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Stochastic tunneling across fitness valleys can give rise
to a logarithmic long-term fitness trajectory
Yipei Guo1,2, Marija Vucelja3, Ariel Amir1*

Adaptation, where a population evolves increasing fitness in a fixed environment, is typically thought of as a
hill-climbing process on a fitness landscape. With a finite genome, such a process eventually leads the popu-
lation to a fitness peak, at which point fitness can no longer increase through individual beneficial mutations.
Instead, the ruggedness of typical landscapes due to epistasis between genes or DNA sites suggests that the
accumulation of multiple mutations (via a process known as stochastic tunneling) can allow a population to
continue increasing in fitness. However, it is not clear how such a phenomenon would affect long-term fitness
evolution. By using a spin-glass type model for the fitness function that takes into account microscopic epistasis,
we find that hopping between metastable states can mechanistically and robustly give rise to a slow, logarithmic
average fitness trajectory.
INTRODUCTION
Adaptation dynamics has often been discussed in the context of fitness-
parametrized landscapes, where the fitness of mutants or the fitness
effects of mutations are assumed to be drawn from some distribution
that could depend on the current fitness of the genotype (1–3). The re-
sulting dynamics (e.g., fitness trajectories) depends heavily on the form
of that distribution and its variation with fitness. When adopting such
an approach, one often assumes an infinite genome such that a popu-
lation never runs out of possible beneficial mutations.

Organisms have a finite genome, and in a large population
where only beneficial mutations have a chance of fixing, one would
expect the number of available beneficial mutations to deplete as cells
continuously gain mutations in a constant environment (4–6). This
occurs until the population eventually reaches a fitness peak where
there are no possible beneficial mutations left. The fitness trajectory
would therefore reach a plateau if this is the only single fitness peak
in the landscape or if this process of gaining single beneficial muta-
tions is the only way by which fitness can increase.

Interactions between loci in the genome, known as epistasis, imply
that the fitness effect of a mutation depends on the states of other loci.
In particular, even if individual mutations are deleterious, they could
be jointly beneficial. These effects have been observed experimentally
and result in the fitness landscape being rugged with many fitness
peaks (7–10). In a large population, neutral and deleterious mutations
cannot fix on their own, and these mutants would die out in a finite
time. Escape from any local fitness peak would therefore require cells
with a deleterious mutation to gain additional mutations before going
extinct. This cell with multiple mutations then has a chance of fixing
in the population if the mutations have a net beneficial effect. This
mechanism of crossing fitness valleys has been termed stochastic
tunneling and has been found to be important when the population
size is sufficiently large (11, 12). At a local fitness peak, this allows the
population to continue increasing in fitness. However, how this affects
the form of the long-term fitness trajectory has not been studied.

In this work, we investigate how stochastic tunneling affects the
average fitness trajectory of an evolving population using a spin-glass
model for the fitness function and amodel for the dynamics ofmutation
accumulation that allows a deleterious mutation to fix through fitter
double mutants. We find that while the trajectory that arises within
the hill-climbing regime depends on the distribution of interaction
strengths between mutational sites and eventually reaches a plateau,
hopping betweenmetastable states (MSs) can robustly give rise to a slow,
logarithmic fitness trajectory that is reminiscent of glassy dynamics.
RESULTS
The model
We consider a genome as a finite sequence of L sites, where each site
represents a DNA base or a gene and each site can take two possible
discrete states, ai = ±1 and i = 1,2, …L (Fig. 1A). The fitness, here
equivalent to the exponential growth rate of a cell, depends on the
states of all sites and is given by

F ¼ ∑
L

i¼1
hiai þ ∑

i<j
Jijaiaj þ Foffset ð1Þ

where the first term sums over the independent contributions to
fitness hi ∼ Nð0; s2hÞ of individual sites (Fig. 1A), the second term
takes into account microscopic epistasis in the form of pairwise inter-
actions between sites [which can be considered as the lowest-order
expansion in the interaction strength (13)], and Foffset is a constant
whose value is chosen such that the fitness of the initial strain is 1.
This is a convenient choice because we are interested in the trajectory
of the relative fitness (i.e., fitness relative to the wild-type strain).

