSD
test and the Kruskal-Wallis H test in R (version 3.5.1).

Nonmetric multidimensional scaling (NMDS) of Bray–Curtis dissimilarity index was calculated
and plotted in R. An analysis of similarities (ANOSIM) based on the Bray-Curtis dissimilarity index
was performed to determine significant differences in the microbial community. R values in ANOSIM
were used to detect the overlap in the community as reported by Buttigieg and Ramette (R > 0.75, well
separated; 0.50 < R≤ 0.75, separated but overlapped; 0.25 < R≤ 0.50, separated but strongly overlapped;
and 0.25 ≤ R, barely separated) [24]. The p value was used to indicate significant differences between
the two groups (* p < 0.05 and ** p < 0.01).

Differential species analyses between the C and T groups were compared and identified using
Welch’s t-test in R. Furthermore, to analyze the functions of the intestinal microbiota communities in
the C and T groups, the functional prediction of the OTUs was inferred using Tax4Fun (v1.0) [25]. A
related analysis was carried out using the online platform of Gene Denovo Biological Technology Co.
Ltd. (Guangzhou, China) (http://www.omicsmart.com/).

3. Results

3.1. Statistics of Illumina Sequencing Data and OTUs

A total of approximately 4.4 M million raw reads of bacterial 16S rDNA were obtained by Illumina
sequencing. After data quality filter processing, approximately 4.2 M effective reads/tags were obtained.
In detail, the total numbers of OTUs were 1290, 1146, 964 for the TF, TM, and TH treatments, respectively,
and 572, 618, 482 for the CF, CM, and CH treatments, respectively. A summary of the OTUs and tags of
all samples is listed in Table S1.

The differences in OTUs between different samples or groups were illustrated using Venn diagrams,
which showed that the total number of OTUs was 1519 for T and 609 for C (Figure S1C and Table S1). In
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addition, 246 OTUs overlapped for the FI, MI, and HI OTUs in the treatment and control group (Figure
S1D). Compared with the C group, the T group had more abundant intestinal microbes, suggesting that
more intestinal microbes were present to digest, absorb and manage faba beans. Moreover, the number
of OTUs from the hind-intestine was significantly less than that from the fore- and mid-intestine
for the T and C groups (Figure S1A,B and Table S1), thereby indicating that the abundance of the
microbial population in the hind-intestine was significantly decreased compared with that of the fore-
and mid-intestine areas.

3.2. Microbiota Structure

To visualize the variation in species abundance of different samples at different taxonomic levels,
taxonomy stack distributions were carried out to statistically analyze the species composition of each
sample at each level of classification. In this classification, the top 10 species with an abundance of 2%
in the sample are shown, and the rest were unified to the other category. The tags that could not be
annotated to a specific taxonomy were classified to the unclassified category (Figure 1 and Table S2).
A summary of the profiling for each sample at all taxonomic levels is listed in Table S3.
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most abundant taxonomic classifications are listed.

For the taxonomy stack distributions at the phylum level, the bacterial taxonomic compositions
of the CF, CM and CH treatments in the control group showed a relatively high average abundance
of Fusobacteria (72.5 ± 6.9%, 74.9 ± 7.8% and 46.4 ± 21%), followed by Proteobacteria (20.7 ± 8.2%,
18.9 ± 3.9%, and 13.6 ± 5.7%), Bacteroidetes (1.6 ± 2%, 3.4 ± 6.9%, and 19.5 ± 14.6%) and Firmicutes
(4.2 ± 2.9%, 2.8 ± 1.2%, and 10.4 ± 9.3%), whereas the composition in the TF, TM and TH treatments in
the treatment group showed an almost complete relative dominance of Proteobacteria (58.4 ± 12.9%,
55 ± 9.6%, and 42.5 ± 25.4%), followed by Fusobacteria (16.9 ± 10.1%, 20.4 ± 8.8%, and 17.4 ± 12.5%),
Bacteroidetes (5.3 ± 3%, 5.9 ± 3.8%, and 21.6 ± 17.3%) and Firmicutes (9 ± 5.8%, 7 ± 3.4%, and
4.9 ± 3.4%). Similar ratios of the bacterial taxonomic composition were observed at the class and
order levels, except for the other category, in which the proportion increased in the treatment group.
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At the family level, the ratios of the other and unclassified categories rapidly increased and even
covered two-thirds in the control group. At the species level, the CF, CM and CH of the control group
were almost covered by the unclassified category, while the TF, TM and TH of the treatment group
showed distributions of approximately 3% for Acinetobacter johnsonii, Acinetobacter radioresistens and
the other category.

