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The tricarboxylic acid (TCA) cycle and pyruvate metabolism of cyanobacteria are unique and important from the perspectives of
biology and biotechnology research. Rre37, a response regulator induced by nitrogen depletion, activates gene expression related
to sugar catabolism. Our previous microarray analysis has suggested that Rre37 controls the transcription of genes involved in
sugar catabolism, pyruvate metabolism, and the TCA cycle. In this study, quantitative real-time PCR was used to measure the
transcript levels of 12 TCA cycle genes and 13 pyruvate metabolism genes. The transcripts of 6 genes (acnB, icd, ppc, pyk1,me, and
pta) increased after 4 h of nitrogen depletion in the wild-type GT strain but the induction was abolished by rre37 overexpression.
The repression of gene expression of fumC, ddh, and ackA caused by nitrogen depletion was abolished by rre37 overexpression.
The expression of me was differently affected by rre37 overexpression, compared to the other 24 genes. These results indicate that
Rre37 differently controls the genes of the TCA cycle and pyruvate metabolism, implying the key reaction of the primary in this
unicellular cyanobacterium.

1. Introduction

The tricarboxylic acid (TCA) cycle and pyruvate metabolism
are conserved in almost all organisms and are indispens-
able for cell survival and proliferation. Cyanobacteria were
thought to have an incomplete TCA cycle because they lack
the 2-oxoglutarate (2-OG) dehydrogenase enzyme [1], but
Zhang and Bryant detected a closed and complete TCA
cycle in the unicellular cyanobacterium Synechococcus sp.
PCC 7002 [2]. In this cyanobacterium, 2-OG is converted to
succinic semialdehyde, a step catalyzed by a 2-OGdecarboxy-
lase, and succinic semialdehyde is converted to succinate by
a succinic semialdehyde dehydrogenase [2]. Genes encoding
these two enzymes are conserved among cyanobacteria,
except inmarine species, indicating that the closed TCA cycle
is widely maintained in cyanobacteria.

2-OG is a known signaling metabolite in cyanobacteria;
its level increases by nitrogen depletion [3]. 2-OG directly
interacts with a transcription factor NtcA, promoting its

interaction with promoter DNAs and transcription activa-
tion of nitrogen-related genes by NtcA [4, 5]. 2-OG also
binds to PII protein, which is a carbon/nitrogen balance
sensor, and transduces nitrogen starvation signals [6, 7].
Metabolomic analyses have revealed that, in addition to
2-OG, other organic acids in the TCA cycle, including
succinate, malate, and fumarate, are increased by nitrogen
depletion in the unicellular cyanobacterium Synechocystis
sp. PCC 6803 (hereafter referred to as Synechocystis 6803)
and halophilic cyanobacterium Arthrospira platensis [8–
10]. Amino acids derived from pyruvate metabolism and
the TCA cycle metabolites, such as alanine, phenylalanine,
tyrosine, serine, glycine, valine, and leucine, increase by
nitrogen depletion, whereas aspartate, arginine, glutamate,
and glutamine decrease [10]. Like glycogen and polyhydrox-
ybutyrate, the pool of organic acids in the TCA cycle may
function as carbon storage during nitrogen starvation [10].
The redistribution of carbon sources to various metabolites
other than glycogen has been shown in the freshwater
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blooming cyanobacterium Microcystis aeruginosa PCC 7806
[11].

The expression of the gene encoding a response regulator
Rre37 (sll1330) is induced by nitrogen depletion [12]. In the
nitrogen-fixing cyanobacterium, Anabaena sp. PCC 7120,
the expression of an ortholog of Rre37, named NrrA, also
increases during nitrogen starvation and NtcA binds to the
promoter region of nrrA [13, 14]. NrrA regulates glycogen
catabolism by controlling the transcription of genes encod-
ing the glycogen catabolism-related enzymes, glycolytic en-
zymes, and a group 2 sigma factor SigE [15]. Synechocystis
6803 Rre37 affects the expression of genes encoding enzymes
involved in glycolysis and glycogen catabolism [16, 17].
Synechocystis 6803 NtcA binds to the promoter region of
rre37 in a 2-OG dependent manner in vitro [17]. Rre37
binds to the promoter regions of genes encoding enzymes
involved in glycogen catabolism, glycolysis, and amino acid
metabolism [18, 19]. Metabolomic analysis has shown that
rre37 knockout alters the levels of glycogen, sugar phos-
phates, and organic acids in the TCA cycle [20]. Recent
genetic engineering studies using the rre37-overexpressing
strain ROX370 showed that rre37 overexpression decreased
the levels of glycogen, sugar phosphates, and organic acids
in the TCA cycle but increased glycogen catabolism-related
enzymes, glycolytic enzymes, and polyhydroxybutyrates [19].
Combining transcriptomic and metabolomic analyses using
ROX370 suggests that a possible new cycle, a hybrid of the
TCA and ornithine cycle, may be induced during nitrogen
starvation [19]. This hybrid cycle enables Synechocystis cells
to assimilate two molecules of ammonium ions, leading to
efficient nitrogen uptake during nitrogen starvation [19].
Thus, the integrity of the TCA cycle and pyruvatemetabolism
is important for survival during nitrogen starvation, where
Rre37 may play a pivotal role in their regulation.

