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Image-based pooled whole-genome CRISPRi
screening for subcellular phenotypes
Gil Kanfer1,3, Shireen A. Sarraf1, Yaakov Maman6, Heather Baldwin1, Eunice Dominguez-Martin1, Kory R. Johnson5, Michael E. Ward2,
Martin Kampmann4, Jennifer Lippincott-Schwartz3, and Richard J. Youle1

Genome-wide CRISPR screens have transformed our ability to systematically interrogate human gene function, but are
currently limited to a subset of cellular phenotypes. We report a novel pooled screening approach for a wider range of cellular
and subtle subcellular phenotypes. Machine learning and convolutional neural network models are trained on the subcellular
phenotype to be queried. Genome-wide screening then utilizes cells stably expressing dCas9-KRAB (CRISPRi),
photoactivatable fluorescent protein (PA-mCherry), and a lentiviral guide RNA (gRNA) pool. Cells are screened by using
microscopy and classified by artificial intelligence (AI) algorithms, which precisely identify the genetically altered phenotype.
Cells with the phenotype of interest are photoactivated and isolated via flow cytometry, and the gRNAs are identified by
sequencing. A proof-of-concept screen accurately identified PINK1 as essential for Parkin recruitment to mitochondria. A
genome-wide screen identified factors mediating TFEB relocation from the nucleus to the cytosol upon prolonged starvation.
Twenty-one of the 64 hits called by the neural network model were independently validated, revealing new effectors of TFEB
subcellular localization. This approach, AI-photoswitchable screening (AI-PS), offers a novel screening platform capable of
classifying a broad range of mammalian subcellular morphologies, an approach largely unattainable with current
methodologies at genome-wide scale.

Introduction
Recent advances have expanded traditional genetic screens from
bacteria and yeast to mammalian cells. RNAi, CRISPRi, and
CRISPR screens rely on two main strategies: arrayed and pooled
screens. Arrayed screens are highly specific, but require the
production and, by definition, individual assortment of each
RNAi or CRISPR guide separately, requiring high-throughput
equipment not readily available to academic laboratories.
Pooled screens are more facile, but had been restricted to phe-
notypes that affect cell growth rates or viability or result in a
fluorescence increase that allows for isolation of hits from the
population by using FACS. Single-cell RNA-based pooled screens
are also useful to link genetic profiles to perturbations (Horlbeck
et al., 2018; Datlinger et al., 2017; Dixit et al., 2016; Adamson
et al., 2016). The use of image-based pooled genetic screens
linking phenotypes to genotypes was previously reported in
three independent studies in which in situ barcoded sequencing
was coupled to phenotypes. First, this approach was used to
identify photostable and brighter variants of a fluorescent

protein by testing 60,000 mutation variants (Emanuel et al.,
2017). Then, an in situ platform was integrated with CRISPR
genetic screens to identify genes involved in RNA nuclear lo-
calization, while another CRISPR screen used in situ sequencing
imaging to identify factors associated with nuclear factor κB
translocation regulation. These later two methods screened 162
CRISPR guides inWang et al. (2019) and 3,063 guides in Feldman
et al. (2019). More recently, a semiarrayed 12,500 gRNA CRISPR
screen was used to identify regulators of stress granule forma-
tion (Wheeler et al., 2020). These methods enable the investi-
gation of protein pathways regulating subcellular organization
and positioning in an unbiased manner. In addition to unbiased
CRISPR screens linking microscopic phenotypes to genotypes,
single-cell images linking microscopic phenotypes to genotypes
were established by a new method called single-cell magneto-
optical capture (Binan et al., 2019). Although these processes are
elegant andwill improve genetic studies, they are not well suited
for high-throughput large-scale screens. Hence, we propose that
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a simple photoactivation of cells with desired phenotypes cou-
pled to cell sorting will reduce image-based screen complexity.
Previously, B lymphocyte isolation and characterization were
conducted from photoactivatable transgenic mice by coupling
photoactivation and flow cytometry (Victora et al., 2010). In
addition, in a more recent study, photoactivation coupled to flow
cytometry enabled the investigation of the link between the
morphology response to a drug and the genetic profile at single-
cell resolution (Hasle et al., 2020).

Recent advances in machine learning, and particularly in
deep learning (convolutional neural networks [CNN]; Caicedo
et al., 2019; Bzdok et al., 2018), offer novel strategies for iden-
tifying individual cells with altered organelle morphology or
subcellular protein localization. We developed a screening
method to identify genetic perturbations of subcellular mor-
phologies that is widely applicable and high throughput. The
method is divided into four steps. First, a morphology classifi-
cation model is trained on single-cell images. Second, pools of
CRISPRi-perturbed target cells are imaged sequentially, and the
phenotypically selected cells are labeled by laser photoactivation
of a fluorescent protein. Third, the photoactivated cells are
sorted. Fourth, the guides within the phenotypically identified
cells are amplified and sequenced. The decision to select cells is
made on the fly by pretrained classification models allowing for
screening of 106 cells within 12 h and the whole human genome
in a week.

Results
Building the single-cell imaging screening approach
We developed a new platform that assesses images of cells and
uses machine learning to distinguish their subcellular pheno-
types. By using laser activation of a fluorescent probe to denote
the selected cell phenotypes and FACS to separate the cells for
guide sequencing, one essentially converts the individual cells
exposed to pooled CRISPRi libraries into an arrayed screen (Fig. 1
a, i–iii). By using this approach, every imaged cell is referred to
as an independent entity, and a predicted phenotype score is
produced based on a classification machine-learning model
(Fig. 1 a, ii). Making the artificial intelligence (AI) platform en-
tails three steps: training and creation of the phenotype classi-
fication model, model deployment on pooled imaged cells, and
validation of themodel’s screening performance.We used Pink1-
dependent Parkin translocation to mitochondria as a proof of
concept (Fig. 1 b). In cells with unimpaired polarized mito-
chondria, Parkin is in the cytoplasm; however, upon mito-
chondrial depolarization, it translocates to mitochondria
(Narendra et al., 2008; Fig. 1, b and c). This binary switch in the
Parkin location is suitable for detection by a support vector
machine (SVM) classification model. An SVM classification
model was trained on images of cells with either cytosolic or
mitochondrial GFP-Parkin. To build the SVM classification
model, 18 features were computed from 2,500 single-cell images
of cytosolic or mitochondrial GFP-Parkin (Fig. 1 d). The features
were computed by using the R image processing and analysis
package, EBImage (Pau et al., 2010). To prevent classifier over-
fitting and reduce the computational cost, five cellular features

measuring the 5% intensity quantile, the SD of intensity, mini-
mum radius, eccentricity, and area that showed distinct variation
were selected (Fig. 1 e). The selected features and labeled cell
images were computationally applied on a nonlinear SVM algo-
rithm for creating the classification model (Fig. S1 a).

To optimize the model, we performed iterations and calcu-
lated the performance by area under the precision-recall curve.
To prevent overfitting, we shuffled the featured data and split it
into two unique groups, a test set and a training image set. We
then fitted an SVMmodel on the training set and evaluated it on
the test set, and then an accuracy score was calculated. This
procedure was iterated 100 times where every observation was
allowed to be used in the training or test set only once. On
∼5,000 single-cell images, the classifier accuracy was 99% (Fig.
S1, b and c). Next, we generated an easy-to-use graphical user
interface program to facilitate image segmentation, measure-
ment, and model building (Fig. S2). The R-based script for image
segmentation and analysis, as well as the SVM classification
model, were deployed on the fly to identify cells exhibiting the
desired phenotype—GFP-Parkin mitochondrial localization.
During live-cell image acquisition, single-cell images were cap-
tured following segmentation and stored on a local computer
(Fig. S2). The accuracy of the segmentation procedure was
compared with the gold standard manual segmentation by using
the Nikon Imaging System (NIS) elements imaging software.
The segmentation was evaluated by calculating the intersection
over union. Comparing the intersection over union of the cur-
rent segmentation procedure with CellProfiler showed very
similar segmentation scores (Fig. S1 c). The SVM-based model
classified the individual cells and generated a mask corre-
sponding to the live image field identifying the location of cells
with the phenotype of interest (Fig. 1 f and Video 1). In cells
identified with this mask, photoactivatable mCherry (pa-mCh)
was then laser photoactivated. Selected cells were photo-
switched by illumination of 50ms/pixel dwell timewith 80%UV
laser intensity. This parameter was chosen so as to reduce the
photoactivation time, eliminate unwanted activation of adjacent
cells, and maximize signal intensity. This 10-s process was
iterated across serial images of the entire chamber slide—an
average of 600,000 cells for one subgenomic CRISPRi guide pool
(Gilbert et al., 2014; Horlbeck et al., 2016). Finally, the photo-
activated samples were sorted by using flow cytometry andwere
deep sequenced to determine sgRNA abundance in the activated
sample compared with untreated cells.

