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Abstract: Hanahan and Weinberg introduced the “hallmarks of cancer” and typified essential biolog-
ical abilities acquired by human cancer. Since then, a growing understanding of hallmark principles
associated with breast cancer has assisted knowledge-based therapeutics development; however,
despite the rapidly increasing number of targeted therapeutics, enduring disease-free responses for
most forms of breast cancer is rare. Invasion and metastasis are the most defining feature of breast
cancer malignancy and the leading cause of patient mortality. Hence, we propose a modified hall-
marks model adapted to breast cancer, in which invasion and metastasis are shifted to the center of
attention, thereby emphasizing it as a potentially superior therapeutic target. Although the scientific
community highly appreciates the importance of the invasion and metastasis hallmark, as can be
demonstrated by the growing number of publications on breast cancer metastasis, very few clinical
trials concentrate on testing anti-metastasis inhibitors and even fewer trials focus on inhibitors for
breast cancer metastasis. Here, we discuss the obstacles of applying research on invasion and metas-
tasis therapeutics into the clinic and present current developments that could provide a potential
solution to this dilemma.
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1. Introduction

Breast cancer is the most common neoplasm and the second leading cause of death in
women [1,2].

It is a complex and highly heterogeneous disease, encompassing multiple tumor sub-
types, each characterized by a different morphology, histopathological features and cellular
markers, gene expression profiles, outcomes and response to systemic therapies [3–5].
Because of its complexity, immunohistochemical markers, together with clinicopatho-
logical criteria such as tumor size and grade, lymph node involvement and histological
type, are commonly used for prognosis, recurrence prediction and therapeutic strategy
selection [6,7].

Breast tumor subtypes are classically defined according to hormonal and growth factor
responsiveness. The main clinically relevant receptors in this regard are estrogen receptor
(ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2).
Breast tumors are thus divided into four main subtypes based on immunohistochemical
properties and hormone receptor (HR) status [3]: (1) HR+/HER2+, tumors which are
sensitive to either estrogen or progesterone and present HER2 receptors, (2) HR+\HER2−,
tumors which are sensitive to either estrogen or progesterone but lack HER2 receptors, (3)
HR−\HER2+, tumors which express HER2 receptors, but lack hormone receptors and (4)
HR−\HER2−, also known as triple-negative breast cancer (TNBC).

In 2000, Weinberg and Hanahan defined six hallmarks of cancer: sustaining prolif-
erative signaling, evading growth suppressors, resisting cell death, enabling replicative
immortality, inducing angiogenesis and activating invasion and metastasis [8]. In 2011, the
authors defined two additional emerging hallmarks, reprogramming of energy metabolism
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and evading immune destruction and two enabling hallmarks, genome instability and
mutation and tumor-promoting inflammation [9]. Together, these constitute “the ten hall-
marks of cancer”. Here, we discuss each of these ten hallmarks and their relevance to
breast cancer.

2. The Hallmarks of Breast Cancer
2.1. Sustaining Proliferative Signaling

Normal tissues control the production and release of growth signals that regulate
proper entry and progression through the cell cycle and regular tissue architecture and
function. Cancer cells de-regulate these growth signals and, by doing so, acquire the
capability to sustain proliferative signaling in several ways. For example, cancer cells can
enhance autocrine stimulation [10,11] or paracrine stimulation [12] with stromal cells. They
elevate cell surface receptors’ expression and accumulate activating mutations that lead to
constitutive activation of cell surface receptors or their downstream signaling pathways.

Several key receptors and their downstream signaling pathways have emerged as
critical drivers of breast cancer development and growth, as well as potential therapeutic
targets. For example, growth factor receptor pathways, particularly receptor tyrosine
kinases (RTKs), play a significant role in initiating proliferative and cell survival pathways
that are normally tightly controlled [13,14]. Among these, the ErbB family of RTKs has
been studied most extensively in breast cancer [15], but other RTKs such as the insulin-like
growth factor 1 receptor (IGF1R) have also been explored [16,17].