In this study, we examined the expression levels of
genes related to the TCA cycle and pyruvate metabolism
by quantitative real-time PCR. We found altered levels of
transcript levels in response to the nitrogen status, mediated
by rre37 overexpression.

2. Materials and Methods

2.1. Bacterial Strains and Culture Conditions. The glucose-
tolerant (GT) strain of Synechocystis sp. PCC 6803 [21] and
ROX370 [19] were grown in modified BG-11 medium, which
consisted of BG-11

0
liquid medium [22] containing 5mM

NH
4
Cl (buffered with 20mMHepes-KOH, pH 7.8). The GT-

I strain was used in this study [23]. Liquid cultures were
bubbled with 1% (v/v) CO

2
in air and incubated at 30∘C

under continuous white light (approx. 50–70𝜇mol photons
m−2 sec−1). Growth and cell densities were measured at A

730

with a Hitachi U-3310 spectrophotometer (Hitachi High-
Tech., Tokyo, Japan).

2.2. RNA Isolation and Quantitative Real-Time PCR. Cells
were diluted to A

730
= 0.2 in 70mL of modified BG-11

medium and cultivated overnight. Nitrogen sources were
depleted from the medium by filtering the cells and suspend-
ing them in BG-11

0
medium. RNA isolation, cDNA synthesis,

and quantitative real-time PCR were performed as described
previously [10]. The primers used for quantitative real-time
PCR are listed in Table 1.

3. Results

3.1. Transcript Levels of Genes Related to the TCA Cycle in
ROX370. The transcripts of 12 genes related to the TCA cycle,
gltA (sll0401, encoding a citrate synthase), acnB (slr0665,
encoding an aconitate hydratase), icd (slr1289, encoding an
isocitrate dehydrogenase), gabD (slr0370, encoding a succinic
semialdehyde dehydrogenase), kgd (sll1981, encoding a 2-
OG decarboxylase), sucC (sll1023, encoding a succinyl-CoA
synthetase beta chain), sucD (sll1557, encoding a succinyl-
CoA synthetase alpha chain), sdhA (slr1233, encoding a suc-
cinate dehydrogenase flavoprotein subunit), sdhB (sll0823)
(encoding a succinate dehydrogenase iron-sulfur subunit),
sdhB (sll1625) (encoding a succinate dehydrogenase iron-
sulfur subunit), fumC (slr0018, encoding a fumarase), and
citH (sll0891, encoding a malate dehydrogenase), were mea-
sured using cells grown under nitrogen-replete conditions
or nitrogen-depleted conditions for 4 h. The expression
of acnB and icd increased in the GT strain after 4 h of
nitrogen depletion (Figure 1). rre37 overexpression abolished
the induction of acnB and icd expression under nitrogen-
depleted conditions (Figure 1). The expression of kgd in
ROX370 was lower than that of the GT strain under nitrogen-
replete conditions (Figure 1). The transcripts of gabD, sucC,
sucD, fumC, and citH in the GT strain decreased by nitrogen-
depleted conditions (Figures 1 and 2). A decrease in the levels
of transcripts, except fumC, was also observed in ROX370
strain after nitrogen starvation (Figure 2). The expression of
genes encoding the succinate dehydrogenase subunits, sdhA,
sdhB (sll0823), and sdhB (sll1625), was lower in ROX370 than
in the GT strain under both nitrogen-replete and nitrogen-
depleted conditions (Figure 2).