Photoactivation accuracy and performance
The performance of phenotype classification and sorting of
photoactivated cells were evaluated separately. First, dCas9-
KRAB (Horlbeck et al., 2016) was expressed and tested in
U2OS cells expressing pa-mCh and GFP-Parkin (Fig. S1 d). To
calculate the sorting accuracy of the detected and photoactivated
cells from the entire population, we experimentally mixed cells
blocked for Parkin recruitment with WT cells (Fig. 2 a). In brief,
we gradated a mixture of blue fluorescent protein (BFP)–tagged
gRNA-targeting PINK1 cells with WT cells expressing GFP-
Parkin and dCas9-KRAB and pa-mCh in a ratio of either 0.1%,
0.5%, 5%, or 10% sgPINK1 with WT cells (Fig. 2 a, i). Then, cells
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were treated with carbonyl cyanide m-chlorophenyl hydrazone
(CCCP) to stimulate Parkin activation (Fig. 2 a, ii). Cells with
Parkin evenly spread in the cytosol that had failed to activate the
PINK1-Parkin pathway were photoactivated and sorted. The

sensitivity and specificity of cells were analyzed from the BFP
and pa-mCh intensity ratio (Fig. 2 a, iii and iv). First, we ob-
served that, with a phenotype penetration from 0.5% to 10%,
both the precision and recall scored similarly at ∼85% (Fig. 2,

Figure 1. Machine learning genetic screening platform for Parkin localization: proof of principle screen. (a) Screen illustration. The AI-PS platform is
composed of three components i: Transduction. GFP-Parkin, pa-mCh, and dCas9-KRAB cells transduced with a subpooled library of sgRNA. ii: Machine learning
modeling. Single-cell images are labeled and trained using SVM classification of mitochondrial Parkin vs. cytosolic Parkin. iii: AI-PS deployment. First, cells are
imaged and segmented, and then the phenotypes of targeted cells are called and photoactivated. (b) Representative images of GFP-Parkin U2OS cells treated
with DMSO or CCCP (2 h). Scale bar, 5 µm. (c) Translocation dynamic analysis of GFP-Parkin cells imaged for 25 h (1,500 min) in 1-min time lapses. Percent of
cytosolic Parkin over time after 10 µM CCCP treatment supplemented with 100 nM bafilomycin A. n = 7, mean ± SD. (d) PCA analysis of 18 feature predictors
calculated from 5,435 single-cell images using the R function computeFeatures from the EBImage library. The images are pooled from five different biologic
repeats. (e) Table includes all the input features computed. **features selected for the model. (f) Image examples of field of view of GFP-Parkin U2OS cell
screening procedure. i: Images were captured and saved on a local computer. Top: Parkin-GFP. Bottom: Draq5 dye for nucleus segmentation. ii: Cell borders
were identified (green circle surrounding cell border, red circle the nucleus) following nucleus segmentation. Bottom: mCherry channel for ph-mCh protein. iii:
SVM classification model was deployed and masked (red circle). Photoactivation of the SMV identified cell. Scale bar, 10 µm.
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b–d); however, reducing the phenotype penetration to 0.1% re-
sulted in a reduction in both recall and precision for values to
65% and 50%, respectively (Fig. 2, b–d). Therefore, in compari-
son to the previous study (Hasle et al., 2020), the FACS sepa-
ration performance values are slightly lower in precision (85%
vs. 94%) and slightly higher in recall values (86% vs. 80%).
Similar to previous work with the pa-mCh fluorescent protein
that we used in the current study (Patterson and Lippincott-
Schwartz, 2002), we found that UV light activation resulted in
an 80-fold increase in signal intensity.

Parkin translocation screen validation
For platform validation, U2OS cells stably expressing GFP-
Parkin, pa-mCh, and dCAS9-KRAB were infected with a sub-
pool of the version 2 CRISPRi library comprising 12,775 guides
targeting kinases, phosphatases, and the druggable genome
(Horlbeck et al., 2016). Cells were treated with CCCP to depo-
larize mitochondria, and GFP-Parkin localization was assessed
by using the SVM classification model (Fig. 3 a). From one batch,
for example, of ∼200,000 cells, 1,132 were called, photo-
activated, sorted, and sequenced (Fig. 3 b). For calculating gRNA
frequency, we preformed deep sequencing and compared gRNA
that was abundant between the photoactivated samples and total
gRNA composition before the screen. The gRNA enrichment log2
fold change threshold was modeled based on the nontargeting
negative control distribution (Fig. 3 c). The most enriched
sgRNAs identified in the photoactivated samples were targeted
against PINK1 (Fig. 3 d), known to be required for Parkin
translocation, exhibiting a nearly 30-fold increase compared
with the unsorted control sample (false discovery rate [FDR]
adjusted P < 0.0001; Table S1). Thus, the single known Parkin
modifier targeted in the subpool library, PINK1, was identified,
validating the method. In addition, sample size estimation in-
dicated that three biological repeats are sufficient for detecting
the desired genetic link in our experimental setup (Fig. 3 e). To
estimate screening performance, we evaluated AI-photoswitchable
screening (AI-PS) screens by using power analysis simulation. The
FDR was set to range from 5% to 15%. A power of 80% was cal-
culated from the Parkin screen, indicating that triplicates of
200,000 cells are sufficient for screening one guide subpool
comprising one seventh of the human genome; however, in-
creasing the sample size to five repeats would increase the power
and performance of this screen (Fig. 3 e).

TFEB nuclear localization screen: CNN-based screen
To explore a subcellular phenotype with more complex regula-
tion, we screened for genes affecting the nuclear localization of
the transcription factor EB, TFEB. Upon nutrient starvation,
TFEB moves from the cytosol to the nucleus, where it activates
the transcription of lysosome- and autophagy-related genes
(Settembre et al., 2011). Upon prolonged starvation, mammalian
target of rapamycin (mTOR) is reactivated, presumably due to
replenishment of nutrients through autophagy, lysosomes re-
populate the cells (Yu et al., 2010), and TFEB returns to the
cytosol (Fig. S3, a and b; and Video 2). As the import of TFEB to
the nucleus is well elucidated (Puertollano et al., 2018), we as-
sessed TFEB reappearance in the cytosol following prolonged

starvation-induced nuclear import. U2OS cells stably expressing
GFP-tagged TFEB, pa-mCh, and dCas9-KRAB (designated as
TFEB-GFP) were infected with a lentiviral library expressing
sgRNAs against the entire genome divided in seven separate
subpools (Horlbeck et al., 2016). The screen was split into seven
subscreens, one per day for 7 d. To increase reproducibility, each
subpool screen was repeated at least three times.

CNN classification model for TFEB translocation prediction
Because SVM classification failed to predict TFEB nuclear lo-
calization accurately (performance comparison between area
under the precision-recall curve of 72% for the TFEB SVM
classification model vs. 99% for the Parkin model; Fig. S4 and
Fig. S1 b), we used deep learning via a CNN (Fig. 4 a, i-iii; and Fig.
S3 c). The training set was composed of 100,000, 150-pixel ×
150-pixel single-cell images using two data sets, one for each
phenotypic classification (Fig. 4 b). The single-cell images were
generated by using the R-based segmentation script deployed by
AI-PS and manually classified. The CNN architecture was based
on ImageNet (Deng et al., 2009) architecture and composed of
three deconvolutions and four Max pooling processes, which
were followed by a fully connected dense network (Fig. S3 c).

Next, for testing our CNN classification model, single-cell
images of GFP-TFEB test set were used to predict CNN classifi-
cation performance compared with a parametric classification
approach of the same test set. We performed this analysis and
compared our CNN classification model to average pixel inten-
sity in the nucleus vs. the cytoplasm-based prediction. Com-
paring CNN performance to pixel intensity computing yielded
no significant difference in performance (CNNmodel prediction
in Fig. 4, c and d; and parametric model prediction in Fig. S3, d
and e). These results indicate that, in the case of the TFEB
translocation classification problem, both methods preform
equally and sufficiently for this task. The accuracy of pixel in-
tensity computation of the parametric model is slightly greater
than the CNN model (90% vs. 88%), whereas the classification
prediction of the CNN model is better in specificity (97% vs.
83%). In the nature of the current screen, as the frequency of the
desired cell phenotype is low, specificity is more of interest
relative to sensitivity (Fig. 4, c and d; and Fig. S3, d and e).
Overall, it is not clear why the CNN model shows higher per-
formance than the SVMmodel. We speculate that the difference
is most likely because of the segmentation step of our CNN
model, where uneven illumination of image examples was in-
troduced in the training set.

TFEB translocation primary screen
GFP-TFEB cells expressing guide libraries were grown under
complete nutrient deprivation conditions for 8 h before the
commencement of screening, after which those cells retaining
TFEB in the nucleus were photoactivated (Fig. 5 a), isolated by
FACS, and deep sequenced (Fig. 5, b and c; and Video 3). To
assess the variation between the triplicate read counts of each
subpool, we computed the coefficient of variation between the
triplicate screens with the log2-CPM (count per million) nor-
malized mean count per sgRNA. Every subpooled library con-
tains 500 nontargeting gRNAs. The distribution of these gRNAs
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and the number of detectable gRNA per subpooled library sup-
ports a minimal variation (Fig. 6 a). From this analysis, we
conclude that the overall in-group variation between the trip-
licate screens is minimal (Fig. 6 b, i-vii); however, there is
considerable variation between the different guide subpool
samples comparing photoactivated and control unactivated cells.
The between-subpool sgRNA variation is reflected in the abun-
dance analysis, since in one pool, the membrane protein-related
genes were highly enriched in our gene set analysis, indicating a
higher false positive rate and a higher false negative rate than,

for example, in subpool H3 or H4 (Fig. 6 b, iii, iv, and vi).
Thus, we cannot exclude that some hits were missed in our
analysis.

Among the seven subpooled libraries, a mean accuracy of
90% was calculated from the approximation of the area under
the precision-recall curve (Fig. 7 a).

