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Abstract

This study investigated whether current state-of-the-art deep reasoning network analy-

sis on psychometry-driven diffusion tractography connectome can accurately predict

expressive and receptive language scores in a cohort of young children with persistent

language concerns (n = 31, age: 4.25 ± 2.38 years). A dilated convolutional neural net-

work combined with a relational network (dilated CNN + RN) was trained to reason the

nonlinear relationship between “dilated CNN features of language network” and “clini-
cally acquired language score”. Three-fold cross-validation was then used to compare

the Pearson correlation and mean absolute error (MAE) between dilated CNN + RN-

predicted and actual language scores. The dilated CNN + RN outperformed other

methods providing the most significant correlation between predicted and actual scores

(i.e., Pearson's R/p-value: 1.00/<.001 and .99/<.001 for expressive and receptive lan-

guage scores, respectively) and yielding MAE: 0.28 and 0.28 for the same scores. The

strength of the relationship suggests elevated probability in the prediction of both

expressive and receptive language scores (i.e., 1.00 and 1.00, respectively). Specifically,

sparse connectivity not only within the right precentral gyrus but also involving the right

caudate had the strongest relationship between deficit in both the expressive and recep-

tive language domains. Subsequent subgroup analyses inferred that the effectiveness of

the dilated CNN + RN-based prediction of language score(s) was independent of time

interval (between MRI and language assessment) and age of MRI, suggesting that the

dilated CNN + RN using psychometry-driven diffusion tractography connectome may

be useful for prediction of the presence of language disorder, and possibly provide a bet-

ter understanding of the neurological mechanisms of language deficits in young children.
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1 | INTRODUCTION

Late language emergence (LLE) (Ellis Weismer, Murray-Branch, &

Miller, 1994; Rescorla, 2000; Zubrick, Taylor, Rice, & Slegers, 2007)

involves a delay in the acquisition of age-appropriate language skills. It

is presumed to be a neurodevelopmental condition in which children

evidence difficulties in the acquisition and/or use of language due to

deficits in the comprehension or production of vocabulary, sentence

structure, and/or discourse. The prevalence of LLE is estimated to be

about 10–20% in 2-year-old children (Rescorla, 1989; Rescorla &

Alley, 2001; Zubrick et al., 2007). Boys are three times more likely

than girls to exhibit LLE (Roulstone, Loader, Northstone, &

Beveridge, 2002). Approximately 50 to 70% of LLE children (Dale,

Price, Bishop, & Plomin, 2003; Paul, Hernandez, Taylor, &

Johnson, 1996) seem to be “late bloomers” (LB) who are reported to

“catch up” to peers and ultimately demonstrate normal language

development by late preschool age. However, about 30–50% of LLE

children have more persistent deficits in language functions (language

impairment or disorder, LI) that continue into at least late preschool

age (Rice, Taylor, & Zubrick, 2008). The causes of LLE, and of LB

and/or LI, in otherwise healthy children are not presently known.

Early discrimination of persisting LI, and perhaps type of language

impairments (expressive vs. receptive or both), within the larger LLE

group, especially during the early preschool age group (i.e., at age 2–

3 years) would be crucial in launching and directing therapeutic inter-

ventions that might lead to improved language outcomes by late pre-

school/early elementary school ages. However, direct language

assessments, using psychometrics tools, are often unreliable in chil-

dren at such young ages due to the motivational and behavioral diffi-

culties (especially those who have language delay), and the demands

of these tools, which require engagement, motivation, effort/persis-

tence (Downing & Perino, 1992; Sattler, 2001); the etiologic yield of

existing evaluation strategies is low and highly variable, ranging from

17 to 34% (Shevell et al., 2003). In addition, the results from current

clinical MRI protocols in this age group are mostly unremarkable and

of limited value in discriminating LLE from LI, except to rule out a

lesional etiology (Bishop, Snowling, Thompson, Greenhalgh, & the

CATALISE-2 consortium, 2017; Nelson, Nygren, Walker, &

Panoscha, 2006). In the present study, we are addressing the lack of

early, accurate diagnostic tools that allow for the early discrimination

of LLE from LI, by developing and testing develop an imaging protocol

that may provide such critical discriminations, and, again, with the

hopes that such early discriminations might allow for early, targeted

intervention programs for children with persisting LI. Early and reliable

imaging signatures would catalyze a revolution in the early diagnostic

and targeted intervention. We report on a comprehensive analysis of

diffusion-weighted imaging connectome (DWIC), which may allow for

early and reliable prediction of preschool/school-aged language func-

tions via advanced deep learning methods and boost the prediction of

persisting language impairment.

