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Abstract: As the incidence of obesity and type 2 diabetes (T2D) is occurring at a younger age,
studying adolescent nutrient metabolism can provide insights on the development of T2D. Metabolic
challenges, including an oral glucose tolerance test (OGTT) can assess the effects of perturbations in
nutrient metabolism. Here, we present alterations in the global metabolome in response to an OGTT,
classifying the influence of obesity and insulin resistance (IR) in adolescents that arrived at the clinic
fasted and in a random-fed state. Participants were recruited as lean (n = 55, aged 8–17 years, BMI
percentile 5–85%) and overweight and obese (OVOB, n = 228, aged 8–17 years, BMI percentile ≥ 85%).
Untargeted metabolomics profiled 246 annotated metabolites in plasma at t0 and t60 min during the
OGTT. Our results suggest that obesity and IR influence the switch from fatty acid (FA) to glucose
oxidation in response to the OGTT. Obesity was associated with a blunted decline of acylcarnitines
and fatty acid oxidation intermediates. In females, metabolites from the Fasted and Random-Fed
OGTT were associated with HOMA-IR, including diacylglycerols, leucine/isoleucine, acylcarnitines,
and phosphocholines. Our results indicate that at an early age, obesity and IR may influence the
metabolome dynamics in response to a glucose challenge.

Keywords: oral glucose tolerance test; metabolomics; fatty acids; adolescents; acylcarnitines; obesity;
insulin resistance; glucose challenge

1. Introduction

As the prevalence of prediabetes and type 2 diabetes (T2D) in adolescents is in-
creasing [1], it is vital to identify metabolic dysfunction prior to disease onset to classify
individual risk and implement preventative strategies. Classically, an oral glucose tolerance
test (OGTT) diagnoses impaired glucose tolerance (IGT)/prediabetes and T2D, by measur-
ing the acute trajectory of glucose in response to ingestion a 75-g glucose solution. Profiling
the metabolome in response to an OGTT can provide a deeper phenotyping of T2D risk,
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expanding upon measuring traditional glucose levels to a profile of metabolic response
across multiple pathways. Several studies have demonstrated the widespread response
of the metabolome to an OGTT in adults, observing alterations in proteolysis, lipolysis,
ketogenesis, and glycolysis in healthy individuals in response to the challenge [2,3]. These
studies suggest an acute increase of glycolytic intermediates and rapid inhibition of lipoly-
sis [4] and proteolysis [5], as evidenced by decreases in amino acids, free fatty acids (FFA),
and acylcarnitine (AC) intermediates of beta-oxidation.

Adolescent obesity is a strong risk factor for the development of T2D, as a nationwide
study observed that severe obesity increases the incidence of T2D in early adulthood in
both males and females [6]. In fasted plasma, obesity is associated with alterations in
the metabolome, including elevations in lipids, branched chain amino acids (BCAA), and
aromatic amino acids [7–9]. In adults, the metabolome response to an OGTT was profiled
in the context of obesity, observing a delayed reduction of FFA and higher levels of amino
acids, including isoleucine and leucine, at 30 min post-OGTT in adults with obesity [10]. In
adolescents, Müllner et al. [11] identified metabolites in response to an OGTT associated
with obesity, including elevations of AC 2:0, glutamate, alanine, and pyruvate, suggesting
a mismatch between beta-oxidation and TCA-cycle activity.

Pediatricians are more likely to order non-fasting tests compared with a gold standard
fasting OGTT because of the inconvenience of fasting tests [12]. As a result, a random
plasma glucose sample and a 1-h non-fasting glucose challenge have been assessed for
the prediction of T2D, offering strong discrimination for identifying prediabetes in adoles-
cents [13]. Furthermore, evidence has suggested a tight link between post-meal glucose
levels and T2D complications [14], supporting the utility of a random-fed glucose challenge.
Although the fasted and non-fasted metabolome have established differences [15], it is
uncertain how the metabolome response to an OGTT differs in individuals arriving to
the clinic fasted and in a random-fed state. In addition, the influence of insulin resistance
(IR) on the fasted vs. random-fed metabolome response to an OGTT is unknown. At
fasting, multiple metabolic pathways are associated with IR and T2D including BCAA
metabolism [16], beta oxidation [17], and bile acids [18]. In adults arriving to the clinic
fasted, Nowak et al. observed correlations between AC response to the OGTT with a
degree of IR, as individuals with worsening IR had a blunted decline of medium-chain
ACs, products of beta-oxidation [19].

Our main objectives were to assess the metabolome response to an OGTT by (1)
comparing the response to a fasted OGTT in participants with overweight and obesity
with that in controls and (2) determining differential metabolite responses to a fasted vs.
random-fed OGTT among participants who were overweight and had obesity. Furthermore,
we sought to identify metabolite responses to an OGTT associated with insulin resistance
(as measured by HOMA-IR) in participants who were overweight and had obesity at
the Fasted and Random-Fed Visit, considering the influence of sex. Results from these
analyses identified a panel of metabolites that can be profiled by fasted or random glucose
challenges with the potential to predict longitudinal T2D risk.