The power calculation simulated from the TFEB screen re-
sulted in a power range of 50% to 80% in six of seven subpooled
libraires (Fig. 7 b, i–vii); however, consistent with the power
simulation of the Parkin screen, increasing biologic repeats (e.g.,

Figure 2. Performance evaluation of AI-PS flow cytometry sorting. (a) Schematic representation of performance test. i: Mixture of GFP-Parkin cells (black
nucleus) and GFP-Parkin cells expressing sgRNA targeting PINK1 (blue nucleus). ii: The color green is concentrated on the mitochondria in WT cells (black
nucleus). The color green is dispersed in the cytoplasm of sgRNA-targeting PINK1 cells (blue nucleus). iii: sgPINK1 cells are detected and photoactivated. iv: The
detection and flow cytometric separation of the cell populations are evaluated. T.P., true positive; T.N., true negative; F.P., false positive; F.N., false negative.
(b) U2OS cells expressing dCas9-KRAB and GFP-Parkin were mixed with 10% (top left), 5% (top right), 0.5% (bottom left), and 0% (bottom left) of the sgPINK1-
BFP–expressing cells. Cells with cytosolic GFP-Parkin were automatically called by the AI-PS SVM algorithm and photoactivated. The positive activated cells
were gated by the BFP and RFP signals. 200,000 cells were subjected to the AI-PS procedure and the example scatter plot was set on 50,000 cells per
condition. n = 3; x-axis mCh signal in log10 scale, y-axis BFP signal in log10 scale. For each scatter plot, the recovered cells are in the upper right gate, missed
cells are in the upper left gate, and misclassified cells are in the bottom right. (c and d) Bar graph presenting the precision (c) and recall (d) calculated per
condition. mean + SD; n = 3.
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five biologic repeats) would improve the screening performance
and reduce the FDR (Fig. 7 b and Fig. 3 e).

For calculating gene enrichment, we subjected the sgRNA list to
the rotation gene set test provided by theRpackage, EdgeR (Robinson
et al., 2010). The entire photoactivated and sorted gene abundance
ranking list analyzed for ontology clusters revealed enrichment in
mitochondrial and kinase complex gene sets (Puertollano et al., 2018;

Nezich et al., 2015) that may relate to energetic consequences of
mitochondrial states and TFEB post-translational regulation, respec-
tively (Fig. 8 a and Fig. S5). Plasma membrane proteins were also
enriched, perhaps related to cell division rates or nutrient import.
Differential sgRNA abundance analysis between unsorted and pho-
toactivated/sorted samples showed a significant fold-change enrich-
ment in 64 genes (Fig. 8 b and Table S2).

Figure 3. Validation of the platform with a Parkin localization screen, targeting kinases, phosphatases, and drug targets—gRNA pooled library
(12,500 sgRNAs targeting 2,774 genes). (a) Schematic representation of the AI-PS platform. GFP-Parkin cells, pa-mCh, and dCas9-KRAB cells were
transduced with a subgroup pooled sgRNA library. Cells with cytosolic GFP-Parkin (green color dispersed in cytosol) were photoactivated and sorted by flow
cytometry and subsequently submitted to deep-sequencing analysis. (b) Flow cytometry sorted 385 cells from 77,114. Flow cytometry scatterplot representing
the separation of the postscreen photoactivated from the inactivated cell population. BFP florescence signal y-axis in cyan, mCherry fluorescence signal x-axis
in red. Total number of sorted cells was 2,227 (n = 3). (c) Fold-change threshold was computed from the noise model of nontargeting gRNA distribution. Mean
Log2-CPM fold change in the purple line, fold-change threshold at the red vertical line represents two SDs from the mean (n = 3). Data distribution was
assumed to be normal, but this was not formally tested. (d) Enrichment plot comparing sgRNA abundance in the photoactivated sample following CCCP
treatment to sgRNA abundance before treatment. Vertical red line set on log2-fold change threshold; horizontal red line indicating the Benjamini-Hochberg
corrected P value set on 5%. See also Table S1. The number of sgRNAs detected and filtered was 3,471 targeting 1,157 genes (n = 3). (e) Statistical power
analysis by simulation on the 3,471 sgRNAs retrieved from the Parkin screen. The simulation was done using the R package PROPER (Wu et al., 2015). Effect size
(log of fold-change) in the x-axis, power in the y-axis, the curved lines are color coded for the number of biologic repeats.
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TFEB translocation and validation
A second validation screen was conducted in the 64 enriched
genes by using the top-ranked primary screened sgRNAs. As
with the whole-genome screen, TFEB-GFP nuclear localization
following validation guide transduction during prolonged star-
vation was recorded 8 h after starvation for 10 h. The pertur-
bation effect on TFEB positioning was compared with a
nontargeting control sgRNA. To validate the screen, the TFEB-
GFP positioning score was computed by using a CNN-based
classification algorithm. The mean prediction score over time
was calculated and subtracted from the nontargeting control
sgRNA. To determine if there is a significant prediction score
difference between the nontargeting control sgRNA and the
target sgRNA, we used repeated-measure ANOVA. We found
that 21 of the 64 sgRNAs from the whole-genome analysis sig-
nificantly extended nuclear TFEB retention (Benjamini-Hoch-
berg [BH] corrected P < 0.05, repeated-measures ANOVA;
Fig. 8 c).

Interestingly, these 21 validated hits were among the genes
with the highest-ranked P value significance in the whole-

genome screen (Table S2 and Table S3). Among the validated
genes, the signaling receptor, Transforming Growth Factor Beta
Receptor 1 (TGFBR1), was enriched in the secondary TFEB screen
(Fig. 8, c and d; Fig. 9 a; and Video 4). This may be related to a
previous report of the induction of another MITF (Melanocyte-
Inducing Transcription Factor) family of transcription factors
member, TFE3, by the loss of TGFBR1 (Sun et al., 2016). In ad-
dition, the loss of another hit, Pitx2, in vivo causes an increase in
mitophagy that has been linked to TFEB activation (Nezich et al.,
2015; Chang et al., 2019). Additionally, the membrane protein,
TMEM184b, has been reported previously to play a role in au-
tophagy (Fig. 8, c and d; Bhattacharya et al., 2016; Agod et al.,
2018). The loss of the phosphatase, PPP1R1B, which also scored
among the top validated hits, resulted in significant retention in
TFEB in the nucleus upon starvation (Fig. 8, c and d; Fig. 9 a; and
Videos 5 and 6). As phosphorylation of TFEB is intimately linked
to its activation and subcellular localization (Puertollano et al.,
2018), this hit deserves further mechanistic study. The exten-
sively studied TFEB regulator, mTOR, was not significantly en-
riched in our photoactivated samples. To explore this explicitly,

Figure 4. Deep learning genetic screening platform for TFEB localization. (a) AI-PS screening platform for TFEB translocation. i: Cells were transduced
with subpooled sgRNA libraries. ii: Machine learning model. Single-cell images were labeled and trained using CNN classification of nuclear (nuc) TFEB vs.
cytosolic (cyto) TFEB. iii: AI-PS deployment. First, cells were imaged and segmented, and then the phenotype of target cells was called and they were
photoactivated. (b) Learning set composed of 100,000 single-cell images was used for CNN classification. ImageNet-like CNN architecture was composed of
four sets of convolution processes followed by the max pooling procedure. The phenotype decision is based on probability value. A low probability value was
assigned to cells with cytosolic GFP-TFEB and a high probability value for cells containing nuclear GFP-TFEB. (c) The CNN classification model was applied on
the test set composed of single-cell images of cytosolic or nuclear GFP-TFEB. The confusion matrix was calculated from the test sets, which were collected and
pooled from five biologic replicates. Prior to the CNN classification prediction, the images were manually labeled. The green boxes are designated for the true
positive single-cell counts (upper left) and the true negative (lower right). The pink boxes represent the false positive single-cell count (upper right) and the
false negative (lower left). (d) Precision recall plot summarizes the same image test set. The accuracy is calculated from the precision recall curve. AUC, area
under the curve.
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live-cell imaging of starved GFP-TFEB infected with two distinct
sgRNAs targeting mTOR showed an accumulation of TFEB on
lysosomes, which resulted in punctate cytosolic foci, which was
similar to previous reports (Martina and Puertollano, 2013;
Settembre et al., 2012; Fig. 9 a and Video 7). Therefore, mTOR
was not identified in the enrichment analysis owing to the lack
of classification of this specific mTOR phenotype, which is dis-
tinct from the deep learning model trained for nuclear locali-
zation. A parametric pixel intensity computation model may
have detected such an unanticipated phenotype.

TFEB nuclear translocation is regulated by CREB5
One of the strongest hits is the little-studied transcription factor,
CREB5 (Fig. 8, c and d; Fig. 9 a; and Video 5). CREB5 belongs to
the transcription factor family, CAMP Responsive Element
Binding Protein (CREB). CREB1 was previously reported to me-
diate autophagy and induce the expression of several autophagy
genes, including Ulk1, Atg5, and Atg7, upstream of TFEB fol-
lowing starvation and TFEB itself (Seok et al., 2014). Certain
autophagy genes are more predominantly activated by CREB1

and others more by TFEB. Interestingly, CREB5 knockdown in
U2OS cells caused a decrease in protein expression of the au-
tophagy protein, LC3B, and the lysosomal proteins, LAMP1 and
p39, following 4 h of HBSS incubation. These protein levels were
rescued by the overexpression of CREB5 (Fig. 9 b). In addition,
prolonged GFP-TFEB nucleus retention by CREB5 down-
regulation was decreased by rescuing CREB5 expression
(Fig. 9 c).

