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ABSTRACT
Esophageal cancer is a commonmalignant tumor in the world, and the aim of this study
was to screen key genes related to the development of esophageal cancer using a variety
of bioinformatics analysis tools and analyze their biological functions. The data of
esophageal squamous cell carcinoma from the Gene Expression Omnibus (GEO) were
selected as the research object, processed and analyzed to screen differentially expressed
microRNAs (miRNAs) and differential methylation genes. The competing endogenous
RNAs (ceRNAs) interaction network of differentially expressed genes was constructed
by bioinformatics tools DAVID, String, and Cytoscape. Biofunctional enrichment
analysis was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of
Genes and Genomes (KEGG). The expression of the screened genes and the survival
of the patients were verified. By analyzing GSE59973 and GSE114110, we found
three down-regulated and nine up-regulated miRNAs. The gene expression matrix of
GSE120356 was calculated by Pearson correlation coefficient, and the 11696 pairs of
ceRNA relationwere determined. In the ceRNAnetwork, 643 lncRNAs and 147mRNAs
showed methylation difference. Functional enrichment analysis showed that these
differentially expressed genes were mainly concentrated in the FoxO signaling pathway
and were involved in the corresponding cascade of calcineurin. By analyzing the clinical
data in TheCancerGenomeAtlas (TCGA) database, it was found that four lncRNAs had
an important impact on the survival and prognosis of esophageal carcinoma patients.
QRT-PCR was also conducted to identify the expression of the key lncRNAs (RNF217-
AS1, HCP5, ZFPM2-AS1 and HCG22) in ESCC samples. The selected key genes can
provide theoretical guidance for further research on the molecular mechanism of
esophageal carcinoma and the screening of molecular markers.

Subjects Biochemistry, Bioinformatics, Oncology
Keywords MicroRNA, DNA methylation, Esophageal carcinoma, Diagnosis, lncRNA

INTRODUCTION
Esophageal cancer is a commonmalignant tumor in theworld. It is estimated that therewere
572,000 new cases of esophageal cancer and more than 50,000 cases of esophageal cancer
deaths in 2018 (Ferlay et al., 2019a). At present, the incidence of esophageal cancer ranks
seventh in all tumors, and themortality rate ranks sixth (Zeng et al., 2016), causing a serious
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disease burden to humans. Esophageal cancer mainly includes two histological subtypes,
esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA) (Xi
et al., 2019). Esophageal squamous cell carcinoma is the most common histological type,
accounting for approximately 80% of all esophageal cancer cases worldwide (Asombang et
al., 2019). The incidence of esophageal squamous cell carcinoma has a distinct geographical
distribution, with high incidence in East Asia, East Africa, South Africa, and Southern
Europe, and relatively low incidence in North America and other parts of Europe (Ahmed,
Ajani & Lee, 2019).

The occurrence of esophageal cancer is the result of a combination of genetic, behavioral,
and dietary factors, including family history of esophageal cancer, smoking, drinking, hot
drinks, and pickled foods (Andrici & Eslick, 2015; Ohashi et al., 2015; Tai et al., 2017).
Despite significant advances in the diagnosis and treatment of esophageal cancer in recent
years, patients’ prognosis has not improved significantly, with a 5-year overall survival rate
of less than 30% and an even lower survival rate in some developing countries (Hu et al.,
1994). The main reason is that early esophageal cancer lacks obvious clinical symptoms,
and many patients are already in advanced stage when diagnosed (Codipilly et al., 2018a),
resulting in poor prognosis.

At present, the commonly used screening method for esophageal cancer is endoscopy,
but it is only implemented in some economically developed areas. Due to the high cost of
endoscopy, invasive injury and low acceptability of residents, it is not widely used in many
areas, so it has a broad prospect to find sensitive and specific biomarkers for early screening
of esophageal cancer (Arantes & Espinoza-Ríos, 2018). It is of great value to reduce the
mortality of esophageal cancer and improve the prognosis of patients in epidemic areas
and high-risk groups.