The strengths of the pairwise interactions are captured by the
symmetric interaction matrix J (Fig. 1A) and are randomly drawn
from the following distribution

PðJijÞ ¼ rNð0; s2J Þ þ ð1� rÞdðJijÞ ð2Þ

where r is the average fraction of sites each site interacts with and
hence determines the sparsity of the matrix. This allows the presence
of frustrated interactions (Fig. 1B), which gives rise to a rugged fitness
landscape (Fig. 1, C and D).We set sh = (1 − b)D andsJ ¼ bD=

ffiffiffiffiffi
rL

p Þð ,
where b controls the relative contribution of the field and interaction
terms (for fixed r and L), while D affects the fitness effects of mutations.
In our analysis,D is chosen such that the fitness effects of fixedmutations
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are, on average, of the order of a few percent (14). Because biological
networks are typically sparse (15, 16), we assume that r is small. One
could also include an additional term in Eq. 1 representing weak fully
connected pairwise interactions, but this does not seem to affect the rel-
evant structural properties of the fitness landscape as long as stronger
sparse interactions are present (section SC.). For the rest of the paper,we
set r = 0.05, but our findings hold for other values of r as long as it is
sufficiently small (sections SC and SE).

Our model can be extended to include higher-order interaction
terms if desired and, in fact, approaches that of the commonly used
Guo et al., Sci. Adv. 2019;5 : eaav3842 31 July 2019
Kauffman’s NK model in the limit of including orders up to K (17–19),
which is the number of genes each gene interacts with, and in our
model is determined by r. However, to keep things computationally
tractable even for large r, we will not include these higher-order inter-
actions in our analysis. It is important to note that although we only
consider pairwise interactions, each site can interact with a large num-
ber of other sites. This is in contrast to theNKmodel withK = 2. Similar
spin-glass–typemodels have also been used to study other systems such
as the conformational states of proteins (20, 21) and networks of neu-
rons (22, 23). Although our model assumes that the fitness effects of
independent mutations add up, mapping to the other commonly used
multiplicative null model (24) gives similar trajectories (section SA).

Dynamics of mutation accumulation
We consider a population of fixed size N in a continuous culture such
that growth occurs in a constant environment, and hence, the fitness
landscape does not change over time. Our results also hold for batch
cultures subject to the standard dilution protocol (section SF).

We model the dynamics using the Moran process, where, at each
time step, a random cell is chosen to leave the population and a ran-
dom cell is chosen to divide. We assume that mutations occur at a
constant rate m per cell per division and that all sites mutate with equal
probability. Whenever a mutation occurs, its fitness effect s ¼ DF

F is
obtained using Eq. 1. To model the dynamics of how these mutations
accumulate in a large population within this process, we work in the
strong-selection, weak-mutation (SSWM) regime Nm ≪ 1, where
the time between successful mutations emerging is much longer than
the time taken for a successful mutation to fix. This allows us to assume
that if a mutation fixes, it immediately takes over the whole popula-
tion. The population can then be thought of as performing an adaptive
walk through a multidimensional genotypic space (Fig. 1C). Within
this model, the fixation probability of a single mutant is known to
be given by (25)

pf ðsÞ ¼
1� 1

1þs

1� 1
ð1þsÞN

ð3Þ

Taking ∣s∣≪ 1 and the large population limit, all deleterious and
neutral mutations will eventually go extinct, while pf ≈ s for s ≫ 1/N.

During the time taken for deleterious/neutral mutants to go extinct,
itmight be possible for them to gain a secondmutation such that the net
fitness effect seff of the double mutant is positive. This double mutant
then has a chance of fixing in the population. When the system is at a
local fitness maximum, this mechanism of gaining multiple mutations
is the only way the fitness can continue to increase (Fig. 1, C and D).
Hence, we investigated the stability of the local peaks to multiple muta-
tions and found that, for a small r, many of the fitness maxima in our
model are unstable to double mutations (section SC).