HER2 amplification or protein overexpression is found in 20–30% of invasive breast
cancers and is associated with accelerated cell growth, proliferation and poor clinical out-
comes [18,19]. One of the most common inhibitors of HER2 is trastuzumab, a monoclonal
antibody that binds to the extracellular domain of HER2 and inhibits several major down-
stream signaling pathways that regulate tumor growth, such as the RAS/RAF/MEK/MAPK
and the PI3K/AKT pathways [20,21]. In addition to activation by homodimerization, en-
hanced by overexpression of the receptor in breast cancer, HER2 can dimerize with other
ErbB family members such as the epidermal growth factor receptor (EGFR). Indeed, tar-
geting both receptors simultaneously can provide therapeutic synergy, which is achieved
by using the tyrosine kinase inhibitor lapatinib. Lapatinib inhibits tyrosine phospho-
rylation and activation of both EGFR and HER2 and, in turn, inhibits activation of the
pro-proliferative kinases ERK1/2 and AKT [20].

Elevated levels of insulin-like growth factor 1 (IGF1) and excessive IGF1R signaling
have been implicated in an increased risk of breast cancer [22]. IGF1R inhibitors currently
in use include neutralizing antibodies and tyrosine kinase inhibitors. It is now understood
that extensive crosstalk of IGF1R downstream signaling pathways with other breast cancer
signaling pathways exists. Moreover, up-regulation of IGF1R is used by breast cancer
cells as a mechanism of resistance to HER2, EGFR and anti-estrogen inhibitors. These
mechanisms suggest combining IGF1R inhibitors with other targeted therapies as an
effective therapeutic strategy [20,23].

Determining tumor sensitivity to proliferative signaling is crucial in selecting ap-
propriate breast cancer treatment. Indeed, several targeted therapies which aim to block
breast tumor cell proliferation are currently being used at the clinic. Tamoxifen is an ER
blocker that inhibits estrogen sensitivity and therefore is tailored for the ER+ subtypes,
luminal A and ER+ luminal B. Trastuzumab, on the other hand, binds to HER2 and shows
a highly beneficial effect in subtypes that overexpress HER2, such as HER2+ luminal B and
HR−/HER2+. TNBC, which is the most aggressive breast cancer with the highest metastatic
potential, has no targeted treatment at present and is usually treated by chemotherapy [2].
In addition, ER, PR and HER2, another surface marker worth mentioning is the androgen
receptor (AR) [24,25]. AR has been shown to have some predictive value in breast cancer,
with an overall mixed effect of increased survival and increased resistance to tamoxifen [26].
Several anti-androgenic drugs have been proposed as candidates for AR targeted treat-
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ment [26–29]. This new type of targeted treatment could be beneficial if proven effective,
especially in otherwise unresponsive AR+/HER2+ and AR+/TNBC [26].

2.2. Genome Instability and Mutation

The success of the neoplastic process depends on high mutation rates of the genome
of neoplastic cells. One way cancer cells increase their mutation rate is by disrupting one or
several components of the genomic maintenance and repair machinery. Such alterations are
selectively advantageous for tumor progression because they accelerate the rate at which
pre-malignant cells can accumulate mutations and become cancerous [8,9]. Approximately
ten percent of all breast cancer cases are related to genetic predisposition or family history,
with a variance of geographical region and ethnicity [30]. Familial cancer predisposition
is usually correlated with alterations in components of the DNA maintenance and repair
machinery. The most common germline mutations associated with breast cancer are in
breast cancer susceptibility genes 1 and 2 (BRCA1 and BRCA2), which encode proteins
responsible for double-stranded DNA repair. Germinal mutations in these two genes
correlate with a high rate of somatic gene mutations and subsequently a risk factor of
breast and ovarian cancers [31]. In addition, mutations in BRCA1 are associated with the
more aggressive, receptor-negative phenotype, whereas BRCA2 mutated breast cancers
are predominantly hormone-sensitive. The latter, nevertheless, demonstrates significantly
lower survival rates than BRCA−/HR+ breast cancer patients [32].