2. Materials and Methods
2.1. Research Design

The cohort consisted of adolescents who were either overweight or obese (OVOB)
(BMI percentile ≥85th for sex/age [20]) and lean adolescents (BMI percentile <85th for
sex/age [20]), aged 8–17 years at time of enrollment, recruited from primary care and
pediatric specialty clinics in southeast Michigan (2015–2018). Individuals were excluded if
they had known diabetes, use of medications known to affect glucose metabolism (oral
steroids, metformin, insulin, or sulfonylureas), verbal report of pregnancy, or acute or
chronic infections. Written informed consent was obtained from the parent/guardian
for all participants and participants ≥10 years provided written assent. The study was
approved by the University of Michigan Institutional Review Board.
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Participants attended study visits at the Michigan Clinical Research Unit, where a
medical history, vital signs, anthropometrics, and laboratory evaluation were performed.
During the Fasted OGTT Challenge, OVOB (n = 228) and lean participants (n = 55) arrived
after an overnight fast for a formal OGTT (Figure 1), with fasting times ranging from
9 h and 35 min to 19 h and 21 min (Figure S1a). The OGTT dosage consisted of 1.75 g
glucose/kg body weight, with the maximum dosage of 75 g glucose (Glucola, Fisherbrand)
(Figure S1b). Blood samples were drawn at baseline (t0) and every 30 min (t30, t60, t90, and
t120 min) following the challenge. Glucose and insulin levels were profiled from blood
samples collected at t0, t30, t60, t90, and t120 min following the OGTT. The untargeted
metabolome was profiled from blood samples collected at t0 and t60 min following the
fasted OGTT. Approximately a week later, OVOB individuals (n = 228) returned for a
glucose challenge in a random fed state, where participants were not given instructions on
the timing of their last meal (50-g, Random-Fed OGTT challenge) (Figure 1), with fasting
times varying from 5 min to 14 h and 16 min (n = 166 reported last mealtimes) (Figure S1c).
Our objective was to mimic a random OGTT that is already performed in the clinic as a
screening test for gestational diabetes. The 50-g random OGTT has been previously shown
have reasonable discrimination for identifying children with prediabetes [13]. Glucose and
insulin levels were profiled from blood samples collected at t0 and t60 min following the
OGTT. The untargeted metabolome was profiled from blood samples collected at t0 and
t60 min following the Random-Fed OGTT.
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Figure 1. Study Design. Overweight and obese (OVOB) and lean participants were recruited prior to the first visit (Fasted
Visit), where an oral glucose tolerance test (OGTT) (75 g) was administered in the fasted state. The OVOB participants
returned approximately a week later for an OGTT (50 g) in a random fed state (Random-Fed Visit). Blood samples were
collected before and during the OGTT and used for glucose, insulin, and untargeted metabolomics assays. Mean age and
range of ages reported (years).

2.2. Laboratory Measurements

The Michigan Diabetes Research Center (MDRC, Ann Arbor, USA) laboratory per-
formed glucose homeostasis assays. Glucose was measured using the glucose hexokinase
method and run on a Randox rX Daytona chemistry analyzer (Randox Laboratories Lim-
ited, Crumlin, UK). Insulin was profiled using a double-antibody radioimmunoassay [21].
The homeostatic model assessment for insulin resistance (HOMA-IR) utilized glucose and
insulin measurement to estimate insulin resistance and beta cell function [22]. Glucose area
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under the curve (AUC) was estimated between t0 and t120 min by integrating, using the
trapezoid method and stopping when glucose values dropped below baseline (GraphPad
PrismVersion 8.4.3). Insulin AUC was estimated between t0 and t120 by integrating using
the trapezoid method (GraphPad PrismVersion 8.4.3). Hemoglobin A1c (HbA1c) was deter-
mined using a Tosoh G7 HPLC Analyzer (Tosoh Biosciences Inc., San Francisco, CA, USA).
Biologically implausible outliers were removed (n = 1 removed from t0 insulin value). Im-
paired fasting glucose (IFG) was defined as fasting plasma glucose ≥ 100 mg/dL; impaired
glucose tolerance (IGT) was defined as the 2-h glucose ≥ 140 mg/dL; and prediabetes was
defined as IFG, IGT, or HbA1c between 5.7–6.4% [23].

2.3. Untargeted Metabolomics

Untargeted metabolomics analyses were performed by the Michigan Regional Com-
prehensive Metabolomics Resource Core (MRC2) (Ann Arbor, MI, USA). Metabolites were
extracted from plasma samples using a solvent of methanol, acetonitrile, and acetone (1:1:1)
including internal standards (100 mL extraction solvent and 4 mL internal standards).
Samples were reconstituted with a solvent containing methanol and H20 (2:98). Untargeted
metabolomics was performed on an Agilent system consisting of an Infinity Lab II UPLC
coupled with a 6545 qTOF mass spectrometer (Agilent Technologies, Santa Clara, CA)
using a JetStream electrospray ionization source. The eluent was analyzed in both positive
and negative ion mode electrospray ionization. Chromatographic peaks, representative
of metabolite features, were detected using a modified version of existing commercial
software (Agilent MassHunter Qualitative Analysis). Data normalization accounted for
drift removal within and between batches by utilizing pooled reference samples that were
analyzed within each batch using the Systematic Error Removal using Random Forest
(SERRF) method. Metabolites were identified via comparing their MS/MS spectra to au-
thentic standards, purchased internal or external standards ran on the same instrument.
For this analysis, annotated metabolites (n = 246) were selected. Missing peak intensities
were imputed by K-nearest neighbor (K = 5) in metabolites with ≥70% detection across
samples. R package “impute” was used for imputation. Metabolites with less than 70%
detection across samples were removed. Biologically implausible metabolite peak intensity
values were removed.