For the last decade, there has been a series of neuroimaging stud-

ies (Badcock, Bishop, Hardiman, Barry, & Watkins, 2012; Chai, Mattar,

Blank, Fedorenko, & Bassett, 2016; Verly et al., 2019) that have

utilized MRI protocols to provide objective insights into persistent LI

by elucidating neural changes that impair development and/or execu-

tion of age-appropriate levels of language abilities. Our recent MRI

studies (Jeong, Sundaram, Behen, & Chugani, 2016a; Jeong,

Sundaram, Behen, & Chugani, 2016b; Sundaram, Sivaswamy, Makki,

Behen, & Chugani, 2008) have revealed brain network abnormalities

in children with LI and further suggested associations between such

abnormalities and type, and potentially magnitude, of LI as well. For

instance, distinct cortico-subcortical network abnormalities, identified

using whole-brain connectome analysis (Jeong, Sundaram,

et al., 2016a), and involving a frontotemporal language network, dif-

ferentiated children with LI from healthy controls (Lee, O'Hara,

Behen, & Jeong, 2020), and also were differentially associated with

distinct LI phenotypes (Lee et al., 2020). This included the discrimina-

tion of children with LLE from those with more persisting impair-

ments, and also the identification of impairment in specific receptive

or expressive skills. Also, emerging data including our recent studies

(Jeong, Sundaram, et al., 2016a; Lee et al., 2020; Sundaram

et al., 2008) suggest that computational network analysis of DWIC

may help noninvasively evaluate atypical alteration in the geometry of

axonal connectivity, possibly improving the predictability of the thera-

peutic outcome. These findings have driven us to test the hypothesis

that probes two distinct language networks: expressive and receptive

networks, which may be accurately delineated by a psychometry-based

DWIC (pDWIC) (Lee et al., 2020); such networks seem to coincide gen-

erally well with clinical diagnostic conceptions of language impairment

as well (e.g., international classification of diseases, tenth revision). In

pDWIC, each language network, Ω = (R, A), is defined as a collection of

L-nodes, Rm = n = 1-L (representing L-brain regions) interconnected by

edges, Am,n = 1-L, representing pair-wise white matter pathways of

which counts of axonal tract streamlines are significantly correlated

with language function assessed by psychometry-derived language

scores (Semel, Wiig, & Secord, 2006). Graphic network topology

(Jeong, Asano, Juhasz, Behen, & Chugani, 2016; Rubinov &

Sporns, 2010) has been applied to characterize not only the nodes and

edges in terms of their embedding into the network but also network

organization as a whole to predict imaging-based language scores,

depending on the severity of the pruning disorganization and(or) mye-

lination abnormality in the language network(s) that may provide useful

diagnostic and prognostic information for individual childrenwith LLE.

The present study investigates a cutting-edge pDWIC approach

for young children to identify very early imaging markers of neuronal

disorganization, helping identify persisting LI and ultimately directing

therapeutic interventions that could facilitate improved language out-

comes. Our working hypothesis is that the location and severity of

brain abnormality identified, quantified, and confirmed by pDWIC

analysis of two language networks (that are suspected to be differen-

tially related to/involved in expressive and receptive language func-

tions), will allow (a) accurate imaging-based prediction of persisting

expressive and receptive language impairments for early targeted-

focused intervention, and (b) detailed concepts for understanding

neural substrates of types of language impairments in young children

evidencing persistent language concerns.
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To determine whether the pDWIC imaging features of two lan-

guage networks: Ωexpressive and Ωreceptive can accurately predict later

expressive and expressive language impairment/scores of in individual

children with early LLE, the present study performed the prediction

tasks with an end-to-end deep learning network, called “dilated con-

volution neural network (CNN) with a relational network

(RN) (Banerjee et al., 2020; Banerjee et al., 2021; Santoro et al., 2017),

that is a special graph network whose computations explicitly focus

on relational reasoning.

CNN is one of the most powerful deep learning models and has

been widely used to extract multi-scale features from input data. Spe-

cifically, we use CNN to map the connectome matrix, Am,n, into a set

of features, which are modeled as objects in the RN. Then, the combi-

nation of CNN + RN could reason about the relationship between

remotely located edges in Am,n, thus leading to a more accurate pre-

diction of expressive and receptive scores for individual patients.

Since Am,n is often sparse, the present study proposes a dilated CNN

(Yu & Koltun, 2015) in the CNN + RN architecture. The dilated CNN

has a larger receptive field than a standard one. Hence, when com-

bined with RN (i.e., dilated CNN + RN), it is supposed to reduce the

prediction error caused by sparse inputs. This study systematically

investigates (a) if the dilated CNN + RN outperforms other advanced

machine learning methods to predict the presence and type of

persisting expressive and receptive language impairment/scores, and

(b) identify which features of pDWIC are most predictive of the

expressive and receptive language impairment/scores in the same

study cohort, thus providing additional support that the dilated CNN

+ RN can effectively improve our understanding of the neuroanatomi-

cal substrates associated with specific, persistent language impair-

ments in young children, including LLE.

2 | MATERIALS AND METHODS

2.1 | Participants

The present study included 31 children with persistent language con-

cerns (mean ± SD of MRI age: 4.25 ± 2.38 years, 1.8–13.6 years old,

20 males) reported in our previous work (Lee et al., 2020). Briefly, all

31 children were seen by their neurologists at the Children's Hospital

of Michigan Pediatric Neurology Clinics from 2011 to 2017. All had

been referred for comprehensive developmental and behavioral evalu-

ations, including assessment of cognitive, motor, language functions,

and behavioral concerns—the specific battery of measures is

described previously (Lee et al., 2020). The children also underwent

clinical MRI before psychological assessment with a time interval of

2.7 ± 1.8 years. Receptive and expressive language scores were

obtained using the age-appropriate version Comprehensive Evalua-

tion of Language Fundamentals (CELF-P2 for preschool-age children,

and CELF-4 for 5–6-year-old children)—raw scores on the receptive

and expressive subscales were standardized to normative t-scores

(mean = 50; SD = 10); also mean verbal and nonverbal intelligence

indices (acquired with the Wechsler Preprimary and Preschool Scales

of Intelligence, WPPSI-4) were also standardized to t-scores. Mea-

sured nonverbal intellectual scores for the study group were

41.4 ± 5.8 (34–60). External and internal behavior scores for the

group were 60.64 ± 9.80 (50–82) and 60.90 ± 8.04 (50–80), respec-

tively. Expressive and receptive language scores for the group were

33.0 ± 10.1 (20–56) and 29.2 ± 7.3 (20–48.7), respectively. These

scores were used as ground truth data to define the pDWIC language

network, Ωexpressive, and Ωreceptive, and train our predictive models.

The present study excluded children with a history of epilepsy or

atypical/complex febrile seizures, a diagnosis of an autism spectrum

disorder and/or attention deficits, and early suboptimal care/maltreat-

ment, including neglect or exposure to abuse. The present study was

approved by the Wayne State University's Institutional Review Board

with a waiver of informed consent.