We therefore take into account the probability pd that a single mu-
tant with fitness effect s1 ≤ 0 gains a second mutation and eventually
fixes, which in the large N limit and for ∣s1∣≪ 1 is given by (26)

pd ¼ s1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ 4m〈seff 〉

p
2

¼
ffiffiffiffiffiffiffiffiffiffiffi
m〈seff 〉

p
; for ∣s1∣≪ 2

ffiffiffiffiffiffiffiffiffiffiffi
m〈seff 〉

p

� m〈seff 〉
s1

; for 2
ffiffiffiffiffiffiffiffiffiffiffi
m〈seff 〉

p
≪∣s1∣

8<
:

ð4Þ
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Fig. 1. The model. (A) The fitness of a cell is a function of the state of its genome
a
→
, with each site having two possible states ai = ±1. The contributions to fitness

include both the independent contributions from each of the L sites in the genome
(represented by the fields h

→

) and the pairwise interactions between sites that are
captured by the symmetric matrix J. (B) The model has the feature of frustration,
which can be seen by considering a triplet of sites. In this case, the 4th site is coupled
positively to both the 7th and 8th sites (J4,7, J4,8 > 0) and would therefore provide a
higher fitness contribution if it has the same sign as both of them. However, this
would not satisfy the negative coupling between the 7th and 8th sites (J7,8 < 0).
(C) Adaptation dynamics can be considered as a walk in a multidimensional geno-
typic space. Here, each node represents a genotypic state, with its color indicating its
fitness value. Nodes corresponding to fitness peaks are enlarged and have a red bor-
der. States connected by blue lines are 1-hamming distance apart. Black arrows trace
out an example of a possible adaptation trajectory to a fitness peak. The population
can escape from a fitness peak via stochastic tunneling if there are states 2-hamming
distance away that are higher in fitness. The red arrow shows an example of such a
possible escape path. (D) The fitness landscape consists of multiple local maxima. To
increase in fitness, a population away from a fitness maximum can gain a single ben-
eficial mutation, which fixes with probability pf (black arrows). However, once the
system is at a fitness maximum (red circles), it will need to acquire multiple mutations
(purple dashed arrows) to transit to a state with higher fitness (red arrows). The prob-
ability of a successful double mutant emerging from a deleterious single mutant is
given by pd. (E) Relative probabilities of the next successful mutation event being a
single beneficial mutation (red circles), a single deleterious mutation (blue cross), or a
double mutant (green diamonds). When the rank (number of available beneficial
mutations) is positive, fixation of beneficial mutations dominates. At a fitness peak
(rank = 0), the probability of stochastic tunneling via double mutants dominates.
Each data point represents an average over 100 states on a quenched landscape
(parameters: L = 200, N = 107, m = 10−8). (F) For a given L, the relative probability
of a double mutant being the next event at a fitness peak goes to 1 above some
L-dependent N. Each data point represents an average over 100 randomly drawn
fitness peaks, and error bars represent the interquartile range (other parameters:
Nm = 0.1, r = 0.05, k = 0.9, D = 0.05).
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where 〈seff〉 = 〈max (seff,0)〉≪ 1, with the averaging carried out over
all L possible second mutation sites. Intuitively, s1≪ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
m〈seff 〉

p
is the

limit where the first mutant is effectively neutral and has a chance of
surviving long enough (number of divisions before going extinct
nd > 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
m〈seff 〉

p
) such that the probability of a successful double mu-

tant emerging is of order 1. In the opposite limit, the first mutant is so
deleterious that it would not survive for that long. Instead, nd is at
most ∼1/ ∣s1∣ and pd is the probability that a successful double mu-
tant emerges during this period (12).

This implies that if a population is large enough such that
N≫1=

ffiffiffiffiffiffiffiffiffiffiffiffi
m〈seff 〉

p
, the probability of stochastic tunneling outweighs

the probability of the first deleterious mutant fixing on its own even
when the first mutant is nearly neutral (first limit in Eq. 4). This con-
dition can be satisfied together with the SSWM assumption (N≪ 1/m)
if m is sufficiently small m ≪ 〈seff〉. For typical seff of a few percent,
this can be easily satisfied. For the SSWM assumption to hold, a large
population already implies that the mutation rate must be very small:
m ≪ 1/N. Nevertheless, we still expect stochastic tunneling to dom-
inate the fixation of deleterious mutations at large population sizes
because for any given Nm, pf (Eq. 3) decreases with N faster than pd
(Eq. 4) for s < 0.

To take into account the number of possible deleterious mutations,
which is large for a long genome and can be larger than the number of
possible beneficial double mutants, we constructed a typical quenched
fitness landscape and, for any given state, calculated the relative prob-
abilities of the next successful mutation event falling into one of three
possible categories: (A) beneficial mutation fixing, (B) deleterious
mutation fixing on its own, and (C) stochastic tunneling via a double
mutant. Within our regime of interest, as long as the number of avail-
able beneficial mutations, which we refer to as the rank of the state, is
positive, the next successful event must be of type A (Fig. 1E). At an
MS (rank = 0), for any given L, the probability of C substantially out-
weighs that of B for sufficiently large N (Fig. 1F).