2.4. Statistical Analyses

Descriptive statistics were computed for categorical variables (Pearson’s chi-square
test) and continuous variables (unpaired Students’ t-test), stratified by OVOB and lean.
Sex-stratified analyses were evaluated. Main analysis objectives are outlined in Figure S2.
Peak intensities (PI) of metabolites were utilized for statistical analyses.

Metabolite differences were identified between OVOB and lean at the Fasted Visit
(Figure S2a). At t0, linear regression models were run assessing the effect of group (ßgroup,
OVOB or lean) on metabolite levels (log2 and standardized), adjusting for sex and age at
the Fasted Visit.

Metabolite = ßo + ßgroupX + ßageX + ßsexX + εi (1)

Differential metabolites were identified using an adjusted p-value (false discovery rate
[FDR] < 0.1) [24]. Positive ßgroup values represent elevations in OVOB and negative ßgroup
values represent lower in OVOB. Differential metabolites were selected for metabolite set
enrichment analysis (MSEA) [25] to identify biologically meaningful pathways associated
with BMI in the metabolomics data. Human Metabolome Database (HMDB) IDs were
mapped to 58 of the 66 differential metabolites at t0. Pathway enrichment analysis used
the Small Molecular Pathway Database (SMPDB), which includes 99 metabolite sets based
on normal human metabolic pathways. Over Representation Analyses (ORA) with the
hypergeometric test was used to determine if metabolite pathways are represented more
than expected by chance, denoting significance using a one-tailed p-value (unadjusted and
FDR reported). Enrichment analyses were run through Metaboanalyst 4.0 [26]. At t0, sex
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differences in the metabolome were considered using unpaired Student’s t-test (Figure S2a).
Differential metabolites were identified using an adjusted p-value (FDR < 0.05).

Paired t-tests distinguished metabolites that significantly differed between t0 and
t60 in each group and state (lean-Fasted, OVOB-Fasted, and OVOB-Random-Fed) using
untransformed PI (FDR < 0.05) (Figure S2b). Fold changes were calculated to represent
metabolite response using log2(t60 PI/t0 PI). To assess if the metabolite response to the
OGTT was associated with BMI group, unpaired t-tests distinguished variations in metabo-
lite fold changes between OVOB and lean at the Fasted Visit (FDR < 0.1) (Figure S2c).

OVOB participants returned to the clinic for a Random-Fasted OGTT Challenge.
Differences in glucose and insulin levels between the Fasted and Random-Fed OGTT
Challenge were computed (paired t-test). Linear regression models were run separately
at t0 and t60 assessing the influence of state (ßstate, Fasted or Random-Fed) on metabolite
levels (log2 and standardized across state at each time), adjusting for sex and age at the
Fasted Visit (Figure S2d),

Metabolite = ßo + ßstateX + ßageX + ßsexX + εi (2)

Differential metabolites were identified using an adjusted p-value (FDR < 0.1). Posi-
tive ßstate values represent elevated in OVOB-Fasted and negative ßstate values represent
elevated in OVOB-Random-Fed.

In OVOB individuals, metabolites were identified that are associated with IR, mea-
sured by HOMA-IR (Figure S2e). Sex stratified models were run considering differences
in glucose homeostasis measures by sex. Linear regression models were run separately at
the Fasted Visit (t0, t60, fold change) and the Random-Fed Visit (t0, t60, fold change) on
metabolite levels (log2 and standardized across each time and state), adjusting for age at
the Fasted Visit.

HOMA − IR = ßo + ßmetaboliteX + ßageX + εi (3)

Differential metabolites were identified using an adjusted p-value (FDR < 0.1). All
statistical analyses were performed in R version 4.0.

3. Results
3.1. Participant Characteristics

Descriptive characteristics of the study population from the Fasted OGTT Challenge
are reported in Table 1. Most of the cohort was Caucasian and non-Hispanic and included
more females (n = 160) than males (n = 123), with similar distributions of sex, race, and
ethnicity between OVOB and lean groups. No group trend was observed between IGT,
IFG, and prediabetes status, with 15% of OVOB and 12% of lean having prediabetes. Three
of the six lean participants who classified as prediabetic had a BMI percentile of 84%,
potentially explaining why group trends were not observed. No group differences were
observed in glucose levels during the OGTT (Figure 2) or glucose response measured by
AUC glucose. Group differences in the insulin response to the OGTT were observed, with a
larger insulin response, measured by AUC insulin, and higher insulin levels beginning at t0
and continuing through the completion of blood draws in OVOB (Figure 2). Sex differences
were observed with higher levels of glucose t120 (p = 0.024), insulin t90 (p = 0.002), insulin
t120 (p < 0.001), and BMI percentile (p = 0.007) in females and higher levels of glucose t30
(p = 0.003) in males (Table S1). Females had a larger insulin response to the OGTT than
males, measured by insulin AUC (p = 0.016) (Figure S3), suggesting a small decrease in
insulin sensitivity.
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Table 1. Characteristics of study participants at the Fasted Visit, stratified by weight group. Significance denoted with
unadjusted p-value < 0.05 (bolded).