Discussion
Here, we present a platform that applies machine learning and
deep learning algorithms to allow for pooled genetic screening
for subcellular image phenotypes. This method, which we call
AI-PS, reduces the time, cost, and complexity compared with
standard screening methods that have required arrayed RNAi or
CRISPR libraries. Recently, another study reported a similar
concept that can be applied to detect the genetic profiles linking
chemotaxis drugs and subcellular phenotypes (Hasle et al.,
2020). Our study strengthens the value of photoactivation-based

Figure 5. Whole-genome GFP-TFEB localization screen. (a) Screen workflow. GFP-TFEB cells were transduced with pooled sgRNA libraries targeting the
whole genome for 7 d. Following 8 h of starvation, AI-PS screening platform was initiated. (b) Images examples of field of view of GFP-TFEB U2OS cell-
screening procedure. i: Images were captured and saved on a local computer. Top: GFP-TFEB; bottom: 2 µM of JD ligand Halo-tag ligand were admitted for
nucleus staining. ii: Cells borders were identified (green circle surrounding cell border, red circle the nucleus) following nucleus segmentation. Bottom: mCherry
channel for ph-mCh protein. iii: CNN classification model was deployed and masked (red circle). Photoactivation of the CNN identified cell. Scale bar, 10 µm.
(c) Flow cytometry sorting of 249 cells from 46,981 (flow cytometry raw data and gating instruction is stored on GitHub). Flow cytometry scatterplot rep-
resenting the separation of the postscreen photoactivated from the inactivated cell population. BFP florescence signal y-axis in cyan, mCherry florescence
signal x-axis in red. For three biologic repeats of seven subpooled libraries (composing the whole genome), ∼12,600,000 cells were screened and 25,579 cells
were photoactivated sorted and sequenced.
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image screens and also shows that it can be used to investigate a
large range of cell biology phenotypes.

The speed of AI-PS screening relies on the sequential exe-
cution of four steps: image capture, segmentation, generation
of classification region of interest, and photoactivation of the
region of interest. For a field of ∼200 cells, these four steps
together take an average of 10 s, which is then iterated across an
entire plate. Therefore, a screen of 600,000 cells infected with
one seventh of the genome guide library, composed of 12,500
sgRNAs, takes ∼12 h. Hence, this accelerated platform, coupled
with a user-friendly interface, should accelerate the utility of
pooled genomic screens. The effective segmentation of live cells
is critical in order to ensure efficiency in training and to avoid
erroneous predictions. We found that the best way to segment
mammalian cells by using the R package, EBImage, was to use
two cellular markers in two different channels. Draq5 was used
to mark the nuclei, which provided the seeds for segmentation.
The other marker provides the cellular borders, or the cytosolic
volume of the cell. The latter is important for the effective
segmentation of a higher confluency of cells, which maximizes
the number of cells screened. Similar two-channel approaches
are commonly used in cellular segmentation (Wählby et al.,
2002; Quelhas et al., 2010; Al-Kofahi et al., 2018). Three of the
four most commonly differentiated channels are used for nuclei
detection (far red), photoactivation (red), and CRISPR guide
RNA expression (blue). Thus, AI-PS utilizes the remaining
green/GFP channel to visualize both the phenotype queried and
the cell borders. Deep learning models are becoming a more
popular tool, but any gain in accuracy they provide is countered

by the computational power and time required to deploy such
models during the AI-PS segmentation step.

The method enables the detection and labeling of cells ac-
cording to subcellular protein localization. We validated this by
identifying PINK1 as the only known reported hit required for
Parkin translocation to damaged mitochondria within the ge-
nome guide sublibrary of kinases, phosphatases, and the drug-
gable genome, demonstrating the validity of the method.

We also used AI-PS to explore a completely different protein
translocation process, one that again would be undetectable via
FACS separation of whole cells based on a change in overall
fluorescence intensity. The transcription factor, TFEB, is re-
tained in the cytosol in growing cells and upon starvation re-
localizes to the nucleus, where it induces transcription of
lysosomal- and autophagy-related genes (Settembre et al., 2011;
Sardiello et al., 2009). Upon prolonged starvation, TFEB returns
to the cytosol via an undefined process. Either nuclear TFEB
migrates back to the cytosol or nuclear TFEB is degraded while
newly synthesized TFEB repopulates the cytosol. As we found
minimal evidence for a role of cytoskeletal or nuclear trans-
porter proteins, whether the appearance of TFEB in the cytosol
is due to the physical shuttling of preexisting TFEB or to an
increase in the translation of new TFEB remains an open ques-
tion. Beyond protein localization screens, our method will be
useful to identify genes involved in the regulation of organelle
abundance, size, and shape.

Similar to the concepts presented in our study, machine
learning–based image analysis has been used for the calling
and sorting of cells (Ota et al., 2018; Nitta et al., 2018); however,

Figure 6. TFEB screen quality control. (a) For deep sequencing, an average of 1,218 (±305) sorted activated cells per library per biologic repeat were
analyzed; number of unique sgRNAs detected per library from a whole-genome screen. sgRNA subpooled library H1 to H7 are color coded. (b) i-vii: sgRNA read
counts were quantile normalized following log2-CPM treatment. The coefficient of variation was calculated as described (Robinson et al., 2010). A locally
weighted linear regression (lowess) mean curve was fitted to the dispersed data using a smother spanning of 0.2. Black fitted curves designated for mean
dispersion of control sample, red fitted curves designated for mean dispersion of control sample; an average number of 2,364,645 (±356,453) reads sequenced
from activated sorted cells per subgroup library per biologic repeat.
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AI-PS conveys distinct advantages. First, the microscopic reso-
lution of AI-PS is much higher than that used during dissociated
cell sorting (Ota et al., 2018; Nitta et al., 2018), allowing for the
identification of more difficult to detect subcellular structures.
Specifically, the detection of minor subcellular events, such as
an alteration in protein distribution, positioning, and motion,
requires high spatial-temporal resolution image acquisition.
Previously publishedmethods used lowmagnification objectives
(4× and 10×) and very short exposure times (<50 ms), which
resulted in low signal-to-noise ratios and are not suitable for the
resolution of subcellular events.

Another advantage of the AI-PS platform is its wide
accessibility—there is no need for specialized flow instrumen-
tation, and the algorithms and code presented here can be
adapted easily for a variety of microscope systems. AI-PS is
compatible with adherent tissue culture cells, unlike sorting-
based approaches for which cells must be in suspension, fur-
ther allowing a more accurate examination of subcellular events
in regular culture conditions. One current limitation of AI-PS is
that the cells must be screened live to allow for trypsinization to
produce single-cell suspension for FACS. Because some pheno-
types would be better screened in fixed cells, we are developing
methods that enable single-cell release of fixed cells to allow
screening of additional cell biology processes. While machine

learning methods require larger training datasets, they have a
clear advantage over standard image analysis algorithms in the
classification and prediction of subtle subcellular phenotypes.
Classification models built with deep learning are less influ-
enced by human bias, since they independently decide which
image features are important for distinguishing between the
two (or more) phenotypes.

The use of machine learning, photoconversion, and deep
sequencing in separate applications is not new. Using our cur-
rent method, we show improvement of the scalability of pooled
optical screens in comparison to similar approaches already
reported. However, we show that, compared with a previous
pooled visual genetic screen (Feldman et al., 2019), only 32% of
the primary screen hits were validated to directly affect TFEB
translocation in a secondary assay. We cannot rule out that this
lower validation rate is a result of the large scale of the current
screen which increases the complexity and might increase
variation. In the future, in order to increase the discovery rate of
large AI-PS screens, a few considerations are recommended.
First, in the current study, we observed that increasing the bi-
ological replicates from three to five resulted in a significant
power increase. Second, as discussed previously, faster and
larger imaging fields will allow for greater screening sample
sizes. In addition, from our flow cytometry data, we learned that