2.3. Resisting Cell Death

Disruption of the apoptotic process allows tumor cells to evade their intrinsic self-
destruction mechanism. The apoptotic trigger is controlled by counter-balancing pro- and
anti-apoptotic members of the B-cell lymphoma 2 (BCL2) family of regulatory proteins.
Pro-apoptotic genes are typically known to enhance tumor growth and increase resistance
to breast cancer therapy [33]. BCL2, a well-recognized prognostic factor, is an anti-apoptotic
(pro-survival) gene. Specifically, BCL2 is an estrogen-responsive gene and therefore tends
to be overexpressed in primary ER+ tumors [34]. The correlation of BCL2 with estrogen
sensitivity may be the underlying reason for the relatively high survival rates of BCL2+

breast cancer patients. In other words, the overall better prognosis of ER+ tumors outweighs
the prospective damage promoted by BCL2. In recent studies, BCL2 inhibitors have
been suggested as a possible therapeutic approach to breast cancer, both due to their
apoptosis-enabling effect and their potential synergistic effect with tamoxifen as an ER
inhibitor. One such inhibiting drug, venetoclax, is a selective BCL2 inhibitor used to treat
leukemia but has not yet been evaluated in solid tumors. It has now undergone a phase Ib
clinical trial in breast cancer patients to determine safety preparation for further clinical
trials [33]. Therefore, resistance to cell death is a possible effectual target for new breast
cancer therapies.

2.4. Enabling Replicative Immortality

Telomers which protect the ends of chromosomes are essential for the capability of
unlimited proliferation of cancer cells. Telomerase is almost absent in non-immortalized
and normal cells but is highly expressed in most human cancer cells. Overexpression and
high activation of telomerase in pre-malignant cells enable the maintenance of their telom-
eric DNA at lengths that are sufficient to avoid the triggering of senescence or apoptosis,
leading to their immortalization and transformation into malignant cells. Telomerase is
activated in 85% of all human cancers [35] and nearly all breast cancer cases [36].
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Breast cancer cell telomeres are much shorter than those of normal cells [37], suggest-
ing that tumor cells need to undergo several replication cycles before reaching a lower limit
that induces telomerase activity and consequent replication immortality. Therefore, it is
thought that telomerase inhibitors may serve as a viable anti-cancer treatment that will
cause the tumor to enter senescence and die of old age. Furthermore, such an approach
should be relatively safe, as telomerase activity is absent from most healthy cells [36].
However, no telomerase-targeting therapy has been approved so far for clinical use [38].

A recent study examined the inhibition of telomerase by small interference RNA
(RNAi) combined with chemotherapy (doxorubicin) on breast cancer cell lines of three
types: luminal A (MCF-7), TNBC (MDA-MB-468) and HER2+ (SKBR-3). The combined
treatment resulted in an over 90% reduction in telomerase activity and a decrease of
more than 60% in cell viability, demonstrating a cumulative effect of chemotherapy. These
promising findings may offer a potential new strategy for the inhibition of breast cancer [39].

2.5. Evading Growth Suppressors

One of the mechanisms by which cancer cells maintain a high proliferation rate is by
evading programs that negatively regulate cell proliferation. These programs, which exist in
every normal cell, mainly depend on tumor suppressor genes. TP53 is a prototypical tumor
suppressor gene that governs a wide range of cellular functions such as cell proliferation,
apoptosis, DNA repair, gene expression and metabolism. The TP53 protein receives input
from stress and abnormality sensors within the cell and decides, based on the levels of
DNA damage caused in the cell genome, whether to halt the cell cycle and enable repair or
to trigger apoptosis in cases where excessive damage that cannot be repaired exists [40].

Inactivating mutations in TP53 are observed in nearly 50% of all cancers and 25–
30% of the basal-like subtype of breast cancer [41]. Moreover, women who carry a TP53
germline mutation have an 85% chance of developing breast cancer by the age of 60 [42].
Thus, in addition to being a prognostic factor, the TP53 mutation profile may influence the
effectiveness of chemotherapy and hormonal therapy, which are used to treat breast cancer
and are therefore examined before administration of such treatments [41,43–45].