With the rapid development of bimolecular technology, the genetic research of
esophageal cancer is increasing. A series of susceptible polymorphic sites and tumor related
somatic mutations have been found gradually, and the understanding of the genomic
characteristics of esophageal cancer is gradually in-depth (Wang et al., 2020; Kalikawe et
al., 2019; Yuan et al., 2019). In addition to genetic characteristics, scientists have also found
that esophageal cancer has a variety of epigenetic changes in recent years (Lin, Wang &
Koeffler, 2018b). Epigenetics is a kind of hereditable genomic changes, which does not
include changes in DNA nucleotide sequences. These changes may persist throughout the
cell division period, including DNA methylation, histone modification and non-coding
RNA (ncRNA). RNA epigenetic changes play a key role inmaintaining normal physiological
functions and tumorigenesis and epigenetic abnormalities have become a common feature
of almost all human tumors (Gherardini et al., 2016). Epigenetic abnormalities not only
drive the occurrence and development of tumors, but also affect cell growth, invasion,
metastasis, heterogeneity and drug resistance (Pfister & Ashworth, 2017).

More importantly, epigenetic changes are often early events in the process of disease
occurrence, which provides an opportunity to find tumor specific biomarkers. In this study,
we used the miRNA, mRNA, DNA methylation and clinical data in database to search for
potential biomarkers of ESCC by using the knowledge andmethods of bioinformatics from
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Table 1 Specific distribution of ESCC data sources.

GEO/TCGA Tumor Normal

GSE59973 3 3
miRNA

GSE114110 30 10
RNA GSE120356 5 5
DNA methylation GSE52826 4 8
Clinical data TCGA-ESCC 81

the mechanism of ceRNAs. This study will definitely provide theoretical guidance on the
molecular mechanism of esophageal carcinoma and the screening of molecular markers.

MATERIAL AND METHODS
Data source
The data analyzed in this study involved miRNA, mRNA, DNA methylation and clinical
data, all of which were derived from the GEO (Barrett et al., 2007) database at NCBI
(https://www.ncbi.nlm.nih.gov/geo/) and humans Cancer Genome Database TCGA
(https://www.cancer.gov/) (Akbani et al., 2014). Table 1 listed the specific GEO data
numbers used in this study (Li et al., 2014).

Screening of differentially expressed miRNAs
The R package (Affy, version 1.52.0) was used for background expression value correction
and data normalization of the original data in each dataset (Yuen, Zhu & Leung, 2018). The
probes in each file were then annotated according to the appropriate platform annotation
file. Probes without matching genetic symbols were removed. When different probes map
to the same gene, the average value of all the probes mapped to the gene was the final
expression value of the gene. Through literature research and analysis, the miRNA datasets
of ESCC in this study were GSE59973 and GSE114110 (Wen et al., 2018). Differential
expression analysis was performed and the differential miRNA selection should meet p
value < 0.05 and log2|FC|>1.

Differential methylation analysis
In order to confirm the results, we also downloaded the methylation (platform: Illumina
HumanMethylation450 BeadChip) and expression (IlluminaHiSeq) microarray data
from TCGA database for validation. Through DNA research and analysis, the DNA
methylation dataset in this study was determined to be GSE52826 (Li et al., 2014), and
the DNA methylation difference analysis was performed with GEO2R (Cao et al., 2019a).
The adjusted P value less than 0.05, and delta expression value either greater than 1
(up-regulated gene) or less than−1 (down-regulated gene) were as the cut-off value of the
expression chip data.

Target prediction
The 12 miRNAs selected in the above steps were used for target prediction, and the
target prediction software RNA22 was used (Jabbar et al., 2019; Wang et al., 2019), which
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is target prediction software for predicting microRNA binding sites based on sequence
characteristics and can be a good theory of ceRNA hypothesis mechanism.