Figure 7. TFEB screen statistical power modeling and performance. (a) GFP-TFEB phenotype classification performance by CNN. Single-cell images of
GFP-TFEB induced with the designated library (color coded, H1–H7) were collected. Precision-recall curve from 5,203 single-cell images pooled from three
biologic repeats. Image collection began 8 h after starvation was initiated and continued for another 10 h. The accuracy was computed from the integral area
under the precision-recall curve (area under the curve [AUC]). The AUC was calculated per subpooled library (designated by color). (b) i-vii: Statistical power
analysis by simulation of the sgRNA read counts retrieved from the TFEB screen. Mean unique sgRNAs detected used for the simulation was 2,680 ± 512 and
average read count of 282 ± 64. The simulation was done using the R package PROPER, effect size (log of fold-change) is shown in the x-axis, power in the
y-axis, the curved lines are color coded for number of biologic repeats. For each subpooled library, there was a sample size of 3 (red curve), 5 (green curve), 7
(cyan curve), and 9 (purple curve).
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Figure 8. Whole-genome GFP-TFEB localization screen. (a) GSEA pathway analysis annotated using the gene sets derived from the GO Cellular Component
database of the Molecular Signatures Database. On the x-axis is the GSEA normalized enrichment score, and the color of the bars represents the GSEA
calculated FDR probabilities. (b) Volcano sgRNA plot comparing sgRNA abundance in the photoactivated samples following 8 h of starvation to sgRNA a-
bundance in the unsorted sample. Vertical red line is set at the log2 fold-change threshold; horizontal red line is set at the Benjamini-Hochberg corrected P
value of 15%. Genes selected for secondary screening are shown in green. See also Table S2. (c) Top candidates from the primary screen were selected for
secondary screening. The GFP-TFEB localization CNN model probability value was used for measuring the perturbation effect on GFP-TFEB localization over
time during starvation. Heatmap including all genes included in secondary screen; low probability values are shown in purple for cytosolic TFEB-GFP, high
probability values (yellow) for nuclear TFEB-GFP. n = 3, *P < 0.05, **P < 0.01, or ***P < 0.0001 obtained using repeated-measures ANOVA test. P value, one
sgRNA was significant. Data distribution was assumed to be normal, but this was not formally tested. (d) Triplicates of 350 images per sgRNA knockdownwere
imaged for 18 h during starvation. The AI-PS segmentation and CNN prediction was deployed to compute the translocation value (y-axis). GFP-TFEB
translocation dynamics observed during starvation for selected gene candidates, nontargeted sgRNA in black, gRNA targeting the designated protein in red.
Quantification is displayed as mean ± SEM from three independent experiments.
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Figure 9. Selected sgRNA targeting genes validated in the TFEB-GFP secondary screening and CREB5 expressing rescuing TFEB nucleus retention
upon starvation. (a) Images selected from triplicates of 350 images per sgRNA knockdown (designated in black) made over an 18-h time course during
starvation. Low probability values are shown in green for cytosolic GFP-TFEB, high probability values (red) for nuclear TFEB-GFP. TFEB-GFP–expressing U2OS
cells treated with the designated sgRNA were starved in HBSS for 18 h and images were acquired every hour. Scale bar, 5 µm. (b) The mean CNN-based
prediction values were calculated from 2,500 single-cell images per condition HBSS starved for 1–8 h. Mean ± SEM from three independent experiments.
(c) Cell lines from b were analyzed by immunoblotting with antibodies against LC3B, LAMP1, p39, and loading control actin. n = 2. CREB5, pHAGE vector
expressing full length CREB5; n.t., nontargeting sgRNA; vector, mock pHAGE vector expressing RFP only. ***P < 0.0001 (one-way ANOVA).
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>0.5% frequency of the desired cell phenotype decreases false
positives.

Prediction of TFEB nuclear translocation by using the deep
learning approach was more accurate than the SVM classifica-
tion model, possibly because of discrepancies in classification
accuracy owing to the uneven fluorescence intensity of the TFEB
signal. Although the cell line was carefully generated from a
single clone, over several passages the TFEB expression level
diverged across the population. The use of low magnification
objective (20×) with a low NA value of 0.75 further amplified
these variations. To address this, unevenly illuminated images
were introduced into our CNN classifier builder by adding an
augmentation step to our image batch generator before training.
In future screening designs, there are several steps that can be
used to overcome this issue. First, knocking-in GFP into the TFEB
or gene of interest locus may decrease expression variability. In
addition, highermagnification objectives equippedwith better NA
lenses would decrease the illumination heterogenicity.

Another step to improve AI-PS would be to reduce the seg-
mentation time per image to speed up the screen. Fortunately, a
huge improvement in cell segmentation, specifically the de-
velopment of deep learning–based techniques, such as U-Net
segmentation (Caicedo et al., 2019; Hollandi et al., 2020;
Ronneberger et al., 2015), can be used in AI-PS. This new deep
learning–based segmentation has the potential for at least a
fivefold reduction in analysis time. Increasing the speed will
make it possible to increase the sample size, thereby increasing
the sgRNA coverage in the sorted samples and decreasing the
FDR. Another strategy for increasing specificity would be to use
single-cell DNA sequence analysis. In the future, simultaneous
imaging with two CEMOS cameras will reduce capture time.
Finally, large-format camera sensors with larger field-of-view
capturing will greatly improve the overall screen since more
cells can be screened and analyzed. Another limitation of AI-PS
is that to complete a whole-genome screen, we image 600,000
cell batches in three repeats. To minimize the overall screening
time, we reduced the number of fields of view to be screened by
seeding cells at 90% confluency. The high confluency allows
more cells to be screened, but results in a slight reduction in the
accuracy of segmentation. Therefore, to allow for longer screen
image acquisition times and therefore lower cell seeding den-
sity, a major improvement will be to screen fixed cells with
a reversible fixation method to allow cell sorting following
photoactivation.

The tool we present here is best suited for low-phenotype
alteration hit rates—that is, when only 0.5% to 1% of cells are
called per field of view captured to minimize photoactivation
time. For example, in the current TFEB screen, a mean of three
cells were detected and activated per field of view. Therefore, for
the current screen, a galvo-miniscanner photoactivation unit
was sufficient; however, in a scenario where the phenotype-
altering hit rate is much higher, a faster photoactivation unit,
such as a DMD illumination module, would be more suitable.

In conclusion, our platform demonstrates the novel im-
plementation of machine learning to improve cell biology re-
search and discovery, and enables phenotypic-based screening
at the subcellular level, an approach largely unavailable

previously. Additionally, AI-PS can be implemented for drug
target exploration and may prove to be valuable in methods
targeting single cells within complex human samples.

Materials and methods
Cell lines, constructs, and reagents
U2OS and HEK293T cells were cultured in a humidified incu-
bator at 37°C and 5% CO2 and maintained in DMEM (Life
Technologies) supplemented with FBS (10% vol/vol; Gemini Bio
Products), 10 mM Hepes (Life Technologies), 1 mM sodium py-
ruvate (Life Technologies), 1 mM nonessential amino acids (Life
Technologies), and 2 mM glutamine (Life Technologies). Testing
for mycoplasma contamination was performed bimonthly by
using the PlasmoTest kit (InvivoGen).

For constituting a stably expressing dCas9-KRAB U2OS cell
line, we took a similar approach to that described previously
(Tian et al., 2019). In brief, pC13N-dCas9-BFP-KRAB (127968;
Addgene) was integrated into the U2OS genome by using
F-Talen and R-Talen (pZT-C13-R1 and pZT-C13-L1; Addgene:
62196, 62197), targeting the human CLYBL intragenic safe harbor
locus between exons 2 and 3 [as described previously by Tian
et al. (2019)]. The U2OS-dCas9-KRAB cell line was then
subcloned and the dCas9-KRAB activity assessed to select the
most potent clones for further use by live plasma membrane
immunostaining (Fig. S1 d). In brief, dCas9-KRAB U2OS clones
were induced with lentivirus-expressing gRNA-targeting
Transferrin receptor or N-Cadherin. Following 4 d of induc-
tion, cells were seeded on an imaging chamber and immunostained
with antibody against Transferrin receptor (BioLegend; #A015)
diluted 1:100 or N-Cadherin (BioLegend; #8c11) diluted 1:500.
Cells were single cloned and selected for dim dCas9 BFP signal
that yielded the largest knockdown effect.

To generate the parental U2OS-dCas9-PA-mCh, photoactivatable-
mCherry was PCR-amplified from the plasmid N-pa-mCh and
assembled into the retroviral vector pBABE-puro by using HiFi
DNA Assembly (E5520S; New England Biolabs). To create the
stable U2OS-dCas9-PA-mCh/GFP-Parkin and U2OS-dCas9-PA-
mCh/TFEB-GFP cell lines, Parkin or TFEB was inserted into the
lentiviral pHAGE vector by HiFi DNA Assembly (E5520S; New
England Biolabs). The cell lines were subcloned and cells ex-
pressing low levels of the GFP-tagged proteins were selected to
prevent overexpression artifacts. For nucleus segmentation, we
used a lentiviral plasmid expressing nuclear-localized Halo-tag,
hU6-bsd-NLS-Halo. Prior to the screen, HBSS was supplemented
with 2 µM of pa Janelia Dye 646, SE (Tocris). For the Parkin
screen, the nucleus was detected by using 1,000× dilution of
Draq5 (62251; Thermo Fisher Scientific).

For Parkin-induced mitophagy, GFP-Parkin cells were trea-
ted with 10 µM CCCP (Sigma-Aldrich) and 0.1 µM Bafilomycin A
(Sigma-Aldrich). For TFEB screening, cells were starved in HBSS
without calcium and magnesium (14170112; Thermo Fisher
Scientific).

Parkin-GFP and TFEB-GFP positioning classification by SVM
To create the classification model, we initially trained 2,234
images of each of the binary phenotypes, Parkin or TFEB
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translocation. GFP-Parkin signal was mitochondrial vs. cyto-
solic, while TFEB-GFP was nuclear vs. cytosolic. The model was
created by using the R library e1071. In brief, we used a radial
basis Kernel with a cost violation of 10 computed for an example
set of phenotypes using the radial Kernel formula: e(−γ|u−v|^2).

To optimize the model, we performed iterations and calcu-
lated performance by area under the receiver operating char-
acteristic curve or precision-recall curve (in the case of asymmetric
phenotype representation). The performance values were plotted
against iteration to prevent data overfitting.

GFP-TFEB positioning classification by Convolutional neural
network
For TFEB localization classification, an ImageNet (Deng et al.,
2009) architecture CNNmodel was created by using TensorFlow
and the software library Keras. A training set composed of
107,226 single-cell example images of GFP-TFEB in the nucleus
or cytosol was produced. Of the data, 80%were used for training
and 15% for validation. The remaining 5% of data were used for
testing the model performance. Image input size was 150 pixels
× 150 pixels, and three steps of convolution and max pooling
were conducted at a learning rate of 1e−4.

Training was performed with 50 epochs and a batch size of
200. Overfitting was prevented by using the built-in Keras
callbacks Application Programming Interface (API) feature to
save the model weights after each epoch. The selectedmodel was
chosen from the epoch at which the validation and training loss
curves were no longer decreasing. The variation in fluorescence
signal intensity was accounted for by randomly applying
brightness augmentation (10% to 90%) to the images in the
training data set.