2.6. Reprogramming Energy Metabolism

The uncontrolled cell proliferation that represents neoplastic disease involves, in ad-
dition to de-regulated control of cell proliferation, corresponding adjustments of energy
metabolism to fuel cell growth and division. Thus, a common observation in neoplastic
disease is a sharp increase in glucose consumption that accompanies a shift to anaerobic
glycolysis instead of a more efficient aerobic mitochondria-mediated oxidative phosphory-
lation utilized by healthy nucleated cells. These changes are usually related to activation
of RAS and MYC and inactivating mutations in TP53 [46], enhancing the continuous
proliferation of cancer cells.

In breast cancer, there is a difference in metabolic activity between the different sub-
types, as both hormones and growth factors regulate glucose consumption and energy
metabolism, leading to slightly different enzymatic profiles of ER+, HR+ and TNBC tu-
mors [47]. Furthermore, blocking proliferation signaling, a preferred strategy for treating
receptor-positive breast cancer subtypes, leads to downstream metabolic changes, further
disrupting overall tumor growth [47].

2.7. Inducing Angiogenesis

Like normal tissues, tumors require nutrients and oxygen and the ability to evacuate
metabolic waste and carbon dioxide. These needs are emphasized in tumors due to the rise
in glucose consumption and the ever-increasing energy demands of the growing tumor.
Tumor-associated neo-vasculature, generated by the process of angiogenesis, addresses
these needs. Angiogenesis is a process that is transiently activated during embryogenesis
and in normal physiological processes such as wound healing and the female reproductive
cycle in the adult. During tumor progression, an angiogenic switch is activated and remains
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constitutively on, leading to continuous sprouting of new vessels which help to sustain
expanding neoplastic growth [8,9].

Bevacizumab (Avastin) is a monoclonal antibody that targets the vascular endothelial
growth factor (VEGF), a prototypical promoter of angiogenesis. Bevacizumab is used to
treat many types of cancer, such as non-small-cell lung cancer, glioblastoma, renal cell
carcinoma, ovarian cancer and cervical cancer [48]. Similarly, bevacizumab was approved
by the federal drug and use administration (FDA) for use in metastatic breast cancer in
2008. However, this approval was reversed two years later due to a lack of supporting
evidence from clinical observations and safety concerns [48,49]. The assessment of the
FDA regarding the use of bevacizumab in breast cancer was considered controversial, es-
pecially in cases of HER2− breast cancer and TNBC, which are highly resistant to standard
breast cancer therapy [48]. Today, bevacizumab is used to treat breast cancer in Europe
and other countries parallel to its continuous examination in clinical trials [48,49]. The
efficacy variation of bevacizumab between breast cancer and other cancers may be ex-
plained by differences in the underlying angiogenesis-related mechanisms of these distinct
cancer types.

2.8. Tumor Promoting Inflammation

It has long been recognized that some tumors are densely infiltrated by immune
cells, thereby mirroring inflammatory conditions in non-neoplastic tissues. Such tumor-
associated immune responses were initially thought to reflect an attempt of the immune
system to eradicate tumors. However, it is now known that inflammation can also con-
tribute to multiple hallmark capabilities by supplying bioactive molecules such as growth
and survival factors, pro-angiogenic factors and extracellular matrix modifying enzymes
to the tumor microenvironment, which supports tumor progression and metastasis. In-
flammatory cells can also release reactive oxygen species mutagenic for nearby cancer cells,
accelerating their genetic evolution towards malignancy [8,9].