Hypergeometric test
Hypergeometric testing is the most commonly used prediction method in the ceRNA
mechanism (Tay, Rinn & Pandolfi, 2014). After the hypergeometric test calculation (Doi,
Takahashi & Kawasaki, 2017), the result p value less than 0.05 is the potential ceRNA pair.
The specific formula is as follows:

P = 1−F(x/N ,K ,M )= 1−
x−1∑
t=0

(K
t

)(N−K
M−t

)(N
M

)
Pearson correlation coefficient calculation
The gene expression matrix of GSE120356 was used to calculate the Pearson correlation
coefficient (Ma et al., 2019c). Based on the ceRNA mechanism, the two RNAs of the
ceRNA pair have a co-expression effect, which can be well supported for subsequent
analysis. Therefore, Pearson correlation was taken here and 0.7 had a highly credible
co-expression trend (Li et al., 2019a; Li et al., 2019b). Finally, the ceRNA that meets the
hypergeometric test threshold was crossed with the ceRNA under the Pearson threshold to
obtain the final ceRNA pairs.

Construction of ceRNA network
The selected differential mRNA, lncRNA, and differential miRNA were paired in the
miRcode database. Target gene prediction was performed on the selected differential
miRNAs using the starBase (Han et al., 2020) online software (http://starbase.sysu.edu.cn/),
and the target genes were predicted by miRDB (Rigden & Fernández, 2020), miRTarBase
(Liu, Huang & Luo, 2020), and TargetScan (Dong et al., 2020) databases, thereby obtaining
ceRNA regulation of lncRNA-miRNA-mRNA network, using Cytoscape v3.5.1 software
(Qi et al., 2019) for mapping.

Functional and pathway enrichment analyses
Gene Ontology (GO) is a comprehensive information tool providing gene function of
individual genomic products, including three aspects: molecular function (MF), biological
process (BP) and cellular component (CC). TheKyoto Encyclopedia of Genes andGenomes
(KEGG) is a database resource for advanced biological functions and utilities. Both analyses
and annotations are based on the DAVID database (https://DAVID.ncifcrf.gov/) (Kumar
et al., 2019) and are used to explore and understand the biological significance of specific
gene lists. In this study, GO and KEGG analysis of DEGs were based on standard error
discovery rate (FDR) <0.05.

Identification of prognostic lncRNAs from ceRNA network
With the survival time of all esophageal cancers in the TCGA database, the Survival package
in the R language was used to perform survival analysis on the differential lncRNA (Shi et
al., 2020b). The difference was statistically significant with P ≤ 0.05.
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Samples collection and ethics statement
In this study, we collected 10 pairs of ESCC specimens from patients in the First Affiliated
Hospital of China Medical University from 2015 to 2018. All patients were confirmed
histologically. All patients participating in the study signed the informed consent form and
the study was approved by the Institutional Ethics Committee of ChinaMedical University.

RNA extraction and reverse transcription- quantitative polymerase
chain reaction analysis
Total RNA of tissues was extracted, and the sample was fully ground with liquid nitrogen,
added 1ml Trizol solution, mixed, and placed at room temperature for 5 min to fully
crack. Then, 14,000 g centrifuged at 4 ◦C for 15 min, and the RNA was divided into three
layers, in the upper water phase, and transferred to another new RNase free EP tube.
Later, isopropanol was added, gently and thoroughly mixed, and allowed to stand at room
temperature for 10 min. At 4 ◦C, the samples were centrifuged at 14,000 g for 10 min,
RNA precipitation was collected and washed twice with 75% ethanol. According to the
amount of precipitation, an appropriate amount of DEPC water was added to dissolve the
precipitation.