3.3. Diversity Differences and Potential Functions

To analyze the microbial community diversity within the sample, alpha diversity (a single sample
diversity analysis) was used to reflect the diversity of microbial communities. The four indexes of alpha
diversity analysis, i.e., the Chao1, observed species, Shannon, and Simpson indexes, were calculated
for different samples using the Wilcoxon rank sum test. Significant differences are listed in Figure 2.
A comparison of the T to C group showed significant differences (p < 0.05) for the above four indexes
(Figure 2A). However, the alpha diversity differences within the group were not significant except for
the observed species index for TF/TH, CF/CH and CM/CH (p < 0.05) and Shannon index for TF/TH
(p < 0.05) (Figure 2B). These results indicated that there were significant diversity differences between
groups but few differences within groups and that the differences were primarily associated with the
differences between the hind-intestine and the fore- or mid-intestine.
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Figure 2. Differences in alpha diversity between groups (A) and within groups (B). The four indexes
of alpha diversity analysis, i.e., the Chao1, observed species, Shannon, and Simpson indexes, were
calculated for different samples, and the groups of datawere compared with the Wilcoxon rank sum test.

To compare the diversity between different ecosystems and indicate the response of biological
species to the environment, NMDS was carried out to analyze the beta diversity based on the
Bray–Curtis dissimilarity index of samples. As shown in Figure 3, the NMDS showed that the T and C
groups could be closely clustered together, indicating that the similarity among the groups was higher
but the difference between the groups was obvious. Furthermore, to detect significant differences in the
community of different groups, a pairwise ANOSIM was performed (Table 1), and the results indicated
that the groups were well separated for T/C (ANOSIM−R = 0.87, p = 0.001), TF/CF (ANOSIM−R = 1.00,
p = 0.002) and TM/CM (ANOSIM−R = 0.98, p = 0.005), separated but slightly overlapped for TH/CH
(ANOSIM-R = 0.62, p = 0.003), and separated but strongly overlapped for CF/CH (ANOSIM−R = 0.30,
p = 0.018), CM/CH (ANOSIM−R = 0.28, p = 0.017) and TF/TH (ANOSIM−R = 0.34, p = 0.049). These
results indicated that there were significant differences in the community between groups and that
the microbial community of the hind-intestine was significantly separated but strongly overlapped
compared to the microbial community of the fore- or mid-intestine.
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Table 1. Pairwise ANOSIM analysis of the different groups.

Group Distance R p Value Significant#

TF/TM Bray-Curtis −0.12 0.854
TF/TH Bray-Curtis 0.34 0.049 *
TM/TH Bray-Curtis 0.25 0.073
CF/CM Bray-Curtis −0.04 0.731
CF/CH Bray-Curtis 0.30 0.018 *
CM/CH Bray-Curtis 0.28 0.017 *
TF/CF Bray-Curtis 1.00 0.002 **

TM/CM Bray-Curtis 0.98 0.005 **
TH/CH Bray-Curtis 0.62 0.003 **

T/C Bray-Curtis 0.87 0.001 **

#: * stands for p < 0.05, and ** stands for p < 0.01

Furthermore, the functional profiling of the intestinal microbial communities from all samples
was predicted from the 16S rRNA gene amplicon data using Tax4Fun (v1.0). As shown in Figure 4,
significantly different results indicated that among the five KEGG pathways (Level 1) of metabolism,
environmental information processing, genetic information processing, cellular processes, and human
diseases, the main changes in the intestinal microbiota gene functions were focused on metabolism,
which contained four of the top six differences in the abundance of KEGG pathways (i.e., carbohydrate
metabolism, amino acid metabolism, energy metabolism, and metabolism of cofactors and vitamins)
(Level 2). Because higher OTU numbers were observed in the T group, the results showed that “signal
transduction”, “energy metabolism” and “metabolism of cofactors and vitamins” were significantly
decreased in the T group compared to the C group, while “carbohydrate metabolism”, “amino acid
metabolism” and “membrane transport” were increased, which suggested that metabolic changes
occurred in the intestinal microbiota of grass carp caused by the feeding of broad beans.
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The following results were obtained based on the various indicators of the alpha and beta diversity
analysis and combined functional prediction: (1) the hind-intestinal microbiota was less diverse than
the fore- and mid-intestinal microbiota, and a significant diversity difference was observed between
the hind-intestine and the fore- or mid-intestine; and (2) the intestinal microbiota in the corresponding
parts between the T and C groups were significantly different, which indicates that the faba bean diet
likely changed the intestinal microbiota and their corresponding metabolism.