2.9. Evading Immune Destruction

According to the immune surveillance theory, cells and tissues are constantly mon-
itored by the immune system, which recognizes and eliminates most developing cancer
cells and immature tumors that accidentally develop [50]. According to this logic, the
tumors that succeed developing have somehow managed to avoid detection by the im-
mune system or limit the extent of targeted killing by the immune system, thereby evading
eradication. Immunogenic cancer cells may escape immune destruction by disabling com-
ponents of the immune system addressed to eliminate them. They do so by secreting
immunosuppressive factors and recruiting immunosuppressive cells such as regulatory
T cells and myeloid-derived suppressor cells that can suppress the actions of cytotoxic
lymphocytes [8,9].

Understanding the mechanisms used by cancer cells to evade immune destruction
has led to the development of immunotherapy, which is based on stimulating a patient’s
immune system to recognize and destroy cancer cells more effectively. An essential part of
the immune system is its ability to keep itself from attacking normal cells in the body. To
do so, it uses “checkpoints,” proteins on immune cells that need to be turned on or off to
start an immune response. Breast cancer cells often use these checkpoints to avoid being
attacked by the immune system. Therapies that target these checkpoint proteins assist
in restoring the immune response against breast cancer cells. Today, immunotherapy is
used to treat some types of breast cancer. Pembrolizumab (Keytruda) is a drug that targets
programmed cell death 1 protein (PD-1), a protein on T cells that normally help keeps these
cells from attacking other cells in the body. By blocking PD-1, this drug boosts the immune
response against breast cancer cells and often leads to tumor shrinkage. Pembrolizumab is
used in combination with chemotherapy to treat TNBC which expresses programmed cell
death protein ligand 1 (PD-L1). Atezolizumab targets PD-L1, the ligand of PD-1, which
is found on some tumor cells and immune cells. Blocking this protein can help boost the
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immune response against breast cancer cells and consequently shrink some tumors or slow
their growth. Atezolizumab is used in combination with paclitaxel for advanced TNBC
when the tumor expresses the PD-L1 protein [51].

The immunogenicity of breast cancer is heterogeneous and depends mainly on the
specific subtype of breast cancer. Although ER− and HER2+ tumors have shown evidence
of immunogenicity, these types of inflammatory breast tumors are rare when compared to
TNBC tumors, which are unique among breast cancer subtypes in having strong antigen
expression and high stromal and tumor-infiltrating lymphocytes, parameters with a vital
prognostic and predictive significance to immunotherapy and chemotherapy. Except for
these immunogenic subtypes, breast tumors are usually considered immunologically silent
or “cold” tumors, characterized by the presence of low mutation and neoantigen burden
and few tumor-infiltrating lymphocytes. In addition, resistance to cancer immunother-
apies often develops in breast cancer due to alternative immunosuppressive checkpoint
pathways. Therefore, despite the use of combination immunotherapy in metastatic TNBC
patients today, the immunologic treatment of breast cancer remains a significant chal-
lenge [52].

2.10. Invasion and Metastasis

Metastatic dissemination of tumor cells, also known as the invasion-metastasis cas-
cade [9], is a multi-step process that starts with local invasion of tumor cells into the
surrounding stroma, followed by intravasation into the vasculature, endurance of shear
stress in the vasculature, extravasation to distant sites and organs and, finally, adapta-
tion to a new microenvironment and the formation of micro-metastases that will develop
into a detectable secondary tumor. Metastatic dissemination of breast cancer cells from
the primary tumor and their spread into distant sites in the body is the leading cause of
mortality in breast cancer patients. Moreover, while primary breast tumors can arise from
various genetic causes and hallmarks, metastasis is a common stage and should serve as
a primary target for therapeutic intervention. Current therapeutic standards for breast
cancer involve surgical resection of the primary tumor accompanied by radiation therapy
or chemotherapy. Cytotoxic drugs and hormone-blocking therapeutics are often used in
breast cancer; however, they do not prevent metastasis as they mainly affect proliferation,
cell cycle and apoptosis. Despite the importance and centrality of the invasion and metas-
tasis hallmark in breast cancer, no treatment to permanently eradicate metastatic breast
cancer exists at present.