2.2 | MRI acquisition

All MRI scans were acquired at a 3 T GE-Signa scanner

(GE Healthcare, Milwaukee, WI) equipped with an eight-channel head

coil and ASSET. DWI was acquired with a multi-slice single-shot

diffusion-weighted echo-planar imaging sequence at TR = 12,500 ms,

TE = 88.7 ms, FOV = 24 cm, 128 × 128 acquisition matrix, contiguous

3 mm slice thickness, 55 isotropic gradient directions with

b = 1,000 s/mm2, one b = 0 acquisition, and NEX = 1. T1-weighted

structural images were also acquired using a 3D fast spoiled gradient-

echo sequence at TR/TE/TI of 9.12/3.66/400 ms, with a

section thickness of 1.2 mm and a planar resolution of

0.94x0.94 mm2. Before performing the DWIC tractography analysis,

NIH TORTOISE (https://tortoise.nibib.nih.gov/tortoise) and FSL top-

up packages (Andersson, Skare, & Ashburner, 2003) were used to cor-

rect motion, noise, physiological artifacts, susceptibility-induced dis-

tortion, and eddy current-induced distortion in the DWI data.

All MRI data of the present study were acquired for clinical diag-

nosis. A multidisciplinary team (nurse, child life specialist, MRI techni-

cians) worked to improve the image quality and minimize motion

artifacts by allowing longer scan time for multiple trials. To minimize

the potential confound from head motion artifact, the present study

excluded patients with unsuccessful MRI showing head motion

≥2 mm in DWI encoding data (i.e., voxel size of DWI image), which

was evaluated by NIH TORTOISE DWI motion artifact correction

package.

2.3 | Preliminary assessments of structural
morphology

T1-weighted structural images for all 31 patients were read as normal

clinically. To ensure that subclinical variations in brain morphology

would not significantly influence the present study's investigation of

structural connectivity measures, an additional preliminary assessment

was completed using FreeSurfer software (Fischl, 2012). 3D recon-

structions of each patient's brain, along with equivalent
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reconstructions from 16 typically-developing controls (mean ± SD of

MRI age: 7.26 ± 3.42 years, 2–13 years, 9 males) reported in previous

work (Lee et al., 2020), were resampled to common template space.

Vertex-wise cortical thickness values were spatially smoothed with a

10 mm full width at half maximum Gaussian kernel and fit to a general

linear model with age and sex as covariates. Clusters of thickness con-

trast between patients and controls were corrected for multiple com-

parisons by Monte Carlo simulation (Hagler, Saygin, & Sereno, 2006),

ultimately revealing no significant clusters of difference between the

groups. Global volumetric measures of left and right cortical gray mat-

ter, left and right cerebral white matter, and subcortical gray matter,

were similarly fit to a general linear model, with patient versus control

as a response variable and with age and sex as covariates. Standard-

ized coefficients for these five volumetric measures were also not sig-

nificant, with associated t-score = −0.84/−1.55/1.59/−1.33/−0.90

and p-value = .41/.13/.12/.19/.37. Taken together, these findings

suggest that the 31 patient brains included in the present study are

morphologically normal and further highlight the need for advanced

methods targeting DWI structural connectivity measures in language

disorder.

2.4 | Construction of pDWIC-based language
network

For each of the 31 patients, the second-order integration over fiber

orientation distribution (iFOD2) (Tounier, Calamante, &

Connelly, 2010) was applied to help address the intra-voxel crossing

fiber problem in a whole-brain DWI tractography. Automated anatom-

ical labeling (AAL) parcellation atlas (Tzourio-Mazoyer et al., 2002)

consisting of a set of 116 nodes, Ri = j = 1–116, was then used to recon-

struct whole-brain network, Ω = (Ri = j = 1–116, Ai,j = 1–116), where the

elements of edges Ai,j quantify the pair-wise connectivity strengths

between Ri and Rj (i.e., the number of fiber streamlines scaled by both

streamline length and volume of the nodes to stabilize inter-subject

variability by correcting for age Cheng et al., 2012). Finally, Pearson's

correlation with Bonferroni correction was performed between a

subject-series of the edges, Ai,j = 1–116, and CELF expressive (recep-

tive) scores. The corrected p-value <.05 was applied to identify

Am,n = 1-Lexpressive(receptive) of Lexpressive(receptive)-nodes, Rm = n = 1-Lexpressive

(receptive), consisting of the pDWIC-based expressive (receptive) lan-

guage network (Lee et al., 2020), Ωexpressive(receptive) =

(Rm = n = 1-Lexpressive(receptive), Am,n = 1-Lexpressive(receptive)).

2.5 | Construction of the dilated CNN + RN

The present study utilized the dilated CNN + RN (Banerjee

et al., 2020; Banerjee et al., 2021; Santoro et al., 2017) to objectively

predict language scores, where the dilated CNN maps the sparse input

matrix, Am,n, into a set of features, which are modeled as objects in

the RN to reason about the relationship between objects, leading to a

more accurate prediction of an output: expressive or receptive lan-

guage score for individual patients (Figure 1). Briefly, the dilated CNN

is a generalized CNN operator to provide exponential expansion of

the receptive field without resolution loss. The dilated convolution

(Yu & Koltun, 2015) between input: Am,n and CNN kernel: c with dila-

tion factor: l, is defined as:

cm,n�lAm,nð Þi,j =
X
i

X
j

ci,j �Am− l�i,n− l�j ð1Þ

where the size of the receptive field, the block of elements that

determine the activation of each CNN unit, is exponentially

F IGURE 1 An architecture diagram of the proposed dilated CNN + RN which takes a given input: Am,n
k to predict an output: yk where k is an

index of individual subject (i.e., instance). For CELF expressive(receptive) language score, an input: Am,n
k will be a 2D matrix of an expressive

(receptive) network features (Lexpressive(receptive) × Lexpressive(receptive)) while an output: yk at a linear layer will be a continuous variable ranging from
0 to 50. Two dilated CNN + RNs to learn two sets of Am,n

k from Ωexpressive and Ωreceptive were separately constructed to predict expressive and
receptive language scores
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increased by the dilation factor, l (i.e., the space between original

kernel elements).