RNA samples were reverse transcribed into cDNA using TransScript One Step gDNA
Removal and cDNA Synthesis SuperMix. RT qPCR was performed using TB Green Premix
Ex Taq. The PCR conditions included an initial step at 95 ◦C for 10 min, followed by 40
cycles of amplification and quantification (95 ◦C for 15 s, 60 ◦C for 1 min, and 60 ◦C for
1 min). GAPDH was used as an endogenous control for normalization. The sequences of
the primers used for RT qPCR were as follows:

HCG22 forward, 5′ CCTGGGGAGAGGTGTCATTT 3′ and reverse, 5′ TG-
GTCTCTGGGTGCTTAGTG 3′; RNF217-AS1 forward, 5′ TGGGAATGACAGCAGAAAG
3′ and reverse, 5′ TCCGCAGAGTGAACAAGAA 3′; HCP5 forward, 5′ GATGAC-
TATGGGGTGAGGGG 3′ and reverse, 5′ TATGGAGATGAGGTGTGCCG 3′; BBOX1-
AS1 forward, 5′ GGCACATTTGGAAGTT 3′ and reverse, 5′ TCAGGGTAACCGTAGC
3′.

RESULTS
Analysis of differentially expressed miRNAs
The miRNA datasets used in this study were GSE59973 and GSE114110, respectively.
The threshold of selecting differential miRNAs was p.value < 0.05 and log2|FC|>1. In the
volcanomaps of differential miRNAs of GSE59973 and GSE114110, the black regions in the
graph represented the distribution of non-differentiated miRNAs, the red fractions showed
significantly differentially up-regulated miRNAs, and the green fractions represented
significantly differentially down-regulated miRNAs (Figs. 1A, 1B). At the same time, the
differentially up-regulated and down-regulated miRNAs obtained from the two datasets
were separately taken for intersection. Finally, three differentially expressed down-regulated
miRNAs were obtained, including hsa-mir- 139-5p, hsa-mir-1 and hsa-mir-133b. There
were nine up-regulated miRNAs, including hsa-mir-1246, hsa-mir-34c-5p, hsa-mir-455-
5p, hsa-mir-455-3p, hsa-mir-146b-5p, hsa-mir-3651 and hsa-mir-429, as shown in Figs.
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Figure 1 Analysis of differentially expressed miRNAs. (A) Volcanic map of differential miRNA distri-
bution of GSE59973. (B) Volcanic map of differential miRNA distribution of GSE114110. (C) Venn dia-
gram of down regulated miRNA by GSE59973 and GSE114110. (D) Venn diagram of upregulated miRNA
by GSE59973 and GSE114110. The numbers in parentheses represent the percentage of the corresponding
portion of the total difference.

Full-size DOI: 10.7717/peerj.8831/fig-1

1C and 1D. These 12 important miRNA differences will be used for subsequent target
prediction and ceRNA correlation analysis.

CeRNA network construction
The gene expressionmatrix of GSE120356was calculated by Pearson correlation coefficient.
The ceRNA pair with r value more than 0.7 and the ceRNA pair with hypergeometric test
value less than 0.05 were selected to determine the final ceRNA relationship for a total of
11,696 pairs. It can be seen that there were complex ceRNAs in ESCC and the network, as
shown in Fig. 2, was the ceRNA network constructed in this study. The red dots represent
lncRNA, the green dots represent mRNA, and the blue dots represent other types of RNA.
The size of the dots indicates the degree of node degrees. It can be seen that the ceRNA
network constructed in this study has a clear trend of ceRNA regulation between lncRNA.
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Figure 2 The lncRNA-miRNA-mRNA ceRNA network in ESCC. The deep blue dots represent lncRNA,
the light blue dots represent mRNA, and the yellow dots represent miRNA. The size of the dots indicates
the degree of node degrees.