Fundamental understanding of the cancer hallmarks has facilitated the development
of knowledge-based therapeutics. Regardless of the rapidly growing number of targeted
therapies, their effectiveness is usually transient and prolonged progression-free survival
and remedy are rare; the chances of survival usually increase if the tumor is detected
early and surgically excised [53]. Two major reasons explain the failure of current targeted
therapies to cure breast cancer patients. First, the metastatic process, which is the leading
cause of disease recurrence and mortality in breast cancer patients, can arise during the
early stages of pre-malignant cancer, while current therapeutics target all other hallmarks
of breast cancer excluding invasion and metastasis. Second, breast cancer cells undergo
Darwinian evolution and natural selection in response to therapies that target hallmarks
such as proliferation, apoptosis and cell survival. This process leads to the development
of tumor cells resistant to therapy. Notably, while treatments for most cancer hallmarks
are currently available, no cure for invasion and metastasis in general and breast cancer in
particular currently exists.
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Gene expression profiling of breast tumors has yielded signatures from which prog-
nostic tests could be derived to facilitate clinical and therapeutic decision-making in breast
cancer patients. Interestingly, although intended to predict the metastatic potential of breast
tumors, most of these tests gain predictive and prognostic power from the quantification
of genes that are involved in proliferation and are efficient for only specific subtypes of
breast cancer [54]. Using the needle collection technique, which enables isolation of the
invasive population of cancer cells from a tumor, it was previously demonstrated that
proliferation and cell cycle genes are down-regulated, while the expression of motility
and invasion and DNA-repair genes is up-regulated in invasive breast cancer cells within
the primary tumor [55]. Today’s predictive tests are based on whole tumor tissue, which
includes a heterogeneous population of tumor cells and various stromal cells. Considering
that in every given moment only a small fraction of cancer cells invades the surrounding
tissue and intravasates into blood vessels and due to the transient, rare and short-lived
nature of the metastatic process, gene expression changes which regulate invasiveness and
metastasis in breast tumor cells within the primary tumor would be missed by profiling
whole tumor chunks.

Within primary breast tumors, tumor cell intravasation occurs at micro-anatomical
doorways on blood vessels of the tumors, called Tumor Micro Environment of Metastasis
(TMEM). Each functional TMEM doorway comprises three different cell types in direct
and stable physical contact: a tumor cell highly expressing the actin-regulatory protein
Mammalian-enabled (MENA), a tumor-associated macrophage expressing high levels of
perivascular tyrosine kinase with immunoglobulin-like loops and epidermal growth factor
homology domains 2 (TIE2) and VEGF (TIE2hi/VEGFhi) macrophage and an angiopoietin
2 (ANG2) secreting endothelial cell [56,57]. TMEM doorways have been identified in
mouse and human mammary carcinomas and their density correlates with metastatic
outcomes in breast cancer patients [58–60]. Because intravasation of tumor cells into blood
vessels is a critical step in the systemic spread of tumor cells and a general mechanism
that metastatic cells use, which does not directly depend on changes in gene expression
or natural selection within the primary tumor, TMEM may be preferable as a method for
predicting the metastatic potential of breast tumor cells.