It should be noted that the dilation increases the size of the

receptive field exponentially at each depth while keeping the number

of parameters with a logarithmic growth at each depth, achieving 3.6

times parameter reduction with only a 1% drop of accuracy (Zhou,

Wu, Wu, & Zhou, 2016). Thus, compared with conventional convolu-

tion (l = 1), the dilated convolution (l > 1) provides more efficient

learning at the same computational cost, especially in cases that the

input matrix, Am,n has the sparse clusters of edges connecting the

remote nodes in the pDIWC-based language network, Ωexpressive(recep-

tive). Furthermore, the spatial arrangement of nodes, Rm,n in Ωexpressive

(receptive), is arbitrarily determined by a fixed cortical atlas (e.g., AAL).

This configuration makes local feature patterns of the dilated CNN

maps ill-posed to represent specific functional relevance in Ωexpressive

(receptive). We presume that this limitation can be overcome by combin-

ing the dilated CNN with RN, “dilated CNN + RN,” which is capable

of modeling nonlocal relations among the features extracted by the

dilated CNN. In our RN, relational reasoning is performed between

every pair of possible objects (i.e., dilated CNN features) regardless of

their spatial arrangements in Ωexpressive(receptive). That is, for accurate

prediction of language score: yk, the function: g is applied on each

object combination to calculate the relation of every object pair

(Banerjee et al., 2020; Banerjee et al., 2021; Santoro et al., 2017).

yk =RN Oð Þ= fφ 1=N Σi,j gθ oi,oj
� �� � ð2Þ

where oi and oj are a possible object pair obtained from the feature

maps and O is the set of all objects. The function: g (i.e., four fully con-

nected [FC] layers, 256 units per layer) is an FC network that operates

on these object pairs and computes relations between them. The

function: f (i.e., two FC layers, 256 units per layer), is another FC net-

work, which operates on the averaged set of relations and predicts

the final score. N is the total number of object combinations obtained

from the final feature maps. yk is the final prediction of the network.

gθ corresponds to the update function fφ for the global attribute.

The function of gθ(oi,oj) in Equation (2) provides information about

the strength of the relationship between each object pair or if the objects

are not related. The resulting set of relations is averaged element-wise to

ensure combinatorial generalization. Finally, the function: f is applied to

this combined vector. The final layer following f is a linear layer with one

unit which is required for the language score prediction. An adaptive

learning rate approach for stochastic gradient descent using the Adam

optimizer (Kingma & Ba, 2014) minimizes the loss function (i.e., the mean

square error for language score prediction). Detailed architecture and

parameters of the dilated CNN + RN were available in our recent work

(Banerjee et al., 2020; Banerjee et al., 2021).

2.6 | Data augmentation

For each of the expressive and receptive language score predic-

tions, threefold cross-validation was performed with two

independent cohorts, (a) training cohort (twofolds) and (b) test

cohort (onefold), which is independent of the training cohort.

Three folds, first fold: patient index 1–10 (age of MRI:

4.14 ± 2.17), second fold: patient index 11–20 (age of MRI:

4.80 ± 3.40), third fold: patient index 21–31 (age of MRI:

3.93 ± 1.24), did not differ at age (p > .38). To prevent the over-

fitting of network layers, the study samples of each cohort were

separately augmented by using the synthetic minority over-

sampling technique (SMOTE) (Brown et al., 2015; Chawla, Bowyer,

Hall, & Kegelmeyer, 2002; Hussain, Gimenerz, Yi, & Rubin, 2017;

Kawahara et al., 2017). That is, for each cohort, 311 sample

instances per patient (i.e., 1 original sample and 310 augmented

instances) were generated from a 2-D data matrix in which each

row vector constitutes a (Am,n
k,tk) of the kth study subject, sized

by a 1× (L2 + 1) vector consisting of L2 elements of Am,n
k and a sca-

lar tk (i.e., actual measurement: CELF score). Then each row vector

of this data matrix was augmented 310 times by randomly interpo-

lating its six nearest neighbors of tk. These augmentations resulted

in (a) 6,531 sample instances of the training cohort sized by

6,531 × (L2 + 1) (i.e., 21 original instances and 6,510 augmented

instances) and (b) 3,110 sample instances of the test cohort sized

by 3,110 × (L2 + 1) (i.e., 10 original instances and 3,100 augmented

instances). In this manner, we performed a threefold cross-

validation over the entire cohort data set (n = 31 patients), first

fold was to predict the language scores of patient index: 1–10

using the training cohort of patient index: 11–31, second fold to

predict the language sores of patient index: 11–20 using the train-

ing cohort of patient index: 1–10 and 21–31, and third fold to pre-

dict the language scores of patient index: 21–31 using the training

cohort of patient index: 1–20. This validation comprised of 9,641

(31 original +310 × 31 augmented) instances dived into 6,531

training and 3,110 testing instances (i.e., 67.7 and 32.3% of the

entire cohort, respectively).

2.7 | Identification of the most predictive features
for expressive and receptive language score

To identify the most essential elements of the edge matrix, Am,n, for

prediction of language scores, we generated the regression activation

maps using a gradient-based algorithm, called gradient-based class

activation mapping (Grad-CAM) (Selvaraju et al., 2017; Simonyan,

Vedaldi, & Zisserman, 2013; Zhou, Khosla, Lapedriza, Oliva, &

Torralba, 2016). In Grad-CAM, the weights of the gradients, αk are

first calculated by taking the global average pooling of the partial

derivatives of output score w.r.t the set of feature maps,

αlk =
1
Z

X
m

X
n

∂yk
∂Flmn

ð3Þ

where yk is the score of the kth study subject. Fl is the lth feature map

after the last layer of convolution, and Z is the normalization factor. The

final activation map MGrad-CAM for the kth patient is given as follows:
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Mk
Grad−CAM =RELU

X
l

αlkF
l

 !
ð4Þ

where the RELU operation removes the negative gradients.