3.2. Transcript Levels of Genes Related to the Pyruvate Metab-
olism in ROX370. The transcripts of 13 genes related to the
pyruvate metabolism, ppc (sll0920, encoding a phospho-
enolpyruvate carboxylase), pps (slr0301, encoding a phospho-
enolpyruvate synthase), pyk1 (sll0587, encoding a pyruvate
kinase), pyk2 (sll1275, encoding a pyruvate kinase), me
(slr0721, encoding a malic enzyme), ddh (slr1556, encoding a
D-lactate dehydrogenase), pdhA (slr1934, encoding a subunit
of pyruvate dehydrogenase), pdhB (sll1721, encoding a sub-
unit of pyruvate dehydrogenase), pdhC (sll1841, encoding a
subunit of pyruvate dehydrogenase), pdhD (slr1096, encoding
a subunit of pyruvate dehydrogenase), pta (slr2131, encoding a
phosphoacetyltransferase), ackA (sll1299, encoding an acetate
kinase), and acs (sll0542, encoding an acetyl-CoA syn-
thetase), were measured using cells grown under nitrogen-
replete conditions or nitrogen-depleted conditions for 4 h.
The expressions of ppc, pyk1, me, and pta increased after
4 h of nitrogen depletion in the GT strain, but the increases
were abolished by rre37 overexpression (Figures 3 and 4).
In particular, rre37 overexpression affected the expression
of pyk1 and me, whose transcripts increased in the GT
strain but decreased in the ROX370 strain after nitrogen
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Table 1: Primer list for quantitative real-time PCR.
Gene name