3. Scientific Research and Therapeutic Applications

To gain an insight into research efforts invested on each of the hallmarks, we analyzed
the association between each of the ten hallmarks and relevant scientific research publi-
cations. As demonstrated in Figure 1, the invasion and metastasis hallmark is associated
with the most significant number of publications (association score 0.107), implying that
this hallmark is highly explored. Not surprisingly, the second highly studied hallmark is
sustaining proliferative signaling (association score 0.052), demonstrating that significant
effort is still invested in the proliferation of the primary tumor. We next compared research
publications related to anti-metastasis inhibitors versus all research publications associated
with breast cancer therapeutics. Surprisingly, only a small fraction (<3%) of publications
was related to anti-metastasis inhibitors, while most publications on breast cancer thera-
peutics address the other hallmarks (Figure 2). Moreover, although the importance of the
invasion and metastasis hallmark is highly appreciated in the scientific community and as
can be demonstrated by the constantly growing number of publications on breast cancer
metastasis and therapeutics, very few clinical trials concentrate on testing anti-metastasis
inhibitors at present and even less of them focus on inhibitors of breast cancer metastasis.
These data suggest that while the invasion and metastasis hallmark is highly appreci-
ated and widely researched in the laboratory, a significant gap exists between research
performed in the laboratory and its clinical and therapeutic applications.
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Translating research findings in invasion and metastasis into clinical applications
is challenging for two major reasons. First, tumor size, which is affected by all other
hallmarks of cancer besides invasion and metastasis, is considered an indicator for cancer
progression mainly because it is a measurable endpoint and is constantly used in clinical
trials. However, tumor size does not usually correlate with the invasion and metastasis
potential of tumor cells and can sometimes even have an opposite correlation [61]. Second,
as metastatic dissemination is a prolonged process, which can sometimes even appear after
a decade or two after initial diagnosis and treatment, considerations such as time frame of
the experiment, treatment period with the inhibitor which is meant to prevent metastasis,
the starting point of the experiment and selection of correct experimental groups, become
relevant. Several recent developments could offer a solution to this dilemma. First, an
FDA draft guidance defined metastasis-free survival (MFS) as a valid endpoint in clinical
trials was recently published [62]. Defining MFS as an endpoint instead of overall survival
enables earlier evaluation of prognostic criteria in general and metastatic dissemination.
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Second, it was previously published that cytotoxic treatment of breast cancer such as
neoadjuvant therapy can potentially induce cell invasiveness and metastatic dissemination
due to its ability to result in cell damage and wound healing-like inflammatory processes
which recruit immune cells that are manipulated by tumor cells to become pro-metastatic.
Performing clinical trials with anti-metastatic drugs on breast cancer patients who receive
neoadjuvant therapy could shorten the experiment time and enable faster evaluation
of results. Indeed, several clinical trials which use the neoadjuvant setup are currently
being performed with the Tie2 inhibitor rebastinib, which is tested for its ability to inhibit
neoadjuvant-induced breast cancer metastasis.
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PubMed search. The search query used to retrieve drug-associated publications was: (“drug”|“drugs”|” treat-
ment”|“treatments”|“therapy”|“therapies”) AND (“breast”). The search query used to retrieve antimetastatic-associated
publications was: (“anti-metastatic”|“antimetastatic”|“anti-metastasis”|“antimetastasis”|“anti-invasive”|“anti-
invasion”|“anti-migratory”|“anti-migration”|“anti-degradation”|“antiproteolytic”|“antiproteolysis”|“anti-
MMP”|“anti-matrix metalloproteinase”|“metastasis prevention”|“metastatic prevention”|“anti-invadopodia”)
OR (“invasion”|“invadopodia”|“migration”|“degradation”|“proteolysis”|“proteolytic”|“MMP”|“matrix metallopro-
teinase”) AND (“inhibitor”|“inhibitors”|“antagonist”|“antagonists”) AND (“breast”). The ratio between the queries is
represented by a dashed line.

4. Concluding Remarks

Even though the hallmarks model excellently illustrates what goes wrong in breast
cancer cells, it fails to interrogate the hierarchy of the hallmarks in the broader aspect of
therapeutic approaches. Being the most defining characteristic of malignancy, the invasion
and metastasis hallmark should be placed in the center of attention and considered a
potentially superior therapeutic target. Our analysis demonstrates that, while it is well
recognized that invasion and metastasis is the most important hallmark of breast cancer,
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its prevention receives very little attention in the literature compared to preventing other
hallmarks in primary or secondary breast tumors. These observations justify the necessity
of shifting both scientific and clinical attention towards the invasion and metastasis hall-
mark as a potential therapeutic target in breast cancer. With new developments such as
defining MFS as an endpoint in clinical trials and recognizing neoadjuvant treatment as a
possible accelerator of breast cancer metastasis, this strategy becomes feasible. A successful
application of this concept will depend on a collaborative effort of researchers, physicians
and pharmaceutical scientists.
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