Full-size DOI: 10.7717/peerj.8831/fig-2

Analysis of ceRNA combined with DNA methylation
The mRNA and lncRNA in the ceRNA network were combined with DNA methylation
analysis to find ceRNAs with differential DNA methylation in ESCC. Figure 3A showed
the intersection of ceRNA and differentially methylated genes and it could be seen that
in the ceRNA network, there were 643 lncRNAs with methylation differences and 147
mRNAs with methylation differences. At the same time, we extracted 64 of the 147 mRNAs
that form a ceRNA pair with lncRNA, such as KCNA3, USP44, OPLAH, SMTN, TTC6,
COL27A1, SYNE2, LHX1, NRG1 and XKR4. These 64 mRNAs were subjected to GO-BP
and KEGG pathway enrichment analysis to discover the biological regulation processes
in which these lncRNAs were mainly involved in the ceRNA network. Figures 3B and 3C
showed the KEGG pathway bubble diagram and the GO-BP pathway strip diagram of the
64 ceRNAs, respectively. The GO-BP pathway was only visualized by selecting the pathway
with pvalue <0.01. It can be seen that for the KEGG pathway results, these significantly
enriched pathways were mainly concentrated in the FoxO signaling pathway and related
pathways such as glutamate synapses and EGFR tyrosine kinases, and these pathways
have been reported to play an important role in ESCC (Zhang et al., 2017; Kashyap &
Abdel-Rahman, 2018; Hong et al., 2015). For the bar graph of GO-BP, these mRNAs were
mainly involved in the biological processes of the corresponding cascade of calcineurin.
The above analysis indirectly indicates that lncRNA in the ESCC ceRNA network indirectly
regulates the biological activities and life processes of ESCC.
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lncRNA in the ESCC ceRNA network. (C) GO-BP pathway maps related to lncRNA in ESCC ceRNA net-
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Full-size DOI: 10.7717/peerj.8831/fig-3

Prognosis related lncRNAs
The intersection of 643 lncRNAs in the ESCC ceRNA network and the differentially
expressed lncRNAs in GSE120356 screened 10 important lncRNAs, namely CASC9,
SOX21-AS1, HCP5, HCG22, RNF217-AS1, CALML3-AS1, LINC00491, BBOX1-AS1,
C5orf66, ZFPM2-AS1, shown in Fig. 4A. To explore the ceRNA regulatory network in
which these 10 lncRNAs were involved in ESCC, a subset of the ceRNA networks from
which 10 important lncRNAs were extracted, shown in Fig. 4B. The orange dots in the
figure indicate these 10 important lncRNAs, the green dots represent mRNAs, and the blue
dots represent important lncRNAs other than these 10 important lncRNAs. It can be seen
that these 10 important lncRNAs are mainly related to other lncRNAs in this study. There
is a clear trend of ceRNA regulation between ncRNA-interacting lncRNAs.

It was found by analysis that four lncRNAs in these lncRNAs have important effects
on the survival prognosis of ESCC. The four lncRNAs were HCG22, RNF217-AS1, HCP5,
BBOX1-AS1, and the survival curves were shown in shown in Figs. 5A–5D. At the same
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time, the survival model was analyzed by ROC curve, and the survival analysis of the next
three years was predicted, in which the AUC value reached 0.908 (Figs. 5E, 5F).

Validation of differential lncRNAs by RT-qPCR
The present study aimed to determine whether the differentially expressed lncRNAs
identified in the microarray analysis were up-regulated or down-regulated in clinical
esophageal cancer patients. Esophageal cancer specimens and non tumor epithelial tissues
were obtained, and the differential lncRNAs were validated with RT-qPCR (Fig. 6A). The
experimental results showed that RNF217-AS1, HCP5 and ZFPM2-AS1 expression was
significantly up-regulated in ESCC samples compared with healthy tissues, while HCG22
expression was lower than negative controls. These results were consistent with the result of
TCGA analysis, as shown in Fig. 6B. Taking together, it was revealed that these differential
lncRNAs may be involved in the mechanism of ESCC.