Categorical Variables OVOB Lean
p-Value 1

n (%) n (%)

sex
Male 97 (43%) 26 (47%)

0.5254Female 131 (57%) 29 (53%)

race
Asian/Pacific Islander 4 (2%) 4 (7%)

0.1745
African American/Black 59 (26%) 12 (22%)
White 135 (59%) 32 (58%)
more than one race 19 (8%) 6 (11%)
did not wish to report 11 (5%) 1 (2%)

ethnicity
Hispanic 18 (8%) 5 (9%)

0.7707non-Hispanic 210 (92%) 50 (91%)

abnormal 2-hr plasma glucose (≥140 mg/dL)
Yes 16 (7%) 3 (5%)

0.6776No 212 (93%) 52 (95%)

abnormal fasting plasma glucose (≥100 mg/dL)
Yes 8 (4%) 1 (2%)

0.5213No 220 (96%) 54 (98%)

ADA prediabetes (FPG≥ 100 mg/dL or 2-hr PG ≥ 140 mg/dL or HbA1c ≥ 5.7%)
Yes 35 (15%) 6 (12%)

0.4009No 193 (85%) 49 (88%)

Continuous Variables
OVOB Lean

p-Value 2
Mean (SD) Mean (SD)

age (years) 12.9 (2.5) 13.0 (2.6) 0.7301
BMI percentile 95 (4) 59 (27) 7.52−14

HOMA-IR 5.13 (2.99) 2.80 (1.21) 3 4.53−8

HbA1c 5.2 (0.3) 5.1 (0.3) 3 0.2082
fast time (hours) 14.0 (1.3) 14.1 (1.4) 0.7606

fasting OGTT response

glucose (t0) (mg/dL) 84 (8) 85 (8) 0.7475
glucose (t30) (mg/dL) 126 (22) 132 (25) 0.1119
glucose (t60) (mg/dL) 112 (29) 117 (26) 0.2182
glucose (t90) (mg/dL) 107 (26) 106 (21) 0.6263
glucose (t120) (mg/dL) 102 (24) 98 (22) 0.2562
insulin (t0) (µU/mL) 24 (14) 13 (5) 3 1.55 × 10−8

insulin (t30) (µU/mL) 194 (132) 112 (72) 4.09 × 10−9

insulin (t60) (µU/mL) 156 (117) 87 (53) 7.04 × 10−10

insulin (t90) (µU/mL) 145 (126) 80 (56) 2.69 × 10−8

insulin (t120) (µU/mL) 133 (117) 65 (57) 2.42 × 10−9

AUC glucose 3121 (2112) 3294 (1711) 0.5228
AUC insulin 17,223 (11,206) 9648 (5468) 1.33 × 10−11

1 Represents Pearson’s chi-square test for categorical variables. 2 Represents unpaired t-test for continuous variables. 3 n = 54.
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Figure 2. Kinetics of blood glucose and insulin response to the glucose test at the Fasted Visit. OVOB and lean participants
arrived fasted prior to the consumption of the glucose challenge. Blood glucose and insulin were profiled before and during
the OGTT. Mean values reported for lean (dark pink dash) and OVOB (dark slate gray dash). OVOB, overweight and obese.

3.2. Influence of Obesity and Sex on the Fasting Metabolome

At the Fasted Visit, 66 metabolites were significantly associated with BMI group
(OVOB vs. lean) at t0, adjusting for sex and age (Table S2). Select differential metabolites
by BMI group are shown in Figure 3. Short-chain ACs were elevated in OVOB compared
to lean, including AC 3:0, 5:0, and 5:0-OH, representing alterations in BCAA metabolism.
No differences were observed in BCAAs, potentially because our analysis did not account
for muscle mass differences between OVOB and lean [7]. The aromatic amino acid tryp-
tophan and its metabolite kynurenine was significantly elevated in OVOB, in contrast
to the literature that consistently shows phenylalanine and tyrosine being elevated with
obesity [27]. The biomarker 3-indolepropionate, a tryptophan metabolite that has been
associated with a reduced likelihood of developing T2D [28], was significantly elevated
in lean participants. Very long-chain FAs were elevated in lean at t0, with no BMI group
differences observed in long-chain FAs. In lean participants, there were higher levels
of beta-oxidation AC intermediates (AC 10:0, AC12:0, AC 14:1, AC 14:2, AC 16:0, and
AC 18:2) and omega oxidation dicarboxylic FAs (FA 10:0-COOH, FA 11:0-COOH, and
FA 16:0-COOH), potentially suggesting increased flux through FA oxidation pathways in
lean individuals at fasting. Several lysophospholipids were elevated in lean compared to
OVOB at t0, including lysophosphocholine (LPC) 16:0, LPC 17:0, LPC 18:1, LPC 18:2, LPC
20:0, and LPE 18:2, which parallels studies in pediatrics [8] and adults [29]. Multiple lipid
species, including diglycerides (DG), phosphocholine (PC), and sphingomyelin (SM), were
elevated in OVOB individuals, due to elevation in fat mass and consistent with previous
observations [7]. Chenodeoxycholate (CDCA), a primary bile acid synthesized in the liver,
was elevated in OVOB at t0. Multiple conjugated bile acids were differential between BMI
groups at t0, including glycocholate, taurocholate, and tauro-alpha/beta-muricholate were
elevated in lean and hyodeoxycholate was elevated in OVOB.
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Metabolites significantly associated with BMI group at t0 (FDR < 0.1) were selected for
metabolite set enrichment analysis (MSEA) to identify biological pathways enriched with
obesity (Figure S4). No pathways reached an adjusted significance threshold, although Beta
Oxidation of Very Long Chain Fatty Acids was trending towards significantly enriched at
t0 (unadjusted p = 0.07).