3.4. Differences at Different Taxonomic Levels

After categorizing the significant changes in microbiota, the five most abundant terms were
obtained at different taxonomic levels. As listed in Figure 5, compared to the C group, the T group
showed that at the phylum level, Fusobacteria was reduced significantly from 64.26% to 18.24%
and Proteobacteria increased significantly from 17.75% to 51.99%. At the class and order levels,
similar results were obtained for Fusobacteria and Proteobacteria (including γ-proteobacteria and
α-proteobacteria) at the class level and for Fusobacteriales and Pseudomonadales at the order level.
Because Fusobacteriales can only be classified as “unclassified” below the order level, levels below
family could not be annotated and had no relevant information in this study. At the family level,
Moraxellaceae and Caulobacteraceae showed a sharp rise; at the genus level, Acinetobacter and
Brevundimonas increased significantly; and at the species level, Acinetobacter johnsonii, Acinetobacter
radioresistens and Rhizobium radiobacter significantly increased. Detailed data are listed in Table S4.
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Considering that α-proteobacteria accounted for a relatively small proportion (10.67%),
γ-proteobacteria (36.39%) was the main dominant microbiota of the T group. Additionally, according
to the taxonomic and expression profiling data of the species, the schematic diagram (Figure 6)
of the Proteobacteria species taxonomic tree was simplified for the main significant genus/species
differences in the intestinal microbiota between the T and C groups. The corresponding ratios were as
follows: Proteobacteria (17.75%), γ-Proteobacteria (16.75%), Pseudomonas (0.84%), Moraxella (0.76%),
Acinetobacter (0.72%), Acinetobacter johnsonii (0.18%) and Acinetobacter radioresistens(0.15%) for the C
group; and Proteobacteria (51.99%), γ-Proteobacteria (36.39%), Pseudomonas (17.53%), Moraxellaceae
(16.05%), Acinetobacter (15.09%), Acinetobacter johnsonii (3.41%) and Acinetobacter radioresistens (2.99%)
for the T group. At the same time, in γ-Proteobacteria, Aeromonas had no significant difference
between the T and C groups (14.92% and 11.51%), although Aeromonas was also the main dominant
bacterial genus. Additionally, in Proteobacteria, the secondary corresponding ratios of change in the
Alphaproteobacteria and below level were as follows: Alphaproteobacteria (0.52%), Caulobacteraceae
(0.18%), Brevundimonas (0.18%) for the C group; and Alphaproteobacteria (10.67%), Caulobacteraceae
(4.55%), Brevundimonas (4.36%) for the T group.

The results indicated that a faba bean diet changed the intestinal microbiota structure, and the
main difference was that Fusobacteria was reduced. Meanwhile, Proteobacteria increased significantly,
which led to significant decreases in “energy metabolism” and “metabolism of cofactors and vitamins”
in the T group. Furthermore, at the genus level, Acinetobacter of Moraxellaceae mainly played a major
role in the changes in the intestinal microbiota structure with the feeding of faba beans to grass carp.
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4. Discussion

The crispiness of grass carp is an extremely complex physiological and biochemical process
that eventually leads to excessive crispiness, which directly leads to death due to blood circulation
disorders. The degree of crispiness and physical changes are consistent with the toxicological dose (faba
bean)-effect response [26]. Studies have shown that faba beans significantly inhibit growth, decrease
the ratio of liver to body and gradually lead to excessive accumulation of fat in the hepatopancreas
and abdominal cavity of grass carp [27,28]. Additionally, faba beans may increase the abundance of
gram-negative and flagellated bacteria and then result in intestinal inflammation in fish, including
grass carp, and these changes share similar features with inflammatory bowel disease (IBD) [18].

The composition of fish intestinal microbiota is susceptible to diet, which reflects and plays
an important role in the health of the fish intestine [29]. The dominant bacterial species largely
determine the function of the intestinal microbiota community of a fish. Thus, understanding the
species composition at different taxonomic levels can effectively interpret the formation, changes
and ecological impacts of the community structure. Meanwhile, by interacting with the intestinal
microbiota, the metabolism in the intestine or host can change and more effectively adapt to changes
stemming from new nutrients/environmental conditions. A previous study showed that intestinal
microbiota may shape intestinal immune responses in healthy and diseased states [30].