Because the fraction of first mutants in the population is always
small, the double mutants can be assumed to be competing against
the original population once it emerges. Therefore, given that a first
deleterious mutant has produced a successful double mutant, the rel-
ative probabilities of the second mutation site are proportional to their
fixation probabilities pf (seff).

Effective simulation model
Putting the above elements together, our effective simulationmodel is as
follows: From any given state a

→
, we randomly draw a mutation site,

calculate its fitness effect s, and accept this mutation with probability
pf (s). If a

→
is a fitness peak, we allow a successful double mutant to

emerge with probability pd (Eq. 4), which is obtained by considering
all possible L second mutation sites and calculating the effective selec-
tion coefficients of their corresponding double mutants seff. If a success-
ful double mutant emerges, we then draw the second mutation site
randomly with weights proportional to their fixation probabilities
pf (seff). For convenience, within our simulations, time is measured in
terms of the number of mutational attempts (because at each time step
we mutate a site and ask if the mutation successfully fixes). AlthoughN
does not explicitly enter in the simulations, we discuss in section SB the
range of N for which our assumptions and results hold.

Hill-climbing regime: Relaxation toward a fitness peak
We first consider the regime where the initial state is far from a fitness
peak and adaptation brings the population closer to a fitness peak.
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If there is no epistasis (J = 0), there is a single well-defined peak in
the fitness landscape. As mutations accumulate, the number of avail-
able beneficial mutations left, which we refer to as the rank of the sys-
tem, decreases monotonically until the system eventually reaches a
fitness plateau (Fig. 2A). In this case, the average fitness trajectory is
uniquely defined by the distribution p(h) of h and for p(h) that follows
a normal distribution, Fmax � FðtÞ∼ 1

ð1þtÞ2 (Fig. 2B) (27).
In the presence of epistasis (J > 0), a mutation at a specific site can

be beneficial or deleterious depending on the states of other sites. This
is known as sign epistasis because the sign of the fitness effect of a
mutation changes with the accumulation of other mutations and is
responsible for a rugged fitness landscape. The rank of the system is
therefore no longer guaranteed to decrease monotonically with time.
By varying the relative contribution of the field and interaction terms
(Eq. 1), we found that while the trajectory still follows a power law
(Fig. 2, A and B), the relaxation to the first encountered local fitness
maximum slows down as the relative strength of the interaction term
increases (section D). Here, as in the case when J = 0, the exact form
of the fitness trajectory is also sensitive to the chosen form of p(h) and
p(J) but eventually reaches a fitness plateau.

Hopping between MSs
With multiple local fitness maxima, the only way for fitness to con-
tinue increasing from any of these maxima is to first gain a delete-
rious mutation (that does not fix by itself) followed by one or more
beneficial ones (Fig. 1D). In our model, these fitness maxima are MSs
that are stable to single mutations but are unstable to double muta-
tions. Once the system escapes from an MS via a double mutant, it
may enter a state with rank > 0, which is now able to gain one or more
single beneficial mutations before again entering another MS, and the
process repeats itself. This dynamics results in a scenario where the
system spends a long time in MSs but transits between MSs relatively
quickly. The phenomenon that fitness goes through periods of stasis
followed by rapid jumps is known as “epochal dynamics” and has also
been observed and studied in other models, such as nearly neutral
holey fitness landscapes, where the epochal nature comes about from
degeneracies in the genotype-to-fitness mapping (28–30).