As sex is associated with BMI percentile and glucose homeostasis measures within this
cohort (Table S1), metabolites were identified that were differential by sex at t0 during the
Fasted Visit. Using unpaired t-tests, 40 metabolites were associated with sex (FDR < 0.05),
with higher levels of FA, SM, and PCs in females and higher levels of short-chain ACs
and amino acid metabolites (e.g., kynurenine and 3-methyl-2-oxovalerate) in males (Table
S3). These associations emphasize variations in fat and muscle mass in adolescents during
puberty, as previous findings detail differential metabolites elevated in obese males and
females [7]. Sex-stratification will be considered in additional analyses.

3.3. Metabolome Response to the OGTT in OVOB and Lean Participants

The response of the metabolome to an OGTT is represented in Figure 4, stratifying
individuals by state (Fasted and Random-Fed), time (t0 and t60), and group (lean and
OVOB). Metabolites peak intensities were centered across all samples and metabolites
were grouped using hierarchical clustering to identify groups of metabolites with similar
dynamics during the OGTT. Significant changes in metabolite levels from t0 to t60 are
reported, including alterations in 68% of metabolites in lean during the Fasted OGTT
Challenge (Figure S5a), 84% of metabolites in OVOB during the Fasted OGTT Challenge
(Figure S5b), and 77% of metabolites in OVOB during the Random-Fed OGTT Challenge
(Figure S5c) (FDR < 0.05). Most metabolites decreased in response to the OGTT, which
may be attributed to the high abundance of lipids within the annotated metabolites in this
dataset. Metabolite classes that consistently decreased in response to the OGTT include
medium- and long-chain ACs, FFA, and lipids, such as SMs, PCs, and DGs. The metabolite
with the largest increase was hippurate, increasing at approximately 4 log2FC in each group.
As reported by Shaham et al. [2], this likely reflects the metabolism of the preservative
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benzoic acid, found in the glucola beverage used for the OGTT [30]. All paired t-tests are
reported in Table S4.

Using a fold change, differences in metabolite response between BMI groups at
the Fasted Visit was explored, identifying 15 significant metabolites (Figure S6). Five
medium- and long-chain ACs (AC 8:0, 10:1, 12:1, 14:2, and 16:1), two fatty acid oxidation
intermediates (FA 10:0-COOH and FA 16:0-COOH), and six FAs (FA 12:0, 12:2, 14:2, 20:0,
20:1, and 22:1) had a larger decrease in lean than OVOB. These results suggest a more
robust decrease in lipolysis and beta-oxidation in lean in response to the glucose challenge.
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3.4. Metabolome Differences between the Fasted and Random-Fed OGTT Challenge in OVOB

OVOB participants returned to the clinic for a random-fed state OGTT challenge. At
t0, random-fed OVOB participants had significantly higher glucose (p = 0.0052) and insulin
levels (p = 3.28−20) than individuals in the fasted state (Table S5). At t60, random-fed
participants had significantly lower levels of glucose (p = 1.40−21) than individuals in
the Fasted OGTT Challenge, although their insulin levels were not significantly different
(p = 0.657). These results suggest individuals arriving to the clinic for the OGTT in a
variety of fed states have a primed insulin response, enabling the rapid response to the
glucose load. Metabolites were identified that were associated with arriving to the OGTT
Challenge fasted or random-fed at t0 and t60. At t0, 155 metabolites (63% profiled) and at
t60, 122 metabolites (49% profiled) differed between OVOB-Fasted and OVOB-Random-Fed
(Table S6). Grouping by super pathway, metabolites are represented indicating direction of
association (ßstate) and significance (−log10 [p-value]) for t0 (Figure 5A) and t60 (Figure 5B).
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At t0, almost all the FAs profiled (97%) were significantly higher at the Fasted Visit
compared to the Random-Fed Visit, as expected, representing mobilization of energy
substances (anabolism) from adipose tissue during fasting. In parallel, additional lipids
were higher at the Fasted Visit, including all SMs and 94% of the profiled PCs (15 PCs).
Lysophospholipids varied in their associations with state, with five higher in the fasted state
(LPC 16:0, LPC 17:0, LPC 18:1, LPC 20:0, LPC 23:0) and two higher in the random state (LPC
18:2 and LPE 18:2). Most medium- and long-chain ACs were higher at fasting, paralleling
the FA levels and representing increases in beta-oxidation at fasting [31]. Interestingly, three
of the four dicarboxylic fatty acids profiled were higher at the Random-Fed state at (FA 9:0-
COOH, FA 10:0-COOH, and FA 11:0-COOH), suggesting increased omega oxidation related
to the fed state, perhaps due to increased carbohydrate oxidation reducing the capacity to
oxidize FA still entering the system. Many amino acids were higher at the Random-Fed
Visit, including histidine, isoleucine/leucine, methionine, proline, tryptophan, tyrosine,
and valine. Several short-chain ACs were higher in at the Random-Fed Visit, indicating
increased BCAA metabolism. Bile acids, including primary, secondary, and conjugate
bile acids, were higher at the Random-Fed Visit, representing bile acid and gut hormone
response to a meal [32].