Many studies have described that Proteobacteria blooms in the intestine reflect an unstable
microbial community structure or a state of host disease. Moreover, the natural microbial community of
the intestines normally contains only a minor proportion of this phylum and is dominated by Firmicutes
or Bacteroidetes [31,32]. In contrast, Fusobacteria, a distinct and understudied phylum of bacteria,
is divided into two families: Leptotrichiaceae and Fusobacteriaceae. These less-studied bacteria
are gram-negative, non-spore-forming, and usually nonmotile anaerobes with unique metabolic
capabilities [33]. In this study, a comparison of the C and T groups showed that Fusobacteria was
reduced from 64.26% to 18.24% while Proteobacteria increased from 17.75% to 51.99%, thus suggesting
that faba beans resulted in an imbalance and changes to the intestinal microbiota in grass carp.

At the family and lower levels, since members of Fusobacteria are unclassified, the dominant
species and/or changes were concentrated in the genus Acinetobacter, which belongs to the phylum
Proteobacteria, class Gammaproteobacteria, order Pseudomonadales, and family Moraxellaceae.
Acinetobacter contains gram-negative, nonfermentative, nonmotile, oxidase-negative, catalase-positive,
and strictly aerobic bacteria with a G + C content of 39–47%, and its species are widely distributed in
nature, can survive on various surfaces (both moist and dry) and are spread by various means [34–37].



Microorganisms 2019, 7, 465 10 of 13

As significant opportunistic pathogens, they are generally considered to have low virulence and
cause a decrease in body resistance and immune function after infection even though they have an
astonishing ability to acquire antibiotic resistance genes [38,39]. In addition, these bacteria contribute
to the mineralization of aromatic compounds [40,41]. In this study, Acinetobacter accounted for 15.09%
and Acinetobacter johnsonii and Acinetobacter radioresistens accounted for 3.41% and 2.99%, respectively.
This result showed that Acinetobacter played an important role in the intestinal microbiota by combining
with gram-negative and flagellated bacteria introduced by faba beans, which resulted in intestinal
inflammation [18,42]. Thus, Acinetobacter might lead to intestinal inflammation and furthermore
become a potential cause of crispiness in grass carp. Therefore, Acinetobacter can also be used as
a primary indicator/biomarker for detecting crispiness in grass carp. However, as a fish pathogen,
Acinetobacter has been rarely reported. Why does Acinetobacter but not other Pseudomonas genera,
such as Aeromonas, dominate the intestinal microbiota of grass carp after faba bean feeding? Is it
related to gram-negative bacteria that do not ferment sugars and cannot fully utilize and absorb
intestinal decomposition products? To answer these questions, further experiments, such as multiomic
combinations, are required.

In addition, because the intestine is the main site for nutrient absorption, when the bacteria in
the intestine are significantly increased, they often cause gastrointestinal symptoms, such as bloating,
abdominal pain and diarrhea, affect the absorption of carbohydrates and fats, especially the absorption
of fat-soluble vitamins, and worsen intestinal inflammation [43]. Moreover, a high amount of bacteria
leads to the competitive absorption of nutrients from the host [44,45]. This study indicates that faba
beans significantly increased the intestinal bacteria and decreased the energy metabolism (energy
metabolism) and cofactor and vitamin metabolism (Metabolism of Cofactors and Vitamins) in grass
carp, which also aggravated the severity of the symptoms. The distribution of microbiota varies in
different intestinal segments, and the results indicated that hind-intestinal microbiota were significantly
different from the fore- and mid-intestinal microbiota, which is consistent with previous studies [14,15].

In conclusion, 16S sequencing and comparative analyses using faba beans and formula feed were
carried out on the intestinal microbiota in different intestine segments of grass carp. Our analysis
showed that there were significant differences in diversity between the hind-intestine and the fore-
or mid-intestine, and that faba beans shifted the intestinal microbial composition significantly, with
the proportion of Fusobacteria decreased, the proportion of Acinetobacter increased, and the overall
diversity increased.
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microbial OTUs of the treatment and control group. D) Venn diagram showing the overlap in the fore-, mid-
and hind-intestine OTUs in the treatment and control groups (TF, TM, TH, CF, CM, CH). Table S1: Statistics of
OTUs and tags of all samples. Table S3: Summary of profiling for each sample at all taxonomic levels. Table S4:
Difference analysis for different taxonomic levels.
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