DISCUSSION
Despite the improvement of clinical diagnosis and treatment in recent years, the accuracy
of diagnosis and survival rate of prognosis of esophageal cancer are still low. At present,
there is no biomarker with high accuracy for the diagnosis of esophageal squamous cell
carcinoma. Therefore, it is of great significance to find biomarkers for the diagnosis of
esophageal squamous cell carcinoma from the molecular biological level. In this chapter,
we first download microRNA SEQ data from TCGA database by bioinformatics. TCGA is
a genetic engineering based on human genome project, which uses sequencing technology
for research. The database contains many known and unknown genomes, transcriptome

Guan et al. (2020), PeerJ, DOI 10.7717/peerj.8831 9/19

https://peerj.com
https://doi.org/10.7717/peerj.8831/fig-4
http://dx.doi.org/10.7717/peerj.8831


0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HCG22

Time (months)

Pr
ob

ab
ilit

y

Expression
low
high

Number at risk
46 34 9 4 1 0 0 0low     
35 30 12 4 4 2 1 0high

HR = 0.4 (0.16 − 0.98)
logrank P = 0.039

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RNF217−AS1

Time (months)

Pr
ob

ab
ilit

y

Expression
low
high

Number at risk
23 18 8 3 1 1 0 0low     
58 46 13 5 4 1 1 0high

HR = 3.46 (1.03 − 11.62)
logrank P = 0.033

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HCP5

Time (months)

Pr
ob

ab
ilit

y

Expression
low
high

Number at risk
22 18 8 5 2 0 0 0low     
59 46 13 3 3 2 1 0high

HR = 3.81 (1.13 − 12.88)
logrank P = 0.021

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BBOX1−AS1

Time (months)
Pr

ob
ab

ilit
y

Expression
low
high

Number at risk
59 48 16 6 4 2 1 0low     
22 16 5 2 1 0 0 0high

HR = 3.02 (1.33 − 6.86)
logrank P = 0.0056

| | | | | | || | | | | | || | | | | | | | | | | | | |

p = 1e-05

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100 125

Overall Survival(month)

Strata | |High risk Low risk

8 8 8 8 8 8

73 71 59 18 14 12--
0 25 50 75 100 125

Overall Survival(month)

Number at risk

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC curve (Three Years)

False positive rate 
 AUC =  0.908

Tr
ue

 p
os

iti
ve

 ra
te

A B

C D

E

F

Figure 5 Prognosis related lncRNAs. (A) HCG22, (B) RNF217-AS1, (C) HCP5, (D) BBOX1-AS1
survival curves. (E) Four lncRNA cox survival analysis curves. (F) Four lncRNA prediction model ROC
curves.

Full-size DOI: 10.7717/peerj.8831/fig-5

BBOX1-A
S1

HCG22
HCP5

RNF21
7-A

S1
0

5

10

R
el

at
iv

e
ex

pr
es

si
on

le
ve

ls
of

ln
cR

N
As

by
qR

T-
PC

R

**

***

***

**

Adjacent
Tumor

0

1

2

3

4

BBOX1_AS1 BBOX1_AS1 HCG22 HCG22 HCP5 HCP5 RNF217_AS1 RNF217_AS1

Lo
g1

0(
co

un
ts

)

Normal
Tumor

A B

Figure 6 Validation of differential lncRNAs by RT-qPCR. (A) HCG22, RNF217-AS1, HCP5, BBOX1-
AS1 validation with qPCR. ∗∗∗P < 0.001 vs. normal. qPCR, quantitative polymerase chain reaction. (B)
Four lncRNA relative expression level in TCGA.

Full-size DOI: 10.7717/peerj.8831/fig-6

Guan et al. (2020), PeerJ, DOI 10.7717/peerj.8831 10/19

https://peerj.com
https://doi.org/10.7717/peerj.8831/fig-5
https://doi.org/10.7717/peerj.8831/fig-6
http://dx.doi.org/10.7717/peerj.8831


and other information. These data are obtained by the second generation sequencing
technology. Second generation sequencing technology is widely used, which can be used in
genome single nucleotide polymorphism sequencing (SNP SEQ), methylation sequencing
(methel SEQ) and transcriptome sequencing (RNA SEQ). By analyzing the microRNA
SEQ data of esophageal cancer from TCGA database, we obtained 12 miRNAs differentially
expressed in esophageal cancer and adjacent tissues.