At t60, the metabolome represents the switch from an anabolic to a catabolic state in
response to the glucose challenge. A portion of the differential metabolites at t0 normalized
between OVOB-Fasted and OVOB-Random-Fed, including most of the differential lipids
(SMs and PCs). At t60, 75% of the FAs and 78% of the medium- and long-chain ACs remain
higher at the Fasted Visit. Fatty acid oxidation intermediates varied in their association
with state at t60, with several higher in the Fasted group (FA 9:0-COOH, FA 12:0-OH, FA
12:0-NH2, and FA 14:0-OH) and several higher in the Random-Fed group (FA 10:0-OH
and FA 10:0-COOH). Seven of the twelve lysophospholipids profiled were higher at the
Random-Fed Visit at t60. Amino acids and bile acids remained higher in Random-Fed
at t60.
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3.5. Sex-Specific Associations of Metabolite Trajectories with Insulin Resistance in Participants
with Overweight and Obesity

In OVOB, metabolites were identified from the fasted (t0, t60, and fold change) and
random-fed (t0, t60, and fold change) glucose challenges that were associated with IR,
measured by HOMA-IR (Figure S7). Sex stratified linear models were used considering
the differential glucose and insulin responses between males and females (Table S1). All
results are reported in Table S7.

In males across all visits and time points, no metabolites were significantly associ-
ated with HOMA-IR. The metabolite mesobilirubinogen was trending towards positive
association with HOMA-IR at t60 in the Fasted and Random-Fed visit (FDR < 0.2).

In females, metabolites within multiple pathways were correlated with HOMA-IR at t0
and t60 during the Fasted and Random-Fed visits (Table 2). Consistently, diacylglycerides
(DG 32:0, DG 32:1, DG 34:1, and DG 34:2) and the nucleotide urate were positively associ-
ated with HOMA-IR, the latter supported by previous work establishing the connection
between hyperuricemia and IR [33]. More specifically, at t60 during the fasted visit, several
amino acid metabolites (isoleucine/leucine, AC 5:0-OH, proline, and glutamate) and lipids
(DGs and PCs) were positively associated with HOMA-IR. These results expand upon
previous work [3], which found a blunted decrease in levels of BCAAs and other amino
acid metabolites in subjects with IR. Represented by the fold change from the fasted visit,
medium- and long-chain ACs were positively associated with HOMA-IR, demonstrating
that a blunted decline in ACs in response to a glucose challenge is associated with IR,
which parallels the decline in FA following the glucose challenge. Comparing the signif-
icant metabolites at Fasted t60 vs. the fold change during the fasted visit, only DG 32:0
and PC 32:1 were significantly associated with HOMA-IR in both models. Although less
metabolites were significantly associated with HOMA-IR during the Random-Fed Visit,
at t60, DGs, monoglycerides, glutamate, and urate exhibited positive associations. No
significant associations were observed using the fold change from the Random-Fed.

Table 2. Metabolites associated with HOMA-IR in females with overweight and obesity at the Fasted and Random-Fed
Visit. Beta coefficients and standard errors from linear regression models are reported, adjusting for age at the Fasted Visit
(FDR < 0.1).

Metabolite Pathway Fasted t0 Fasted t60 Fasted Fold
Change

Random-Fed
t0

Random-Fed
t60

AC 12:0 acylcarnitine 2.0 ± 0.3
AC 12:1 acylcarnitine 2.7 ± 0.5
AC 14:0 acylcarnitine 2.3 ± 0.8
AC 16:0 acylcarnitine 2.6 ± 0.6
AC 16:1 acylcarnitine 1.3 ± 0.7
AC 18:0 acylcarnitine 1.6 ± 0.2
AC 5:0-OH acylcarnitine 0.9 ± 0.3
AC 5:1 acylcarnitine 1.5 ± 1.6
AC 6:0 acylcarnitine 1.7 ± 0.6
gamma-glutamyltyrosine amino acid 0.8 ± 0.2 0.9 ± 0.3 0.9 ± 0.3
Glu-Phe amino acid 0.9 ± 0.2
glutamate amino acid 0.7 ± 0.3 0.9 ± 0.3
indole-3-methyl acetate amino acid 0.7 ± 0.3
L-gamma-
glutamylisoleucine amino acid 0.8 ± 0.3

Leu-Ile amino acid 0.7 ± 0.5 0.9 ± 0.2
leucine+isoleucine amino acid 0.7 ± 0.3
N-acetylphenylalanine amino acid 0.7 ± 0.3
Phe-Phe amino acid −0.7 ± 0.3
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Table 2. Cont.

Metabolite Pathway Fasted t0 Fasted t60 Fasted Fold
Change

Random-Fed
t0

Random-Fed
t60

Phe-Trp amino acid 0.7 ± 0.3
pipecolate amino acid −0.6 ± 1.1
proline amino acid 0.7 ± 0.3
cholate bile acid 0.8 ± 0.3
hyocholate bile acid 0.8 ± 0.3
indole-3-lactate carbohydrate 0.7 ± 0.3
caffeine exogenous 1.7 ± 0.6
FA 18:4 fatty acid 0.8 ± 0.3
FA 20:3 fatty acid 1.1 ± 0.3
FA 22:1 fatty acid 1.9 ± 0.5