Model performance
To assess classification model performance, we performed a
precision-recall curve in which the curve integral was a mea-
surement of accuracy (Fu et al., 2019). In brief, 5% to 10% of
images in the data set from our experiment were arbitrarily
selected for performance testing. Images were collapsed into
single cells. The parameters extracted for constructing the
precision-recall curve were the corresponding CNN prediction
value against the ground truth class. The curve and area under
the curve were plotted and calculated by using the R package,
PRROC (Grau et al., 2015). To train the CNN model, the files of
each data set were split into three groups: training (80%), vali-
dation (15%), and testing (5%). The validation set was used
during model development to evaluate the model’s performance
during training and tuning classification hyperparameters. Vali-
dation accuracy was important for detecting model overfitting.
After training, the model was then evaluated with the testing set.
The validation and testing designated images were never used
during training, allowing for the assessment of a model’s gener-
alizability. Both the SVM and CNN models were evaluated for
their performance on the testing data set—their ability to produce
prediction values matching the cell image’s true class label.

After the mask was generated, the images were collapsed into
single-cell images by using the EBimage function stackObjects
according to the mask. The function generates 150 × 150–pixel

boxes and assigned zero for all the pixels outside of the region of
interest mask.

Image acquisition and model deployment
SVM deployment live-image acquisition was done on a Nikon
Ti-2 CSU-W1 spinning disk confocal system equipped with a
high-speed electron-multiplying charge-coupled device camera
(Evolve 512; Photometrics) using a 20× air objective (NA 0.75)
with an environmental control chamber (temperature con-
trolled at 37°C and CO2 at 5%) operated by Nikon elements AR
microscope imaging software.

Cells were seeded for screening at 105 cells per well on a two-
well Lab-Tek chamber slide (155360; Thermo Fisher Scientific).
The on-the-fly real-time capture was done by using the 488-nm
laser channel for excitation and the 520-nm emission detector to
collect the GFP signal, and the 647-nm excitation laser and 667-
nm emission detector for the segmentation channel. Saved im-
ages were segmented live by using a bash file script (https://
github.com/gkanfer/AI-PS), and the classifications were de-
ployed by the SVM model. A mask file containing the selected
cells was generated and stored on the local computer. The mask
image was used to photoactivate the called regions by exciting
with a 405-nmwavelength using a Bruker minscanner XY galvo
photostimulation scanner. The process was iterated across more
than 1,000 fields of view (512 × 512 pixels for the Parkin screen
and 2048 × 2044 pixels for the TFEB screen). The NIS elements
AR microscope software was used in JOB mode to allow for the
integration of the deployment code on the fly (the JOB file can be
found on our https://github.com/gkanfer/AI-PS/). In brief, fol-
lowing capture and saving of the 488-nm and 647-nm channel
images on the local computer, the NIS JOB module OUTPROC
was activated and directed to run the segmentation and de-
ployment R script. Next, the region of interest mask was gen-
erated, uploaded back to the local microscope computer hard
drive on the OUTPROC folder path, after which NIS-JOB con-
tinued by saving the mask coordinates and preforming the
photoactivation of the selected regions of interest with a 405-nm
laser. The microscope stage then moved to the next field of view
to repeat the process.

Live-cell image acquisition and deployment of the CNN-
based screen were performed on the Eclipse Ti2-E (Nikon)
with the CSU-W1 spinning disk system equipped with an ORCA-
FLASH 4.0 v3 sCMOS (Hamamatsu), an Opti-Microscan XY
Galvo Scanning Unit, and a Nikon LUN-F laser unit with 90 mW
405 nm, rated 90-mW output at fiber tip, using a 20× objective
(NA 0.75) and environmental control chamber (temperature
controlled at 37°C and CO2 at 5%). The microscope was con-
trolled by the NIS elements AR microscope imaging software.
The on-the-fly real-time acquisition and deployment of the
CNN-based screen were performed as described above with one
major modification: the TensorFlow deployment script was
running the backend “while-loop” throughout the acquisition
(https://github.com/gkanfer/AI-PS/tree/master/TFEB_screen).

Cell segmentation analysis and processing
For image manipulation, the R package EBimage (Pau et al.,
2010) was used similarly to a previous report (Laufer et al.,
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2013). In brief, the two-channel images were min/max-nor-
malized and nuclear staining was used as a seed to identify in-
dividual cells. For nucleus segmentation, thresholding with a 5 ×
5 filter map and Watershed transformation were applied. Then,
the target channel—designated GFP—was used to identify cell
borders and edges for segmentation, after which it was used for
classification. High-pass filtering and local thresholding, fol-
lowed by global thresholding, were used to create global and
local masks. Together with the nucleus mask generated in the
first step, this mask was used for the Cellprofiler (Carpenter
et al., 2006)-based EBimage propagation function. To handle
outlier cells, several features were computed and the outlier
features were removed. To handle outlier cells, the mean in-
tensity and area of the segmented cell outline were calculated.
By using the R package SCORE, significant outlier values were
calculated and removed. For SVM classification, preselected
features were computed and used for classification. For the CNN
classification, single cells were extracted and stacked into tensor
array configuration, which is compatible with CNN-based pre-
diction analysis.

sgRNA lentiviral production
To generate lentivirus-expressing sgRNA libraries, CRISPRi
subpooled libraries were used (Horlbeck et al., 2016). On day 0,
7.5 × 107 Hek293-lentiX cells (Clontech) were seeded on 15-cm
tissue culture plates. The next day (day 1), 20 µg/ml subpooled
sgRNA plasmid, 14.1 µg/ml PAX2, 4.2 mg/ml MDG2, and 1.2 µg/
ml pAdvantage (third-generation lentiviral vector packaging
systems) were transfected by using 75 µl Lipofectamine 2000
(11668019; Thermo Fisher Scientific) in Opti-MEM (Thermo
Fisher Scientific). On day 2, the medium was changed, and on
day 3, the virus was harvested. A lentivirus precipitation kit
(VC100; Alstem Cell Advancements) was used according to the
manufacturer’s suggestions to concentrate the virus.

To determine MOI, 0.106 cells were seeded in 24-well plates
and infected with four titrations of the concentrated virus. Ge-
nomic DNA was isolated by using QIAamp DNA Micro Kit
(56304; Qiagen). The number of genomic viral integration sites
was compared with the number of housekeeping genes by using
a Bio-Rad QX200 AutoDG Droplet Digital PCR (ddPCR) System
(Bio-Rad). The volume to MOI ratio was calculated by using the
following formula: insertion number (from ddPCR) × dilution
factor = transducing units; (desired MOI × cell number)/trans-
ducing units = virus volume.

The ddPCR primermix for amplifying upstream of the sgRNA
integration region was purchased from Bio-Rad: GAAGAAGAA
GGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAAC
GGATCGGCACTGCGTGCGCCAATTCTGCAGACAAATGGCAGT
ATTCATCCACAATTTTAAAAGAAAAGGGGGG (FAM). The
housekeeping probe used for comparison was EiF2C1 (Assay ID:
dHsaCP2500349; Cat: 10031243; Bio-Rad).

To conduct the screen, library expression, 5 × 106 dCas9-pa-
mCh–expressing cells were seeded on day 0. The next day, the
appropriate virus volume was added to cells to achieve an MOI
less than five. Two days after infection, sgRNA-expressing cells
were sorted by using a 407-nm Laser and 450/50-nm filters.
Following 4 d of growth, cells were reseeded in two-well

screening chambers. To maintain sufficient sgRNA representa-
tion, cells were maintained at numbers corresponding to a
coverage of at least 100 cells per sgRNA.

Activated sample isolation
After screening, cells were detached by using Trypsin (Sigma-
Aldrich), washed once with PBS, and filtered by using a 50-μm
sieve (Corning) to obtain a single-cell suspension. The volume
was adjusted to obtain up to 10 million cells per ml using PBS.
Cells were kept in the dark on ice until sorting, which was done
by using a BD FACS Aria cell sorter equipped with 355-nm, 407-
nm, 532-nm, and 640-nm laser lines, and BD FACSDIVA software
to perform aseptic cell sorting. Physical properties (forward-
scatter and side-scatter parameters) of cells were used to
identify and exclude debris, dead cells, and doublets. All single
cells were then selected for GFP expression by using the signal
from the 488-nm laser line 515/30-nm filters. mCherry signal
was identified by using the 532-nm laser line and 610/25-nm
filter, and BFP signal was identified by using signal from the
407-nm laser and 450/50-nm filters. Cells were purified into
two populations: GFP+/BFP+/RFP+ or GFP+/BFP+/RFP− for down-
stream analysis.

Illumina library construction and sequencing
Following FACS sorting, samples were pelleted by centrifugation
and subjected to genomic DNA isolation by using the QIAamp
DNA Micro Kit (56304; Qiagen). To construct the sequencing
library, genomic DNA was amplified by two-step PCR. In the
first step, unique modifier identifiers (UMIs) fused with lenti-
viral vector integration site (step 1 Fw primer) were mixed with
7i adaptor primer fused with lentiviral vector integration 39
integration site (step 1 Rev primer). The mixture was amplified
by using 5–10 PCR cycles. The second amplification step in-
cluded a forward primer complementary to the UMI primer
fused to 5i (step 2 Fw primer) Illumina adaptor primers and 7i
(step 2 Rev primer) and amplified by using 25 PCR cycles. DNA
concentration was measured by using the NEBNext Library
Quant Kit for Illumina (E7630L; New England Biolabs). Each 50-
µl PCR reaction was composed of 0.5 µM primers, 0.5 µl of
Phusion hot-start DNA polymerase (F549S; Thermo Fisher Sci-
entific), and 2.5 µM dNTPs (N0447S; New England Biolabs).
After 25 cycles (second PCR step), the PCR products were
cleaned by using AMPure beads (A63880; Beckman Coulter)
according to the manufacturer’s protocol.