Yang et al. (2013) found that miRNA-338-3p, miRNA-218 and hsa-miRNA-139-5p were
up-regulated in esophageal squamous cell carcinoma, while miRNA-183, miRNA-574-5p,
miRNA-21 and miRNA-601 were down regulated. Kano et al., (Suzuki et al., 2012) found
that 15 miRNAs were down regulated in esophageal squamous cell carcinoma compared
with normal tissues, and 4 miRNAs were able to play an anti-cancer role (miRNA-
145, miRNA-30a-3p, miRNA-133a and miRNA-133b), which was consistent with the
differential expression miRNAs we analyzed, which proved that our screening method was
feasible. However, some hsa-mir-1246, hsa-mir-34c-5p, hsa-mir-944, hsa-mir-455-5p and
hsa-mir-455-3p have not been reported to be related to the development of esophageal
cancer, which is worth further functional study.

Since AFAP1-AS1 has been verified to be differentially expressed in esophageal
adenocarcinoma, more and more differentially expressed lncRNAs have been found
in tumors. AFAP1-AS1 is a long non-coding RNA amplified from bladder cancer cells by
cDNA terminal rapid amplification. It has been confirmed that AFAP1-AS1 was highly
expressed in embryonic tissues but not in normal tissues. AFAP1-AS1 was highly expressed
in Barrett’s esophagus, non-small cell lung cancer and esophageal cancer (Ji et al., 2018;
Wu et al., 2013; Liu, Hu &Wang, 2020a). Gutschner & Diederichs (2012) found that the
expression of lncRNA HOTAIR in the primary and metastatic lesions of esophageal cancer
was significantly increased, and its expression level in the primary lesions was a powerful
predictor of tumor final metastasis and death. Our previous studies have shown that
lncRNAs are differentially expressed in esophageal squamous cell carcinoma and matched
paracancerous tissues. The abnormal expression of lncRNAs may play an important role
in the occurrence and development of esophageal carcinoma. However, the understanding
of the whole genome expression pattern and function of lncRNA in esophageal cancer is
still limited. In this study, we identified four lncRNAs that play an important role in the
survival and prognosis of ESCC, and constructed a multi gene survival prediction model
using Cox regression model. At present, it has been found that the above four lncRNAs
target genes have been confirmed to participate in the occurrence and development of
tumors (Slack & Chinnaiyan, 2019), indicating that the above four lncRNAs are likely to
participate in the occurrence and development of esophageal squamous cell carcinoma
through their corresponding target mRNA regulation.

The forked head box (Fox) protein family consists of 19 subfamilies of transcription
factors, which share a highly conservedDNA binding domain of about 110 amino acids, i.e.,
the forked head box domain (also known as the winglike helix domain) (Zhang, Virshup
& Cheong, 2018; Maiese, 2017; Hou et al., 2018). Forkhead box o (FoxO) transcription
factor is considered to be a tumor suppressor that can limit cell proliferation and induce
apoptosis (Paik et al., 2007). FoxO gene changes have been described in a limited number
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of human cancers such as rhabdomyosarcoma (Schöffski et al., 2018), leukemia (Li et al.,
2019b) and lymphoma (Liu et al., 2018). In addition, FoxO protein is inactivated by major
carcinogenic signals such as phosphatidylinositol-3 kinase pathway and MAP kinase (An et
al., 2020). FoxOs regulate the expression ofmany genes to control many cell functions, such
as cell growth (Niimi et al., 2019), survival (Hassell, 2019), metabolism and antioxidant
status (Zečić & Braeckman, 2020). However, recent studies have shown new and unknown
functions of FoxO in cancer treatment and promotion, which shows that FOXO factor,
has complex roles in the disease. EGFR (EGFR, ErbB-1 or HER1) is one of the members
of the epidermal growth factor receptor (her) family, which also includes erbB2/HER2,
ERBB3/HER3, ErbB4/HER4 (Habban Akhter, Sateesh Madhav & Ahmad, 2018). Her family
plays an important role in cell signal transduction, cell proliferation and differentiation.
The results of Milas et al. (2004) show that EGFR expression in esophageal squamous
cell carcinoma has guiding significance for predicting radiosensitivity. When cells are
exposed to high-energy radiation, EGFR outside the nucleus can rapidly enter the cells
to form protein complexes without relying on extracellular ligands. It can promote the
phosphorylation of DNA protein kinase and repair the break of DNA double strand, thus
affecting the radiosensitivity of tumor cells (Gotoh et al., 2007).