2.8 | Performance metric and comparison with
other methods

The mean absolute error (MAE), between the dilated CNN + RN-

driven language score: yk and the measured language score: tk was

calculated to evaluate the performance of the dilated CNN + RN.

Also, we evaluated P(AE≤10) as a probability value if absolute

error (AE) between yk and tk is less than 10 (i.e., SD of normative t-

score) and also calculated Pearson's correlation coefficient

(R) between yk and tk.

Intensive computational experiments were performed to compare

the dilated CNN + RN model with current state-of-the-art models

used for the prediction of language scores. In the same training and

testing splits, we compared the prediction performances of the fol-

lowing models: (a) support vector regressor (SVR) with a radial basis

function; (b) multilayer regressor (MLR): this constituted a three-FC

layer network with 256 units in the first two layers with 50% dropout

followed by 128 units in the third layer and a single linear unit in the

final layer for prediction of expressive/receptive scores; (c) CNN

+ MLR: this constituted three convolutional-layers where each layer

of CNN had 32 kernels of size 3 × 3 with stride 1 and ReLU activa-

tion. Maximum pooling with pool size 2 was used after the second

layer, followed by the same MLR used in (b); (d) CNN + RN: three

CNN layers as in (c) with maximum pooling after the first and second

layer and Leaky ReLU activation with slope 0.2, were combined with

the RN as presented in Figure 1; (e) dilated CNN + MLR: three con-

volutional layers with 32 kernels in each layer where the last con-

volutional layer has the kernel with a dilation factor of 2 and followed

by the MLR used in (b).

3 | RESULTS

Nonverbal intelligence was not significantly correlated with either

expressive (R = .33, p-value = .07) or receptive scores (R = .19, p-

value = .31). In addition, neither externalizing behavior nor internaliz-

ing behavioral scores were significantly related to either expressive

(R = .03, p-value = .88, R = .15, p-value =.43, respectively) or receptive

scores (R = −.26, p-value = .16, R = .05, p-value = .80, respectively);

therefore, neither nonverbal intelligence, nor behavioral metrics were

included in further analyses.

Figure 2 shows the pDWIC-based expressive and receptive lan-

guage networks, Ωexpressive = (Rm = n = 1-17,Am,n = 1–17) and Ωreceptive =

(Rm = n = 1-17,Am,n = 1–17), where Pearson's correlation analysis

between language scores and Ai,j = 1–116 of Ω determined

Lexpressive = 17 and Lreceptive = 17 at the corrected p-value <.05.

The output after the final dilated CNN layer was 32 feature maps

(size: 3 × 3 × 32). An object was sliced from the third dimension of

the feature maps as shown in Figure 1. Thus, each object was of size

1 × 1 × 32 or 32 dimensional. Then, every pair of objects were

concatenated and fed as an input to the RN. For feature maps of size

3 × 3, the total number of object combinations was

81 (3 × 3 × 3 × 3), and the size of each combination of an object pair

was 64 (32 for each object). The function g of Equation (2) was then

applied to each object combination to calculate the relation between

every object pair in the dilated CNN + RN.

Figure 3 shows the convergence curves of the dilated CNN + RN

to predict expressive and receptive language scores. Compared with

other methods, the dilated CNN + RN to predict expressive/receptive

scores provided the fastest convergence to global minima at

100 epochs, 0.0013/0.0008, which was 5.33/8.58, 3.86/6.16,

1.82/1.72, 2.52/2.13, 1.06/1.20 times smaller than the loss of SVR,

MLR, CNN + MLR, dilated CNN + MLR, and CNN + RN at 100 epochs,

indicating that the deep reasoning of high-level features abstracted

from the dilated convolution layer are the most powerful to minimize

prediction error in both expressive and language scores. Also, compu-

tational time per epoch was 0.05, 0.13, 0.20, 0.20, 1.0, and 1.0 second

on a NVIDIA GTX 980 Ti GPU for SVR, MLR, CNN + MLR, dilated

CNN + MLR, CNN + RN, and dilated CNN + RN, respectively.

Table 1 presents performances of dilated CNN + RN and other

models for expressive and receptive language score prediction which

was evaluated from the 9,641 instances of threefold cross validation.

The dilated CNN + RN yielded the best performance compared with

other models. MAE, P(AE≤10), and R of the dilated CNN + RN out-

performed those of other methods when predicting expressive/recep-

tive scores, yielding respective improvements in MAE, P(AE≤10), and

R: 48.5 ± 28.26 (17.5–75.20)%/54.50 ± 20.38 (16.37–86.10)%,

0.42 ± 0.94 (0–2.11)%/0.61 ± 0.91 (0–2.04)%, 3.38 ± 4.63 (1.05–

11.63)%/8.36 ± 15.26 (1.02–35.62)% (i.e., improvement

[%] = 100 × jdilated CNN + RN—other methodj/other method). These

superior performances yielded >97% of P(AE≤10) to predict both

expressive and receptive scores, suggesting that the dilated CNN

+ RN can provide a reliable means to predict language impairment and

ultimately may help supplement or replace portions of early language

assessments in clinical cases, which are often unreliable due to moti-

vational and behavioral concerns, commonly present in small children,

and particularly in small children with early language problems.

Also, compared with the CNN + RN, the dilated CNN + RN pro-

vided lower MAE values and higher correlation coefficients between

actual and predicted language scores of three test folds (Figure 4,

MAE/R/p-value of dilated CNN + RN = 0.278/0.999/<0.001 and

0.281/0.987/<0.001 for expressive and receptive scores, MAE/R/p-

value of CNN + RN = 0.950/0.989/<0.001 and 0.704/0.980/<0.001

for expressive and receptive scores), yielding the best performance to

predict expressive and receptive scores in three folds of 31 test sub-

jects (n = 10, 10, and 11 test patients from first fold, second fold, and

third fold, respectively). Note that we stacked the test cohorts of

threefolds and generate 31 patients instead of overlapping the train

and test patients. There was no overlap between train and test
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patients as the 31 patient's predictions have been generated by stac-

king first fold (n = 10 test patients), second fold (n = 10 test patients)

and third fold (n = 11 test patients).