Fragment size and purity were determined by using Agilent
TapeStation 2200 and 4200 models, and the desired fragment
size of 300 bp was extracted and eluted with a Pippin instru-
ment (Sage Science) with HT 2% Agarose Gel, 100–600 bp
(HTC2010). For the Parkin screen, we used 300 v2 Cassettes (15
million reads) on MiSeq (MS-102-2002), whereas, for the TFEB
screen, Illumina paired-end sequencing was performed on a Next-
Seq 550 instrument with a sequencing chip of 300 Mid Output Kit
v2.5 (120 million reads, cat 20024905; Illumina). The read length
was 200 bp and 7 bp for the indexing primers. Custom sequencing
primers were used (UMI sequence, N; Index sequence, n).

The primer set for step 1 was as follows: forward: 59-AAGCAG
TGGTATCAACGCAGAGTACNNNTNNNTNNNTNNNNNNNN
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GCACAAAAGGAAACTCACCCT-39; reverse: 59-CAAGCAGAA
GACGGCATACGAGATnnnnnnnCGACTCGGTGCCACTTTTTC-39.
The primer set for step 2 was as follows: forward: 59-AATGAT
ACGGCGACCACCGAGATCTACACAAGCAGTGGTATCAACGCA
GAGTAC-39; reverse: 59-CAAGCAGAAGACGGCATACGAGATnnn
nnnn-39. The sequencing primer was 59-TTATCAACTTGAAAA
AGTGGCACCGAGTCG-39.

UMI extraction and read count generation
The sgRNA abundance analysis was split into four parts. First,
the fastq file was demultiplexed according to the run sample sheet
by using the FASTX Barcode Splitter. Second, by using UMI tools,
the sequences were extracted and low-quality sequences were
trimmed using trimmomatic. Sequenceswere aligned andmapped
to the library data set using Bowtie and Tryhard modules as de-
scribed previously (Horlbeck et al., 2016). Finally, deduplication
grouping and counting were conducted by using UMI tools. The
complete Unix-based bash file is available on GitHub.

Differential sgRNA abundance analysis
The differential abundance of sgRNAs between photoactivated-
sorted samples and control untreated samples was assessed by
using the EdgeR package. First, samples were log2- and count-
per-million normalized. Sample variation was determined by
covariance-based PCA analysis and read count flooring was es-
tablished by modeling the noise using coverage as a function of
read count. sgRNA enrichment is defined as two SDs from the
mean of the distribution of nontarget sgRNA controls. For gene
aggregation analysis, similar to a previous paper (Tian et al.,
2019), the highest enrichment sgRNA sets were selected by
bootstrapping the entire dataset. By using EdgeR (Robinson
et al., 2010; Dai et al., 2014), the FDR-corrected P value was
calculating by the roast function (Rotation Gene Set Test;
Robinson et al., 2010) following the exactTest function of EdgeR
(n = 3 or 4 replicates). Gene set analysis was performed using
GSEA 4.0.3, and our whole-genome list was ranked according to
FC and P value. The pathway annotation used was the MSigDB
Collection (C2:C5; Reimand et al., 2019).

Experimental approach for validation
For the secondary validation, we used the best two sgRNAs with
FC higher than two SDs from the nontargeting sgRNA controls
and roast test FDR < 15%.

128 sgRNAs targeting 64 high-scoring hits (Table S2) identi-
fied from the primary pooled screen (two sgRNAs per gene) and
two nontargeting control sgRNAs were individually cloned into
the lentiviral mU6-BstXI-BlpI-BFP sgRNA vector (Horlbeck
et al., 2016) and confirmed via sequencing.

Nontargeting sgRNA sequences were as follows: nontargeting
control sgRNA 1, 59-GCTGCATGGGGCGCGAATCA-39; non-
targeting control sgRNA 2, 59-GTGCACCCGGCTAGGACCGG-39.

All the guide sequences used in the TFEB screen can be found in
Table S2. CREB5 sgRNA sequences were as follows: 1, 59-GGAGTC
TAGGAGGTACCTCT-39; 2, 59-GGATCTCATTTACCTGAATG-39.

To generate virus, 2 × 106 Lenti-X 293T cells (Clontech) were
seeded in six-well plates in 1.5 ml DMEM (Life Technologies)
supplemented with FBS (10% vol/vol; Gemini Bio Products),

10 mM Hepes (Life Technologies), 1 mM sodium pyruvate (Life
Technologies), 1 mM nonessential amino acids (Life Technolo-
gies), and 2 mM glutamine (Life Technologies). Cells were
transfected the next day in the following manner by using
Lipofectamine 3000 (Thermo Fisher Scientific): 1.2 µg lentiviral
sgRNA plasmid, 0.8 µg psPAX2 packaging vector, 0.3 µg pMD2G
packaging vector, 0.8 µg pAdvantage packaging vector, and 5 µl
P3000 reagent were diluted in 150 µl Opti-MEM and incubated
5 min at RT; 3.75 µl Lipofectamine 3000 Transfection Reagent
(Thermofisher) was diluted into 150 µsgRNA lentiviral pro-
ductionl Opti-MEM and incubated at room temperature for
5 min, after which the diluted DNA was added, mixed via pi-
petting, incubated at RT for 40 min, and then added dropwise to
cells. Medium was replaced the next day and harvested after 2 d
and centrifuged at 4°C for 10 min at 10,000 × g to pellet cell
debris. The supernatant was aliquoted and frozen at −80°C to
ensure consistency throughout the validation process.

U2OS cells expressing dCas9-KRAB and PA-mCherry were
seeded at 20,000 cells per well in 96-well plates on day 0, ex-
cluding all exterior wells. On day 1, cells were transduced with
virus for 24 h with 8 µg/ml polybrene at two concentrations
with three replicates per concentration, allowing 10 different
viruses, including a control nontargeting sgRNA, to be tested per
plate. Cells were checked visually on days 2 and 3 for confluency
and blue nuclear signal indicating expression of the sgRNA. If
crowded, cells were Trypsinized and split to one to two 96-well
plates. Cells were split again on days 4 or 5 as needed into a 96-
well imaging plate (PerkinElmer). A half-medium change was
performed every other day if cells were not being split. On day 7,
medium was removed, cells were washed three times, and then
left in warm PBS without calcium and magnesium (Thermo
Fisher Scientific). Cells were imaged every 60min for 20 h using
a 20× air objective (NA 0.75) on a Nikon Ti-2 CSU-W1 spinning
disk system with a photometrics 95B camera operated by Nikon
Elements software equipped with temperature regulation and
CO2 control. For every sgRNA, nine images per well in three
replicates were acquired. For TFEB translocation response
compression, a fixed number of single-cell images (n = 360) per
gRNA per time per biologic repeat were normalized to non-
targeted control mean value. To determine if there is a signifi-
cant difference between the difference values generated for
the control replicates on the same plate and the difference values
for a guide’s replicates on the same plate, we used repeated-
measures ANOVA.

Western blotting
Cells were lysed with 1× NuPAGE LDS buffer (Thermo Fischer
Scientific) containing 100 mM DTT and were boiled for 10 min.
Approximately 15 µg of protein was loaded onto 4–12% Bis-Tris
gels (GenScritp). Proteins were transferred to polyvinylidene
difluoride membranes and were blocked with 4% skim pow-
dered milk dissolved in Tris-buffered saline with 0.1% Tween
(TBSt) buffer. Primary antibodies were incubated overnight at
4°C in 2% BSA in TBSt buffer, and secondary antibodies were
incubated at RT in 4% skim milk in TBSt for 1 h. Anti-
LAMP1(ab24170) and recombinant anti-ATP6V0D1/P39 (ab202897)
antibodies were purchased from Abcam. Anti-LC3B (L7543-100UL)

Kanfer et al. Journal of Cell Biology 16 of 19

CRISPRi screening for subcellular phenotypes https://doi.org/10.1083/jcb.202006180

https://doi.org/10.1083/jcb.202006180


and anti-actin (MAB1501, clone C4; Millipore) were purchased
from Sigma-Aldrich. Secondary HRP-linked antibodies were
from GE Healthcare. Blots were developed by using peroxidase-
based ECL (Pierce) and detected by using a ChemiDoc Imaging
System (Bio-Rad).

Sample size power calculation
To estimate screening sample size, we conducted power calcu-
lations by using the R package, PROPER. This tool estimates the
statistical power of differential guide read count data from the
negative binomial distribution. The model is built on the nega-
tive binomial distribution and the per-gRNA dispersion of fil-
tered sgRNA read counts. The sgRNA list is the same as that used
for sgRNA enrichment analysis. By using the runSims function
of the PROPER package, the read counts were generated based
on the input data, and the number of samples were iterated 100
times. The number of repeats chosen in our study were 3, 5, 7,
and 9, and the power was calculated for effect size of 0.1 to 5
with α nominal of 0.15 (similar to the FDR used in the current
study).