DNA methylation can also be used as a biomarker for the diagnosis of esophageal
squamous cell carcinoma (Lu et al., 2019). In order to further improve the diagnostic effect
of ESCC, we compared the DNA methylation of ESCC and its adjacent tissues on the
basis of the above three miRNAs as diagnostic markers. Based on TCGA database and
literature search, we analyzed the methylation of KCNA3, USP44, OPLAH and SMTN in
esophageal cancer. KCNA3 (potassium voltage-gated channel subfamily a member 3) is
a member of the voltage-gated potassium channel family (Rensen et al., 2000). It mainly
affects cell adhesion and channel switching while there are no reports that KCNA3 can be
methylated in tumors. USP44 is a member of the ubiquitin specific protease family, which
regulates mitotic spindle and spindle physical examination (Yang et al., 2019). The results
show that USP44 can be directly combined with centrosomal central protein 2 (CETN2)
to regulate the spindle geometry, intermediate distance and centrosome separation, while
the ubiquitination of CDC20 mediated by USP44 can maintain the integrity of metaphase
plate, prevent cell division defects and chromosomal aneuploidy (Stegmeier et al., 2007).
In recent years, studies have shown that the expression of USP44 in a variety of tumors
has been significantly reduced, including colorectal cancer, breast cancer, esophageal
cancer, glioblastoma, renal cancer and testicular cancer (Zhang et al., 2012). In the study
of lung cancer, the decrease of USP44 expression level improves the invasive ability of
tumor cells and reduces the overall survival rate of patients. The full name of TTC6 gene is
Homo sapiens tetratricopeptide repeat domain 6 and its translation product TTC6 protein
contains TPR structure and is a TPR protein (Allan & Ratajczak, 2011; Zhang et al., 2019).
The important functions of TPR structure include transcriptional control, mitochondrial
and peroxisome protein transport, protein kinase inhibition, NADPH oxidase activity,
protein folding, immunity and virus replication (D’Andrea & Regan, 2003). The protein
structure of TPR structural protein is highly consistent. At the same time, it has many
different binding sites, different binding sites play different functions, and functional
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diversity, the methylation of TTC6 in esophageal squamous cell carcinoma has not been
reported. Smtn gene, also known as smoothelin gene, encodes the structural protein that
constitutes the cytoskeleton. It is specifically expressed in contractile smooth muscle cells,
which is related to the contraction of smooth muscle cells and may also be related to the
differentiation of smooth muscle cells (Jiang et al., 2012; Engelen et al., 1997). At present,
the study of smtn gene is still in the exploratory stage, and little is known about its structure
and function. Therefore, the methylation of these genes in esophageal squamous cell
carcinoma is of great value.

CONCLUSION
To sum up, we used a variety of data sets and bioinformatics comprehensive analysis to
identify 11,696 pairs of ceRNA relationships in the screening stage. These candidate genes
are significantly enriched in multiple pathways, mainly related to FoxO signaling pathway
and calcineurin cascade reaction. Through the analysis of TCGA clinical data and the
verification of molecular biological methods, four key lncRNAs related to the prognosis
of ESCC patients were found, including RNF217-AS1, HCP5, ZFPM2-AS1 and HCG22.
These findings can significantly improve our understanding of the etiology and potential
molecular events of ESCC, and these candidate lncRNAs and signaling pathways may be
used as therapeutic targets of ESCC.
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