To obtain the average fitness trajectory, instead of repeating the
simulations multiple times (which would be computationally expensive
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Fig. 2. Relaxation to a fitness maximum does not generate a logarithmic
fitness trajectory. (A and B) Without epistasis (J = 0) (blue curves), the fitness
reaches the global maximum quickly and follows a power law F ¼ Fmax � Fmax�1

1þbtð Þg
with g = 2. With maximum epistasis (h = 0) (red curves), the fitness trajectory is
slower with a power law exponent g ≈ 0.9 but is still not as slow as a log trajectory
if we do not allow escape from local fitness maxima. Here and in all other figures,
time t is measured in units of number of mutational attempts (other parameters:
L = 200, initial rank = 100, r = 0.05, D = 0.003).
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because the escape events fromMSs are rare and the space of possible
trajectories is large), we constructed a Markov chain by mapping out
all the possible states that a state can go to and by calculating the
corresponding transition rates (Fig. 3A). We start the system in a ran-
domly chosenMS (by randomly drawing a genotypic state and succes-
sively flipping sites chosen from all possible beneficial mutation sites
with equal probability), assuming that the cells are already relatively
close to a local fitness peak. Because double-mutation transitions are
typicallymuch slower than single-mutation transitions (Fig. 3B), we on-
ly include double-mutation transitions out of MSs, i.e., when there are
no possible single-mutation transitions out of a state. The transition
probability of going to a state via a single mutation at site i with effect
s(i) > 0 is given by 1

L pf ðs ¼ sðiÞÞ, while the probability pij of going to a
double mutant state via mutations at sites i and j with net effect s(ij) is
given by

pij ¼ 1
L
〈pdðs1 ¼ sðiÞ; 〈seff 〉 ¼ 〈sðikÞ〉Þ〉 pf ðs ¼ sðijÞÞ

∑L
k¼1pf ðs ¼ sðikÞÞ

þ i ↔ j ð5Þ

where the first term is the probability of first gaining a mutation at i
followed by j, and vice versa for the second term. The fixation probabil-
ity of a mutant pf (s) and the probability of a deleterious single mutant
becoming a successful double mutant pd(s1, 〈seff〉) (Eq. 4) are as defined
previously, and 〈s(ik)〉 = ∑k max(s(ik),0)/L. The probability of staying in
the same state after a mutation event is then 1 −∑ipi −∑i, jpi, j. By prop-
agating the dynamics using this matrix (Methods), we find that the
average fitness increases approximately logarithmically with time
(Fig. 3C).

Because the time taken to escape from an MS is much longer than
the time spent between MSs, the dynamics is governed by the hopping
between these MSs. This is reminiscent of Bouchaud’s trap model,
where these MSs can be considered as “traps” with long trapping
times t (31), which is the average time spent in the state before tran-
siting to another state. We also find that the average trapping time 〈t〉
increases with time (Fig. 3D), supporting the concept that the system
becomes trapped in deeper and deeper states that are harder to get out
of. This is also why our model exhibits aging—the dependence on the
system properties on the time from the start of the experiment—one
of the hallmarks of glassy systems (section SE).

In the trap model, one assumes that the time taken to overcome
energy barriers follows the Arrhenius law (31). Here, although we did
not a priori assume any relationship between the trapping time t and
the fitness of a state, we find that, on average, t increases exponentially
with F (Fig. 3E). Because t ∼ t and F ∼ log(t), the logarithmic fitness
trajectory F ∼ log(t) naturally emerges.

There are two factors that determine t: (i) the number of escape
paths np (i.e., number of possible double mutations that increases F)
and (ii) the average escape rates through one of those escape paths 〈l〉.
More specifically