3-hydroxyphenyl-valerate fatty acid
intermediate 0.9 ± 0.6

DG 32:0 lipid 1.2 ± 0.2 1.2 ± 0.2 2.2 ± 0.4 1.1 ± 0.2 1.0 ± 0.2
DG 32:1 lipid 1.0 ± 0.2 1.1 ± 0.2 0.9 ± 0.2 0.8 ± 0.2
DG 34:1 lipid 1.0 ± 0.2 0.9 ± 0.2 0.9 ± 0.2
DG 34:2 lipid 1.1 ± 0.2 1.0 ± 0.2 0.9 ± 0.2 0.8 ± 0.2
DG 36:2 lipid 0.7 ± 0.2
DG 36:3 lipid 0.7 ± 0.3
MG 14:0 lipid 1.0 ± 0.2
MG 16:0 lipid 1.2 ± 0.3
MG 18:1 lipid 0.8 ± 0.2 0.9 ± 0.2 0.7 ± 0.3
LPC 16:0 lipid 1.1 ± 1.2
LPC 18:2 lipid 0.8 ± 1.7
PC 32:1 lipid 0.8 ± 0.2 1.0 ± 0.4
PC 34:3 lipid 0.7 ± 0.3
PC 34:4 lipid 0.7 ± 0.3
N2,N2-
dimethylguanosine nucleotide 0.7 ± 0.3

urate nucleotide 0.8 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 0.9 ± 0.2

4. Discussion

In the present study, we have characterized the metabolome response during an
OGTT in OVOB (n = 228) and lean adolescents (n = 55). We identified metabolites that
change significantly during the glucose challenge, highlighting the switch from FA to
glucose oxidation at 60 min during the OGTT. We classified differential metabolites by
BMI status at baseline and during the OGTT, suggesting that at an early age, obesity
and its metabolic consequences may influence the metabolome dynamics in response to
a challenge. Subsequently, overweight and obese adolescents returned to the clinic for
a random-fed glucose challenge to compare the fasted and random-fed metabolome to
degree of IR, and significant associations were found in female participants but not in males.
Our results are the first study to deeply assess the fasted and random-fed metabolome
response in adolescents and will be used for future analyses predicting the longitudinal
risk of prediabetes development within the cohort.

4.1. Lipids, Fatty Acids, and Acylcarnitines

In response to the glucose challenge, most lipids, FAs, and FA oxidation intermediates,
including hydroxyl-FAs, dicarboxylic FAs, and acylcarnitines, decreased. As observed in
previous studies in adults, these alterations in the metabolome are reflective of the switch
from FA oxidation to glucose oxidation and fat storage during the OGTT [34]. Acylcar-
nitines, biomarkers of mitochondrial beta-oxidation, reflecting the relative utilization of FA
to carbohydrate [34] and reflect the degree of IR [35]. At the Fasted-Visit, several medium-
and long-chain ACs and dicarboxylic FAs were lower in OVOB participants (Figure 3) and
had a blunted decline in OVOB participants (Figure S6). Furthermore, in OVOB females at



Nutrients 2021, 13, 3365 13 of 17

the fasted visit, the fold change of eight ACs (AC 5:1, 6:0, 12:0, 12:1, 14:0, 16:0, 16:1, and 18:0)
was positively associated with HOMA-IR (FDR < 0.1). These results suggest that starting
at a young age, obesity and IR influences metabolic flexibility in response to a glucose
load [36]. In parallel, Nowak et al. [19] in a group of older males observed that AC 10:0 and
AC 12:0 exhibited a smaller decline at 30 min in response to an OGTT, suggesting that the
sustained elevation of the AC may directly impair insulin sensitivity. Our findings suggest
that during adolescence, the prolonged insulin response (Figure 2) in OVOB females is also
associated with insulin resistance.

At the fasted visit at baseline, lipids, including DGs and SMs, exhibited positive
associations with obesity (Table S3), supported by previous analyses [7]. A primary
question in these studies is whether the non-fasted state could be used to identify changes
in metabolism in relation to IR. In females, at both the Fasted and Random-Fed Visit at
t0 and t60, diacylglycerides (DG 32:0, DG 32:1, DG 34:1, and DG 34:2) were positively
associated with HOMA-IR, suggesting that independent of fed-state, these lipids may
provide predictive ability for the progression of IR and T2D.

4.2. Amino Acids

In lean adolescents, approximately half of the profiled amino acids and their metabo-
lites decreased in response to the OGTT, including leucine/isoleucine, methionine, his-
tidine, serine, and glutamate, representing a decrease in proteolysis [2,3]. Deviations in
amino acids response were observed between OVOB and lean, potentially due to the
elevated insulin response within OVOB (Table 1, Figure 2). The larger insulin response
in OVOB may act on skeletal muscles to decrease protein degradation [37], as evidenced
by significant decreases in amino acids, including trypthophan, lysine, and glutamine,
in only OVOB adolescents at t60. Comparing the metabolome response to an OGTT in
14 obese and 6 lean adults, Geidenstam et al. [10] observed at 30 min post-OGTT that
asparagine, glutamate, taurine, tyrosine, and leucine/isoleucine increased in obese adults,
which was absent in lean. This effect was not evident in our cohort, potentially because the
metabolome was profiled at a later timepoint (t60).