Subsequent subgroup analyses of the stacked 31 test predic-

tions (Table 2) found no significant interference of Δt (time interval

between MRI and language assessment) and age of MRI on the

absolute error of the dilated CNN + RN (i.e., unpaired t test p-value

of AE in expressive/receptive language score = 0.268/0.503 and

0.695/0.402 for Δt ≤3 years vs. Δt > 3 years and age of MRI

≤3 years vs. age of MRI > 3 years), suggesting the stability of the

dilated CNN + RN-based prediction without depending on different

patient profiles, especially for children with LLE and younger than

3 years of age.

Figure 5 presents the activation maps of Equation (4) showing

important pair-wise edges, Am,n of Ωexpressive and Ωreceptive that the

dilated CNN + RN learned as the most predictive of expressive and

receptive scores. Each activation map was averaged over the entire

data set (n = 31 patients). Each 3D visualization showed

corresponding edges (i.e., line segments) connecting AAL nodes listed

in the 2D MGRAD-CAM maps of Ωexpressive and Ωreceptive. Here, the

greater weight indicates the presence of thicker edges contributing to

a better score. For the prediction of the expressive language score,

F IGURE 2 pDWIC-based language network, (left) expressive language network, Ωexpressive. (right) receptive language network, Ωreceptive, which
were obtained from 31 young children (age: 4.25 ± 2.38 years, 20 male). Blue spheres indicate 17 nodes of Am,n showing statistically significant
Pearson's correlation coefficient with CELF score at the corrected p-value <.05. Black spheres indicate the other 99 nodes of Am,n having no
significant correlations. Each 2-D matrix shows pair-wise connection edges, Am,n = 1–17 at each language network. A complete list of regional
names corresponding to node labels is available in Table S1

F IGURE 3 Convergence curves of the dilated CNN + RN (solid blue line) obtained from the augmented training instances, (left) expressive
language network: Ωexpressive, and (right) receptive language network: Ωreceptive
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TABLE 1 Performance comparison of the dilated CNN + RN with other methods for prediction of CELF score

Method

Ωexpressive Ωreceptive

MAE P(AE≤10) R MAE P(AE≤10) R

SVR 3.79 ± 0.71 0.97 ± 0.05 0.86 ± 0.07 3.31 ± 0.66 0.98 ± 0.04 0.73 ± 0.16

MLR 1.14 ± 0.81 0.97 ± 0.04 0.95 ± 0.04 0.64 ± 0.35 0.99 ± 0.02 0.96 ± 0.05

CNN + MLR 2.53 ± 0.88 0.97 ± 0.05 0.95 ± 0.06 1.63 ± 0.51 1.00 ± 0.00 0.98 ± 0.00

Dilated CNN + MLR 2.99 ± 0.81 0.95 ± 0.05 0.94 ± 0.06 1.54 ± 0.16 1.00 ± 0.00 0.98 ± 0.01

CNN + RN 1.15 ± 1.11 0.97 ± 0.05 0.95 ± 0.06 0.55 ± 0.36 1.00 ± 0.00 0.98 ± 0.01

Dilated CNN + RN 0.94 ± 0.93 0.97 ± 0.04 0.96 ± 0.06 0.46 ± 0.36 1.00 ± 0.00 0.99 ± 0.01

Note: For each method, the mean ± SD of MAE, P(AE≤10), and R were evaluated over threefold cross validation using 9,641 sample instances of three

independent test cohorts: {Am,n
k} of Ωexpressive and Ωreceptive.

F IGURE 4 Significant linear
correlations between the measured
and predicted CELF language scores
obtained from the three independent
test folds (n = 31 patients), (left) CNN
+ RN and (right) dilated CNN + RN.
The trained “CNN + RN” and “dilated
CNN + RN” were applied to predict
the measured scores of the
corresponding test fold subject, tk as
plotted on the x-axis. Each yk on the
y-axis is the prediction of each tk on
the x-axis

TABLE 2 Mean absolute error (MAE), SD of absolute error (SDAE), prediction probability of the dilated CNN + RN driven language scores to
achieve AE less than 10 (P(AE≤10)), and unpaired t test p-value evaluated from five different data sets of three independent test cohorts: whole
data set (n = 31 patients), the time interval between MRI and neuropsychological assessment (Δt) ≤ 3 years (n = 19 patients), Δt > 3 years (n = 12
patients), age at MRI ≤3 years (n = 10 patients), and age at MRI > 3 year (n = 21 patients)

Group (n)

Expressive language score Receptive language score

MAE ± SDAE P(AE≤10) p-value MAE ± SDAE P(AE≤10) p-value

Whole (31) 0.28 ± 0.54 1.00 0.28 ± 1.16 1.00

Δt≤3 year (19) 0.19 ± 0.46 1.00 .268 0.39 ± 1.48 1.00 .503

Δt > 3 year (12) 0.42 ± 0.65 1.00 0.10 ± 0.24 1.00

Age of MRI ≤3 years old (10) 0.34 ± 0.67 1.00 .695 0.02 ± 0.02 1.00 .402

Age of MRI > 3 years old (21) 0.25 ± 0.49 1.00 0.40 ± 1.41 1.00
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the right precentral gyrus (R.PreCG), left supramarginal gyrus (L.SMG),

angular gyrus (L.ANG), inferior parietal lobule (L.IPL), and superior

frontal dorsal region (L.SFGdor) appeared to be prominent hubs of

essential connections. That is, connection edges across the right

PreCG, left SMG, ANG, and IPL were found to be the most predictive

of positive expressive language outcomes. In contrast, the right cau-

date (R.CAU), pallidum (PAL), and left ANG regions were found to be

prominent hubs of essential connections for the receptive language

score. Connection edges connecting the right basal ganglia as well as

left ANG were the most predictive of receptive language outcomes. In

other words, weaker edges across these regions were predictive of

worse language scores, suggesting the presence of receptive language

impairment. There was an overlap in left ANG that is most predictive

of both expressive and receptive language scores.