t ¼ 1
np〈l〉

ð6Þ

While l depends on the fitness difference between two states and is
a representative of the energy barrier between states, np governs the
strength of the entropic barrier, which refers to the low probability of a
Guo et al., Sci. Adv. 2019;5 : eaav3842 31 July 2019
favorable set of mutations occurring. We find that the exponential in-
crease in t with F is predominantly due to the exponential decrease in
np with F (Fig. 3F) (section SE). This could be related to the exponen-
tial decrease in the number of local minima with energy in typical
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Fig. 3. Logarithmic fitness trajectory emerges from hopping between MSs.
(A) The average fitness trajectory from an initial MS (green circle) was found by
constructing a Markov chain that includes all possible beneficial single mutants
that a non-MS (blue circles) can go to and all possible beneficial double mutants
that an MS (red circles) can go to. Here, we show a subset of the whole tree, with
the thickness of the arrows proportional to −1/ log(l), where l is the transition
rate. (B) The transition rates out of an MS (red histogram) are typically much
slower than those out of a non-MS (blue histogram). (C) Average fitness trajectory
increases logarithmically with time. The green points are data obtained from ana-
lyzing the Markov chain, while the black line is the fit to the logarithmic function
F = 1 + a log(1 + bt). The red, blue, and purple dotted lines are examples of
individual trajectories, with the crosses corresponding to fixation events. (D) Average
trapping time 〈t〉 scales approximately linearly with time, showing that as the pop-
ulation evolves, it enters MSs that are harder and harder to get out off. (E) The av-
erage t (blue circles) of an MS seems to increase exponentially with its fitness. The
black line is a fit to a straight line. (F) The average number of escape paths from an
MS np seems to decrease exponentially with its fitness. The black line is a fit to the
exponential function. In both (E) and (F), the averages are taken over states in a single
Markov chain, with the weight of each state proportional to the probability of
encountering that state, and the error bars represent 95% confidence intervals (pa-
rameters: L = 200, m = 10−8, b = 0.9, D = 0.05, r = 0.05).
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spin-glass energy landscapes (section SE) (32–34). Repeating the anal-
ysis with transition probabilities drawn from a uniform distribution
gives a similar fitness trajectory (section SE), suggesting that it can
be attributed to the following property of the fitness landscape: The
number of beneficial double mutants out of an MS is negatively
correlated with the fitness of the MS (section SE). This mechanism
for generating a slow fitness trajectory is also robust to the choice of
parameter distributions (section SE).
DISCUSSION
Biological systems in a constant environment exhibit quenched dis-
order, e.g., the interactions between genes are fixed and encoded in
the genome, and what we typically observe experimentally are individ-
ual trajectories on a specific fitness landscape defined by a fixed set of
parameters rather than the averaged trajectory over all possible reali-
zations of the landscape. While there have been attempts to map out
the fitness landscape for a few genes (35–37), repeating the process for
the full landscape over all possible genotypes currently seems out of
reach. In this work, we illustrate the utility of a microscopic model that
explicitly takes into account specific quenched interactions between
sites on a genome. We find that such a model captures realistic
features of the dynamics and can provide insight into long-standing
questions such as what the possible mechanisms driving long-term
evolution are.

The dynamics of adaptation depends on both the fraction of avail-
able beneficial mutations in the genome and the distribution of their
fitness effects.While it is common in othermodels tomake assumptions
about the beneficial mutation rate and the specific form for the fitness
effect distribution, including its variation with current fitness (“macro-
scopic epistasis”), these aspects of the dynamics, such as the decrease in
the beneficial mutation rate, emerge naturally from the microscopic
model presented here.

If the number of beneficial mutations is depleted over time, as it
occurs in our model, the system eventually reaches a local fitness max-
imum. In this case, although adaptation is commonly thought of as a
hill-climbing process that only involves the accumulation of beneficial
mutations, the escape from MSs via multiple mutations is crucial for
the continued increase in fitness over many generations and can ro-
bustly give rise to a logarithmic fitness trajectory.

The slow fitness trajectory that emerges from hopping between
MSs arises due to the ruggedness of the fitness landscape. This is rem-
iniscent of glassy dynamics, where the existence of multiple local
energy minima has also been the cause of slow relaxations in many
other models of glassy systems such as spin glasses, structural glasses,
electron glasses, polymers, and granular materials (38–43). However,
the exact dynamics for the fitness increase in our model is different
from that in these other scenarios and thus provides an alternative
mechanism for how slow relaxations could arise in a real system.

A logarithmic fitness trajectory has also been known to emerge on
an uncorrelated, House-of-Cards fitness landscape, where mutant
fitness values are assumed to be drawn from the same distribution
regardless of the fitness of the current state (1, 44). If this distribution
has an exponentially decaying tail, the number of available beneficial
mutations will also decrease exponentially with fitness. This has a sim-
ilar flavor to the dynamics observed in our model in that the slowness
of the fitness trajectory is governed by entropic factors. However, it
has been shown that the number of steps to a local maximum Nsteps

on an uncorrelated landscape is very short [Nsteps ∼ log(L)] (4). In
Guo et al., Sci. Adv. 2019;5 : eaav3842 31 July 2019
contrast, the fitness landscape studied here is highly correlated
(fig. S1B), and hence, both Nsteps and the number of steps between
successive MSs d increase linearly with L (section SC). The presence
of long-range correlations shows that the fitness values of successive
MSs are still highly correlated. If each genotype was allowed to
jump beyond the correlation length of the landscape by gaining many
[∼O(L)] mutations in one step, the dynamics would effectively corre-
spond to that on an uncorrelated landscape. Studies of this “long-jump”
adaptation have been carried out for the evolution of NK Boolean
networks, in which a logarithmic fitness trajectory has been observed
(44). However, here, we found that even when considering realistic
dynamics for the accumulation of single individual mutations, as long
as one takes into account the phenomenon of stochastic tunneling, a
slow, logarithmic average fitness trajectory can still arise on such a
highly correlated landscape.