rnpB Forward primer 5-AAAGGGTAAGGGTGCAAAGG-3

Reverse primer 5-AATTCCTCAAGCGGTTCCAC-3

gltA Forward primer 5-ATCGAGGGTGAGCCATGTG-3

Reverse primer 5-GCGAATGCCCCGGTACT-3

acnB Forward primer 5-TCACCCTCGCCCAAAAAA-3

Reverse primer 5-GTGCCGGGACGAATACCTT-3

icd Forward primer 5-CCCCGGCTCTGTGATCCT-3

Reverse primer 5-TGCCAGCCCATAAATTCCA-3

gabD Forward primer 5-TGCGCAAGTAGAACAAACCATT-3

Reverse primer 5-TGGCCGCCACAACGA-3

kgd Forward primer 5-CCATTTCCAAGGCCAAAAAC-3

Reverse primer 5-GCTTCGGCTCGGATGGT-3

sdhA Forward primer 5-GTCTGGCCCCTGATACCAAA-3

Reverse primer 5-GAACGGATGGGATGGGTTT-3

sdhB(sll0823) Forward primer 5-TCAGATCAAATGGCAACAGGAT-3

Reverse primer 5-TGGCATTACGGCAATTCTTG-3

sdhB(sll1625) Forward primer 5-TGCAGTATGCGGGTTAATGG-3

Reverse primer 5-TTCACTGCCCACATTTTCCTT-3

sucC Forward primer 5-CCCTCAAACGGTTGCAAATT-3

Reverse primer 5-GCCCGCACCTGGGATT-3

sucD Forward primer 5-GGGCGCAAAAATCAAACG-3

Reverse primer 5-AGTTGGTTGGCCACAATGGT-3

fumC Forward primer 5-GAATGTTTTGCAGGCATCACTAAA-3

Reverse primer 5-GGGCACTGCGTCCATCA-3

citH Forward primer 5-CTGAAATTGCCGCCTTACTACA-3

Reverse primer 5-AAGAGGCCGGCGCATAA-3

ppc Forward primer 5-CCACCACCACAGCCCTACTAA-3

Reverse primer 5-GTCGGAATAGCCCACCATAATTT-3

pps Forward primer 5-TCACTGACCGGGCTATTTCCT-3

Reverse primer 5-CCACCGCAAAATGGTCAAA-3

pyk1 Forward primer 5-CGTGGCCAACGCTATTTTG-3

Reverse primer 5-CGATTCCCCCGATAACATCA-3

pyk2 Forward primer 5-ATGCCGGCTCTGTGCAA-3

Reverse primer 5-GGGCGACTGGTGAGGGTAT-3

me Forward primer 5-CGGAGCCACCGATATTTGG-3

Reverse primer 5-TGCGATGTTTGCCCACAA-3

ddh Forward primer 5-AGCAAACCACCCCCATCA-3

Reverse primer 5-CAAGGTTGAGTTGGGCATCA-3

pdhA Forward primer 5-CACGAGCGGGCAACGT-3

Reverse primer 5-TGTTGAACACACTGGCTTTTTTG-3

pdhB Forward primer 5-CCGCATGCGTCACCATT-3

Reverse primer 5-GGTCGTAGCCTTCTTTTTCCAA-3

pdhC Forward primer 5-GGGCAACCCTTGGCCTAGT-3

Reverse primer 5-GCTTGGGCTTCGGCAAT-3

pdhD Forward primer 5-AAAATCCAATCTGACCTGACCAA-3

Reverse primer 5-CCCCGGATGGTATCGACTT-3

pta Forward primer 5-GACGCCCCTCCCCTGTT-3

Reverse primer 5-AAACGGGCGGAAGTTTCAT-3

ackA Forward primer 5-CCTGGTGGGCCATCGA-3

Reverse primer 5-AAAGTGGCTTCGGCATGATC-3

acs Forward primer 5-TGGCGGCGGTAAATGC-3

Reverse primer 5-CGCCGGTTTCCGTTTG-3
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Figure 1: Quantitative real-time PCR analysis of transcription in GT and ROX370. Relative transcript levels of 6 genes involved in the TCA
cycle pathway (gltA, acnB, icd, gabD, kdg, and sucC) are described. Data represent the mean ± SD from four independent experiments.
Transcript levels were calibrated relative to that of corresponding levels in GT under nitrogen-replete conditions (set at 100%). Asterisks
indicate statistically significant differences between GT and ROX370 (Student’s 𝑡-test; ∗𝑃 < 0.05, ∗∗𝑃 < 0.005).
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Figure 2: Quantitative real-time PCR analysis of transcription in GT and ROX370. Relative transcript levels of 6 genes involved in the TCA
cycle pathway (sucD, sdhA, sdhB (sll0823), sdhB (sll1625), fumC, and citH) are described. Data represent themean± SD from four independent
experiments. Transcript levels were calibrated relative to that of corresponding levels in GT under nitrogen-replete conditions (set at 100%).
Asterisks indicate statistically significant differences between GT and ROX370 (Student’s 𝑡-test; ∗𝑃 < 0.05, ∗∗𝑃 < 0.005).
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Figure 3: Quantitative real-time PCR analysis of transcription in GT and ROX370. Relative transcript levels of 6 genes involved in pyruvate
metabolism (ppc, pps, pyk1, pyk2,me, and ddh) are shown.Data represent themean± SD from four independent experiments. Transcript levels
were calibrated relative to that of corresponding levels in GT under nitrogen-replete conditions (set at 100%). Asterisks indicate statistically
significant differences between GT and ROX370 (Student’s 𝑡-test; ∗𝑃 < 0.05, ∗∗𝑃 < 0.005).
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Figure 4: Quantitative real-time PCR analysis of transcription in GT and ROX370. Relative transcript levels of 7 genes involved in pyruvate
metabolism (pdhA, pdhB, pdhC, pdhC, pta, ackA, and acs) are shown. Data represent the mean ± SD from four independent experiments.
Transcript levels were calibrated relative to that of corresponding levels in GT under nitrogen-replete conditions (set at 100%). Asterisks
indicate statistically significant differences between GT and ROX370 (Student’s 𝑡-test; ∗𝑃 < 0.05, ∗∗𝑃 < 0.005).
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Figure 5: The metabolic map around the TCA and pyruvate metabolism in Synechocystis 6803.

depletion (Figure 3). The transcript levels of pps, pyk2, ddh,
pdhABCD, ackA, and acs decreased in the GT strain by
nitrogen depletion; the levels of these transcripts, except for
ddh and ackA, also decreased in the ROX370 strain (Figures 3
and 4).