4 | DISCUSSION

The present study investigated the clinical feasibility of deep learning

technology to predict the persistence of expressive and receptive lan-

guage impairments in small children with late language acquisition

(e.g., LLE). The dilated CNN + RN analysis outperformed other state-

of-the-art methods to accurately and directly predict expressive and

receptive language scores obtained at an older age. This finding

supported our hypothesis that the comprehensive evaluation combin-

ing psychometry-driven DWIC language networks and deep reasoning

of dilated convolutional features can be a breakthrough technology

for the common MRI-negative LLE cases by providing neurological

substrates and dissecting out this broad label into more distinct

scientifically-based entities. Specifically, our dilated CNN + RN out-

performed the CNN + RN to improve prediction errors up to 12 and

36% for expressive and receptive language scores, suggesting that the

dilated convolutional features provide more efficiency for artificial

reasoning at the same computational cost, especially in the case that

the input matrix has the sparsely distributed clusters of edges in the

nonlocal pattern.

Language functions are supported by widespread areas of the

cortex and have multiple spatiotemporally distributed modules that

serve various linguistic functions. For the differences in edges that are

predictive of expressive vs. receptive scores, our Grad-CAM analysis

found that there were commonalities between edges associated with

expressive and receptive scores: they both involved bilateral struc-

tures and had one common structure (left angular gyrus). Significant

information sharing was also identified by language-associated ele-

ctrocorticography high-gamma modulation “within” frontal and

temporoparietal language cortices, and “between” classical language

areas in the dominant hemisphere (i.e., Broca's and Wernicke's areas)

(Arya et al., 2019), suggesting that expressive and receptive language

functions may communicate and share neural activity across multiple

language regions. Interestingly, our result provided neurobiological

evidence on a spatial redundancy (Schomers, Garagnani, &

Pulvermüller, 2017) determined by our dilated CNN + RN to be most

predictive of expressive and receptive scores (e.g., left ANG). How-

ever, information sharing between dilated CNN + RN-defined

F IGURE 5 Activation maps (MGRAD-CAM) showing AAL brain nodes, Rm of Am,n that the dilated CNN + RN learned as the most predictive of
CELF scores, (left) expressive score using Ωexpressive and (right) receptive score using Ωreceptive. Each 2D MGRAD-CAM presents an activation map
showing pair-wise connection features, Am,n, and their contributions (i.e., weights) to increase prediction accuracy. Higher weight (red-colored)
indicates that a pair-wise connection is more predictive of the measured CELF scores. In 3D brain visualization, relatively small z-scores of
activation weights (i.e., z-scores less than two times SD of each map) were omitted for clarity. The radius of each sphere indicates the sum of z-
score at each node, while the thickness of the pair-wise edge represents z-score. A complete list of regional names corresponding to node labels
is available in Table S1
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expressive and receptive language regions was not yet confirmed in

the present study. Thus, further studies combining ele-

ctrocorticography are warranted to better understand both specializa-

tions of the association cortices (Catani & ffytche, 2005) and axonal

connections between dilated CNN + RN-defined hubs. Two notable

differences are present in the structures involved in expressive and

receptive language: the right hemisphere is more involved for recep-

tive, and it also involves two subcortical structures (caudate and palli-

dum), while the expressive language network involved only cortical

regions. Involvement of basal ganglia (usually caudate and putamen

are mentioned) has been long known in language function, and reduc-

tions in the caudate volume are associated with language impairment

(Tallal, Sainburg, & Jernigan, 1991). Badcock et al. (2012) also dis-

cussed specifically decreased right caudate volume in LI. However, it

would be difficult to link the right caudate to receptive language

exclusively, considering the role of the caudate nucleus in motor prep-

aration and response planning. In addition, functional imaging of lan-

guage functions has supported some involvement of the right-

hemisphere in language development in typically developing persons

(Müller et al., 1997). Empirical work has also indicated increased right

(and decreased left) hemispheric involvement in children and adults

(greater in children) with neural insult in cortical language regions,

which have been suspected to reflect the neural reorganization of

function (Müller et al., 1998). A recent review of fMRI studies (Deldar,

Gevers-Montoro, Khatibi, & Ghazi-Saidi, 2020) also suggested a

dynamic interaction between language and working memory,

reflected in the involvement of subcortical structures, particularly the

basal ganglia (caudate), and of widespread right hemispheric regions.

Thus, our finding of the subcortical structures and right hemisphere

involved in the receptive language network might reflect the language

interaction in response to working memory function.

The advantage of using Grad-CAM over the conventional group

analysis method is that Grad-CAM could be applied to the pre-trained

dilated CNN + RN model to visualize the areas of the input

connectome matrix that leads to accurate predictions. Conventional

group analysis using Pearson's correlation with Bonferroni correction

was first used to construct the input matrix with the most important

edges for the prediction of specific language scores. To identify the

most important edges in the input matrix, the Grad-CAM was then

applied to the pre-trained deep learning model. That is, since a trained

deep learning model is necessary for the prediction of CELF scores

from unseen edge matrices, we used the Grad-CAM to identify the

important connections in the input matrix. Thus, the connections

which were common to both the Grad-CAM and the group analysis

were the most important connections leading to an accurate CELF

score. The findings of the present study support that Grad-CAM could

be used as a reliable method to visualize important connections for

future unseen test cases.