Our model can potentially be extended to account for different
forms of the interaction matrix. We have so far assumed that each site
interacts with a random subset of other sites, but there might be some
other structure in the interaction network between genes that may af-
fect the dynamics. For example, genes might be connected in such a
way where beneficial mutations always change potential deleterious
mutations into beneficial ones. This could maintain or increase the
rank of the system even if it is far from an MS.

Together, our theoretical study demonstrates the utility of a micro-
scopic model in providing a mechanistic understanding of the evolu-
tionary dynamics and in allowing us to probe details of the system
that might not be accessible in a macroscopic model. Using this ap-
proach, we explored the consequences of epistasis on fitness trajec-
tories, both in the hill-climbing regime and after the population
reaches a fitness peak, and found that hopping between MSs via sto-
chastic tunneling can robustly give rise to a logarithmic trajectory.
METHODS
Obtaining average fitness trajectories
We obtained the probability distribution P

→

k of all states in the Markov
chain at time k usingP

→

k ¼ MP
→

k�1, whereMij is the probability of going
from state j to state i in one time step (i.e., after each mutation event).

The elements of this transition matrix are determined as follows:
1) From a non-MS, the transition probability pi of going to a state

via a single mutation at site i with effect s(i) > 0 is given by

pi ¼ 1
L
maxðsðiÞ; 0Þ

2) From an MS, the probability pij of going to a double mutant state
via mutations at sites i and j with net effect s(ij) is given by

pij ¼ 1
L
〈pdðs1 ¼ sðiÞ; 〈seff 〉 ¼ 〈sðikÞ〉Þ〉 pf ðs ¼ sðijÞÞ

∑L
k¼1pf ðs ¼ sðikÞÞ

þi↔j

where the first term is the probability of first gaining a mutation at i
followed by j, and vice versa for the second term, the fixation prob-
ability of a mutant pf (s) = max(s,0), 〈s(ik)〉 = ∑k max(s(ik),0)/L, and
the probability of a deleterious single mutant becoming a successful

double mutant pdðs1; 〈seff 〉Þ ¼ s1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21þ4m〈seff 〉

p
2 .
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3) The probability of staying in the same state after a mutation
event is 1 − ∑ipi − ∑i, jpi, j.

With this transition matrix, the average fitness Fk at time k can
then be found fromFk ¼ P

→

k⋅f
→

, with f
→

being the vector of fitness values
of all states.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/7/eaav3842/DC1
Section SA. Choice of null model for the combined effect of multiple independent mutations
Section SB. Range of validity for population size N
Section SC. Structural features of fitness landscapes
Section SD. Relaxation to local fitness maximum
Section SE. Hopping between MSs
Section SF. Batch culture
Fig. S1. Properties of fitness landscape as a function of L.
Fig. S2. Properties of fitness peaks as a function of L when additional weak interactions
between all sites are included.
Fig. S3. Figure showing how properties of MSs vary with fitness for r = 0.01 (black diamonds,
Foffset = −3.4), r = 0.025 (red circles, Foffset = −3.8), r = 0.05 (green triangles, Foffset = −4.2),
r = 0.075 (blue squares, Foffset = −4.4), and r = 0.1 (purple crosses, Foffset = −4.5).
Fig. S4. The number of connecting MSs ns, which is the number of MSs that the system can
transit to next from the current MS, correlates with the number of double mutant escape
paths out of a state np.
Fig. S5. Relaxation toward a single local fitness maximum slows down with increasing degree
of epistasis.
Fig. S6. Changing the distribution of fixation probabilities does not significantly change the
functional form of the fitness trajectory.
Fig. S7. Other distributions for the nonzero elements of the interaction matrix give similar form
for the fitness trajectory.
Fig. S8. Logarithmic fitness trajectories are also observed for different values of r.
Fig. S9. The decay of the two-time correlation function depends on both the time difference Dt
and the initial time of the measurement tw, implying that the system ages.
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