At t60 during the fasted visit, several amino acids (leucine/isoleucine, glutamate, and
proline) and amino acid metabolites (gamma-glutamyltyrosine, L-gamma-glutamylisoleucine
and N-acetylphenylalanine) were associated with IR in females (Table 2). Without stratify-
ing by sex, Mullner et al. observed levels of BCAAs associated with a heightened insulin
response [11]. Frequent inconsistencies in the association between BCAA and IR in adoles-
cents are observed [7,38], due to study population differences in age, sexual maturation,
and degree of IR, representing major challenges in paediatric prediction studies. Glutamate
was associated with HOMA-IR in the Fasted and Random-Fed OGTT at t0 and t60. In a
rate-limiting TCA cycle step, alpha-ketoglutarate is converted to glutamate-by-glutamate
dehydrogenase, allowing for a rescue pathway of excess TCA substrate. Elevated levels of
glutamate have been associated with an increased risk of T2D [39], as our results highlight
the sensitivity between IR and TCA cycle overload in females. Overall, the t60 metabolome
at the Fasted Visit had the largest number of significant amino acids with IR in females,
suggesting a lack of suppression of proteolysis with reduced insulin sensitivity.

4.3. Bile Acids

Paralleling previous studies [2,34], we observed a dramatic increase in several bile
acids in response to the glucose challenge, including glycocholate, glycodeoxycholate,
glycohyocholate, and taurocholate. In response to a meal, the gallbladder releases bile into
the small intestine, stimulated by gastric filling and the intestinal hormone cholecystokinin
(CCK). Post intestinal absorption and transport to the liver, it is estimated that 10–30% of
bile acids reach systemic circulation [40]. Our results and others [2,34] have suggested
that a bolus of glucose stimulates the release of bile acids in the gallbladder, supported
by Liddle et al. finding that glucose ingesting stimulates CCK production [41]. Previous
work has suggested a link between bile acid secretion and metabolism with obesity and
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IR [42]. At baseline, during the Fasted Visit, several primary and secondary bile acids
were associated with obesity, including positive associations with chenodeoxycholate,
hyodeoxycholate, and deoxycholate and inverse associations with glycocholate, glycohy-
ocholate, taurocholate, and tauro-alpha/beta-muricholate. Furthermore, at t60 during the
Fasted Visit, cholate and hyocholate were positively associated with IR in females (Table 2).
Therefore, a blunted decrease of certain bile acids may be associated with insulin resistance
and metabolic dysfunction.

4.4. Conclustions and Future Directions

The metabolome response to an OGTT may be associated with IR in a sex-specific
manner, due to the observed differences in insulin response to an OGTT in adolescent males
and females. In healthy and metabolically unhealthy youth, insulin sensitivity decreases
during puberty [43]. Furthermore, in a cohort of healthy children and adolescents, girls in
late puberty (Tanner’s Stage 4 or 5) have higher insulin levels than boys [44]. The sexual
dimorphism observed in late puberty is due, in part, to a higher growth hormone secretion
in pubertal girls [45]. In our cohort, we observed higher levels of glucose t120, insulin t90,
and insulin t120 in females, suggesting that females have a larger insulin response to the
OGTT than males. Future analyses must be conducted to determine if the associations
between the metabolome across visits and HOMA-IR in females is attributed to IR shifts
during puberty or the onset of metabolic dysfunction and prediabetes.

The metabolome was comprehensively profiled using a liquid chromatography/mass
spectrometry-based platform, generating approximately 250 metabolites. Our study uti-
lized a well-powered sample size, strongly complementing and elaborating on the only
other study assessing the metabolome response to an OGTT in adolescents [11] by in-
corporating both a fasted and a random-fed visit in the OVOB participants. Our results
emphasize the potential of analyzing the metabolome response in a random glucose chal-
lenge for the prediction of metabolic dysfunction, particularly in females. The results
from this study emphasize that the switch from FA to glucose metabolism in response to a
glucose challenge is associated with obesity and insulin resistance. Future work will collect
plasma samples in response to a glucose challenge at more timepoints, such as 30 min, to
assess more subtle changes in the metabolites, similarly to Zhao et al. [34].

Our study design presented two limitations regarding the Random-Fed Visit. Firstly,
we only recruited OVOB participants for the visit, not allowing for a comparison between
lean and OVOB. Secondly, we desired to simulate a random glucose challenge that is
typically performed in practice for women being screened for gestational diabetes using
50-g of glucose. The differences in grams of glucose solution administered between the
Fasted and Random-Fed Visit create challenges in the direct comparison of the metabolome
response. Our priority was to replicate what is being practiced in the clinic. Future
work should compare the metabolome response in different fed-states utilizing the same
glucose load. A bioinformatic limitation in the study was the inability to map individual
significant metabolites to biological pathways using MSEA, due to many metabolites with
the pathways not being profiled in the untargeted metabolomics platform and the lack of
HMDBs for metabolites that were significant. Future directions will incorporate a partial
correlation-based approach [46] to assess alterations in the relationship of metabolites at
the fasted random-fed visit and if subnetworks of metabolites are associated with insulin
resistance cross-sectionally and longitudinally.

Our results emphasize the utility of profiling multiple metabolic pathways outside
glucose metabolism in understanding the associations between obesity, IR, and the response
to a glucose challenge in adolescents. Classifying the metabolism of lipids, amino acids,
and fatty acids, rather than solely glucose metabolism, deepens the understanding of the
pathophysiology of insulin resistance in adolescents, with differences than adults due
to pubertal development. Future work will test if the highlighted metabolic pathways
complement or enhance the ability of glucose to predict the development of prediabetes
during adolescence.
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