Shiny AI-PS application
We created a graphical user interface in Shiny (by Rstudio) that
performs each step—image segmentation and classification, and
creation, and testing of model—required to build and test an
SVM-based classification model for AI-PS. This application can
be accessed directly through the website (https://hab-gk-app.
shinyapps.io/gk_shiny_app/). Alternatively, the app can be
run locally from the source code found at https://github.com/
hbaldwin07/GK_shiny_app. Performance is better on local ma-
chines than on the network server, so this is the recommended
method for those using particularly large data sets or data files
(>10 MB per image). All instructions for running/using the
program can be found on the GitHub website.

Data and code availability
Flow cytometry data of the TFEB screen, including gating ex-
amples and codes, can be found under https://github.com/
gkanfer/AI-PS/tree/master/facs. Statistical power analysis and
filtered read counts can be found under https://github.com/
gkanfer/AI-PS/tree/master/Statistical%20power%20analysis. AI-
PS deployment and Nikon elements module bin file for outproc
are located at https://github.com/gkanfer/AI-PS/tree/master/
TFEB_screen.

Online supplemental material
Fig. S1 shows the SVM classification plot and the SVM classifi-
cation and segmentation performance. Fig. S2 presents a sum-
mary of the AI-PS shiny APP platform. Fig. S3 shows the CNN
classification architecture and performance. Fig. S4 addresses
the TFEB translocation prediction by the SVM classification
model. Fig. S5 summarizes the network interaction and clus-
tering of the hits retrieved from the whole-genome CRISPR
screen. Video 1 shows an example of AI-PS platform Parkin
screen proof of principle. Video 2 shows live-cell images of
TFEB-GFP U2OS cells under starvation conditions. Video 3
shows an example of the AI-PS platform for TFEB screen.

Video 4 shows live-cell images of TFEB-GFP U2OS cells ex-
pressing sgRNA targeting TGFBR1 under starvation conditions.
Video 5 shows live-cell images of TFEB-GFP U2OS cells ex-
pressing sgRNA targeting CREB5 under starvation conditions.
Video 6 shows live-cell images of TFEB-GFP U2OS cells ex-
pressing sgRNA targeting PPP1R1B under starvation conditions.
Video 7 shows live-cell images of TFEB-GFP U2OS cells ex-
pressing sgRNA targeting mTOR under starvation conditions.
Table S1 provides the Parkin translocation screen using an
sgRNA library subpool targeting all kinases, phosphatases, and
the druggable genome. Table S2 shows the TFEB translocation
whole-genome screen. Table S3 lists TFEB cell numbers and
next-generation sequencing read numbers.
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Supplemental material

Figure S1. SVM classification build for Parkin screen. (a) Two-dimensional representation of nonlinear hyperplane separation of mitochondrial (mito)
Parkin phenotype vs. cytosolic (cyto) phenotype. Mitochondrial Parkin predicted cells are in red, cytosolic Parkin in black. The variable o represents correct
classification, and x misclassification. (b) The confusion matrix is computed from a test set composed of three biological replicates pooled single-cell images
(n = 4,894). Prior to the SVM classification prediction, the images were manually labeled. The green boxes are designated for the true positive single-cell counts
(upper left) and the true negative (lower right). The pink boxes represent the false positive single-cell counts (upper right) and the false negative (lower left).
(c) Precision recall plot (right) summarizes the same image test set. The accuracy is calculated from the precision recall curve. (d) Beeswarm plot summarizing
single-cell TFEB-GFP segmentation score comparison. The image contains 79 cells from the TFEB screen, segmented with AI-PS segmentation procedure (using
the R package EBImage; black) or Cellprofiler segmentation pipeline (red). Mean ± SD. (e) dCas9-KRAB–expressing U2OS cells treated with sgRNA targeting
either TRANS or CDH2 and immunostained using TRANS or CDH2 antibodies. Scale bar, 20 µm. AUC, area under the curve; IOU, intersection over union.
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Figure S2. Shiny AI-PS Application and output files. Detailed instructions and the source package for the AI-PS graphical user interface (GUI) can be found
at https://github.com/hbaldwin07/GK_shiny_app. The AI-PS GUI application is also hosted online at https://hab-gk-app.shinyapps.io/gk_shiny_app/.
(a) Screenshots of the nucleus (left) and cell outline (right) segmentation tools. (b) Example of image classification interface. Image file(s) are segmented using
predetermined parameters set in the previous panel or uploaded by the user. The individual cells (outlined in yellow) are manually selected for positive or
negative classification. (c) Schematic of the integration of AI-PS output with Nikon elements software for deployment. The three files generated by the AI-PS
application are the SVM model file (“Create Model” tool), the Deployment R script (downloaded from https://github.com/gkanfer/AI-PS), and the Parameter
file (table of nucleus and cell segmentation parameters generated by “Save Image Parameters” in segmentation panel). All three files should be saved in a
common directory on the microscope’s local computer (i.e., C:\outproc\) and directed to the Nikon elements JOB module outproc.
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Figure S3. GFP-TFEB translocation and parametric analysis performance. (a) Representative image of nuclear (nuc) TFEB-GFP in cells treated with HBSS
(1 h) or cytosolic (cyto) TFEP-GFP in cells in complete medium. Scale bar, 5 µm. TC, tissue culture. (b) Translocation dynamic analysis of GFP-TFEB cells imaged
for 18 h in 1-h time lapses. Nuclear localization prediction is computed using AI-PS segmentation and CNN prediction algorithm. n = 7, mean ± SD.
(c) ImageNet-like CNN architecture is composed of four sets of convoluted processes followed by the max pooling procedure. The phenotype decision is based
on probability value. (d) The confusion matrix is calculated from a test set composed of 9,110 single-cell images collected and pooled from three biologic
replicates. Prior to computing the pixel intensity, the images were manually labeled. The green boxes designate the true positive single-cell count (upper left)
and the true negative (lower right). The pink boxes designate the false positive single-cell count (upper right) and the false negative (lower left). (e) A precision
recall plot summarizes the same image test set. The accuracy is calculated from the precision recall curve. AUC, area under the curve.

Figure S4. GFP-TFEB localization SVM model prediction. GFP-TFEB phenotype classification performance by SVM, precision-recall (PR) curve from
7,848 single-cell images obtained fromHBSS starved and fed cells. For the starved cell population, image collection began 8 h after starvation was initiated and
continued for another 10 h. Accuracy is computed from the integral area under the precision-recall curve. AUC, area under the curve.
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Figure S5. Gene set clustering of 64 candidates enriched in TFEB-GFP translocation screen. Cytoscape analysis of enriched genes, the circle size
represents fold-change enrichment and P value is color coded inside the circle. The dashed lines indicate cluster overlap.
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Video 1. Example of AI-PS platform Parkin screen proof of principle. Nikon NIS elements JOB module screen capture during GFP-Parkin (green) ac-
quisition. Machine learning deployed for automatic detection of sgRNA targeting PINK1 (blue) according to cell phenotype (red circle on top of GFP-Parkin
image). The detected cell is photoactivated (yellow-red).

Video 2. Live-cell images of TFEB-GFP U2OS cells under starvation conditions. TFEB-GFP–expressing U2OS cells were starved for 18 h and images were
acquired every hour. Single-cell CNN prediction scores are marked in red for nuclear TFEB and in green for cytosolic TFEB. Dynamic bar chart indicates the
cumulative distribution of TFEB translocation in the represented cell population.

Video 3. Example of AI-PS platform for TFEB screen. Nikon NIS elements JOB module screen capture during TFEB-GFP (green) acquisition. Top: TFEB-GFP
is in green and red circle is for the phenotype automatic detected cells. Bottom left corner: R-based image segmentation, machine learning prediction, and
mask generation. Bottom right: Photoactivation in red (pa-mCh). Three examples are shown here.

Video 4. Live-cell images of TFEB-GFP U2OS cells expressing sgRNA targeting TGFBR1 under starvation conditions. sgTGFBR1-TFEB-GFP–expressing
U2OS cells were starved for 18 h and images were acquired every hour. Single-cell CNN prediction scores are marked in red for nuclear TFEB and in green for
cytosolic TFEB. Dynamic bar chart indicates the cumulative distribution of TFEB translocation in the represented cell population.

Video 5. Live-cell images of TFEB-GFP U2OS cells expressing sgRNA targeting CREB5 under starvation conditions. sgCREB5-TFEB-GFP–expressing
U2OS cells were starved for 18 h and images were acquired every hour. Single-cell CNN prediction scores are marked in red for nuclear TFEB and in green for
cytosolic TFEB. Dynamic bar chart indicates the cumulative distribution of TFEB translocation in the represented cell population.

Video 6. Live-cell images of TFEB-GFP U2OS cells expressing sgRNA targeting PPP1R1B under starvation conditions. sgPPP1R1B-TFEB-GFP–
expressing U2OS cells were starved for 18 h and images were acquired every hour. Single-cell CNN prediction scores are marked in red for nuclear TFEB and in
green for cytosolic TFEB. Dynamic bar chart indicates the cumulative distribution of TFEB translocation in the represented cell population.

Video 7. Live-cell images of TFEB-GFP U2OS cells expressing sgRNA targeting mTOR under starvation conditions. Sg-mTOR-TFEB-GFP–expressing
U2OS cells were starved for 18 h and images were acquired every hour. Single-cell CNN prediction scores are marked in red for nuclear TFEB and in green for
cytosolic TFEB. Dynamic bar chart indicates the cumulative distribution of TFEB translocation in the represented cell population.

Three tables are provided online. Table S1 shows the Parkin translocation screen using an sgRNA library subpool targeting all
kinases, phosphatases, and the druggable genome. Table S2 shows the TFEB translocation whole-genome screen. Table S3 lists the
TFEB cell numbers and next-generation sequencing read numbers.
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