4. Discussion

Quantitative real-time PCR analysis demonstrated that the
levels of transcripts of 6 genes related to the TCA cycle
and pyruvate metabolism increased under conditions of
nitrogen depletion in the wild-type strain, but these increases
were abolished by rre37 overexpression (Figures 1–4). The
results showed that the transcript levels of the genes whose
expression is induced by nitrogen depletion particularly were
altered by rre37 overexpression (Figures 1, 3, and 4). These
results indicate that the proper amount of Rre37 proteins
is important in the transcriptional activation of these genes
during nitrogen starvation, consistent with a previous study
[17]. Among the 25 genes tested in this study, the transcription
of icd was activated by NtcA [24], and the other 24 genes
did not seem to be regulated by NtcA [25]. A previous study
suggested that transcription of me is positively regulated by
Rre37, although further biochemical analysis is required to
validate this [19]. In addition to in vitro analysis, chromatin
immunoprecipitation (ChIP) showed that, in Anabaena sp.
PCC 7120, 55 genes involved in primary metabolism, includ-
ing pps, are potentially regulated by NtcA [26]. Using genetic
analyses, we demonstrated that Rre37 is involved in the
transcriptional regulation of the genes related to the TCA
cycle and pyruvate metabolism. Future studies with ChIP
analyses may uncover whether Rre37 regulates genes in the
TCA cycle and pyruvate metabolism directly or indirectly.

The expression of rre37 is affected by environmental con-
ditions and geneticmodifications. SigE is a global regulator of
sugar catabolism activation [27, 28], and sigE overexpression
increases polyhydroxybutyrate and hydrogen production [29,
30]. Rre37 protein levels are upregulated by sigE knockout
[17]. Another study has shown that knockout of a gene
encoding the transcription factor SyAbrB2 decreases the
transcript levels of sigE, gnd (encoding 6-phosphogluconate
dehydrogenase), pyk1, pyk2, and icd [31], implying that
Rre37 levels may be affected by SyabrB2 knockout. Thus,
several transcriptional regulators, including NtcA, SigE, and
SyAbrB2, are involved in the regulation of rre37 transcription
either directly or indirectly. Imamura et al. demonstrated that
sigma factors are differently associated with the promoters
of nitrogen-related genes in response to growth phase and
external nutrient conditions [32]. The role of PipX, a small
protein binding to NtcA in a 2-OG dependent manner [33],
should be considered in rre37 transcription during nitrogen
starvation.Thus,multiple factors control Rre37 levels, leading
to the regulation of primary metabolism in Synechocystis
6803. Elucidation of the regulatory mechanism of rre37 tran-
scription is complicated but is necessary for understanding of
the primarymetabolismof Synechocystis 6803.This is because
transcript analyses have revealed thatmultiple transcriptional
regulators, including Rre37, are involved in regulating the
expression of metabolic enzymes, as also evidenced in this
study.

We analyzed ROX370, overexpressing rre37 strain, and
found that the expression of genes related to primary me-
tabolism is widely affected (Figures 1–4) [19]. We could
not distinguish between the direct and indirect effects of
rre37 overexpression in the altered transcription seen in
the ROX370 strain. Therefore, we could not elucidate the
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molecularmechanisms underlying transcriptional regulation
by Rre37. However, these results demonstrate that genetic
engineering of a transcription factor rewires Synechocystis
6803 metabolism, which is beneficial for biotechnological
applications for producing high-value products. In addition,
the expression pattern of me was different from the other
24 genes tested (Figures 1–4), and these results may indicate
the key enzyme of the primary metabolism in this cyanobac-
terium. Accumulation of organic acids in the later half of the
TCA cycle during nitrogen starvation has been demonstrated
[10], and the transcript results suggest that the malic enzyme
may play important roles in their accumulation (Figure 5).
The metabolomic technique is indispensable for the analysis
of thesemutants and provides significant information regard-
ing primary metabolism in Synechocystis 6803 as previously
described [10, 28]. This is significant, considering that both
carbon andnitrogen signalsmediated by transcription factors
are important in the regulation of primary metabolism and
carbon uptake in other cyanobacteria [34].

5. Conclusion

The TCA cycle and pyruvate metabolism are important
for interaction between carbon and nitrogen metabolism.
Detailed analysis of their regulatory mechanisms is valuable
in understanding the biology ofmetabolismof cyanobacteria,
in biotechnological applications for producing valuable prod-
ucts [35], and in environmental microbiology for avoiding
water pollution [36]. The transcript levels analysis in this
study demonstrated the differential control of the transcript
levels of the TCA and pyruvate metabolism, possibly indicat-
ing key enzymes in primary metabolism of this unicellular
cyanobacterium.
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