Moreover, Grad-CAM also has advantages over other deep

learning-based visualization algorithms (Simonyan et al., 2013; Zhou,

Wu, et al., 2016). For example, the saliency maps (Simonyan

et al., 2013) calculate the partial derivative of the output class score

w.r.t the input image pixels. Hence, it does not make use of the

feature maps which describe the image at a higher abstract level. The

issue of class-specific activation maps (CAM) (Zhou, Khosla,

et al., 2016) is that it could only be applied to a specific set of CNN

based architectures where global average pooling (GAP) operation is

done before the final softmax layer for class score prediction (He,

Zhang, Ren, & Sun, 2016). Compared with these methods, Grad-CAM

(Selvaraju et al., 2017) is a more generalized activation map visualiza-

tion algorithm, which could be applied to any CNN-based architec-

ture. Thus, we used Grad-CAM to understand which connections in

the input matrix are the most important in the prediction of the final

regression or classification score.

Brain development is most dynamic in the first few years of life

with cortical expansion and myelination of white matter tracts

(Gogtay et al., 2004) - this includes the development of both cortex

and white matter tracts/networks associated with language expres-

sion and reception. Many quantitative MRI studies (Deoni, Dean,

Joelson, O'Regan, & Schneider, 2018; Lebel & Deoni, 2018; Zatorre,

Fields, & Johansen-Berg, 2012) have demonstrated consistent, rapid

microstructural white matter development over the first 3 years of

life, including increased myelination and axonal packing. Diffusion

MRI studies (Dubois et al., 2014; Fields, 2015; Qiu, Mori, &

Miller, 2015) also reported changes attributed to continued white

matter maturation, synaptogenesis, synaptic pruning, and remodeling

during later childhood. As detailed in the emerging literature (Deoni

et al., 2018), subtle, but differential, microstructural changes exist in

most MRI signatures that may be associated with biological factors

and environmental risks. We presume that the dilated CNN + RN,

which deeply learns and intelligently reasons the hidden relationships

between pair-wise edges in the pDWIC-based language networks

might be powerful enough to pick up such subtle changes for predic-

tion of the imaging-based language scores, although the nature of the

reasoning remains unclear. More importantly, the present study pro-

vides detailed, evidence-based insight into the early white matter

impairment that may underlie expressive and receptive language net-

works before acquiring language, possibly indicating the presence or

extent of disorganized pruning and(or) poor myelination process in

the early developmental period. For instance, a positive correlation

between language scores and edge strengths (e.g., “right precentral

gyrus,” “right caudate”) can indicate that these regions may function

as new or additional hubs to compensate for altered language func-

tion. A recent neuroimaging study (Mitsuhashi et al., 2020) applying

fMRI and DWI tractography to clarify the mechanisms of neural plas-

ticity involved in language found increased fiber counts in right

precentral gyrus in early bilingual acquisition, suggesting the increased

neural connections between right precentral gyrus to right basal gang-

lia may be a key pattern of neural plasticity in language skills. Volu-

metric analyses (Burgaleta, Sanju�an, Ventura-Campos, Sebastian-

Galles, & �Avila, 2016; Hervais-Adelman, Egorova, & Golestani, 2018)

also revealed a significant relationship between multilingual experi-

ence and right caudate volume, as well as a marginally significant rela-

tionship with left caudate volume, suggesting right caudate as a key

hub for language acquisition. Similarly, the left angular gyrus was

suggested to be a key part of the perisylvian language network

JEONG ET AL. 3335



(Catani, Jones, & ffytche, 2005) in multilingual children. Although

Wernicke's original description was of a temporal lobe language area,

the term Wernicke's area subsequently has been used to include infe-

rior parietal areas, as well as posterior temporal areas encompassing

angular gyrus, supramarginal gyrus, and inferior parietal lobule

(BA 39 and 40) (Aboitiz & García, 1997). Thus, the increased axonal

connectivity in these regions may reflect a substrate for language

impairment or perhaps compensatory mechanism in an attempt to

improve expressive language in late language acquisition. This, how-

ever, could only be proven by longitudinal studies.

In the proposed dilated CNN + RN, the predicted expressive lan-

guage scores (32.8 ± 9.9, 20.0–55.8) had a higher SD than the

predicted receptive language scores (29.2 ± 7.3, 20.0–48.7). It is likely

because the measured expressive language scores (33.0 ± 10.1, 20–

56) also had higher SD than the measured receptive language scores

(29.2 ± 7.3, 20–48.7), evidencing that the dilated CNN + RN could

have successfully learned the nonlinear relationship of each language

function between the given edge matrix and the measured language

score. That is, the nature of our sample cohort can affect the differ-

ence in SD. A recent study (Ryan, Gibbon, & O'shea, 2016) also found

that the profile of superior expressive compared with receptive lan-

guage is apparent in children with language delay and socioeconomic

status (SES) factors such as parent–child interaction styles, level of

maternal education, maternal sensitivity, income-to-needs ratio, and

environmental variables may have a greater influence on receptive

rather than expressive language. In addition, some data suggest a ten-

dency for speech and language interventions to be more effective to

improve expressive than receptive skills (Law, Garrett, & Nye, 2004)—

this may be relevant because all of the children in the present study

were receiving speech therapy services. Thus, our possible explana-

tion for the lower SD of receptive language scores may be due to its

higher sensitivity to the SES factors of our study cohort or the effect

of speech-language therapy.

Despite our efforts to ensure methodological rigor, the present

study has some unavoidable limitations. First, this retrospective work

includes a small sample size (n = 31), which can be problematic for the

individual machine learning model to learn heterogeneous natures of

high dimensional features via a deep learning process. Although data

augmentation was applied to alleviate this limitation (i.e., 6,531 sam-

ple instances of the training cohort used for training our dilated CNN

+ RN could prevent overfitting and resulted in a generalized model

that could accurately predict the language scores in 3,110 sample

instances of the independent test cohort), it was based on a randomly

interpolated resampling procedure across the nearest neighbors,

which may limit deep learning of the connectome features specific to

a single institutional MRI cohort that is not yet generalized for multi-

site MRI cohorts. Thus, the reproducibility of each model should be

evaluated using a new independent data set such as other institutional

data. Also, the specific pattern of interhemispheric connectivity at the

dilated CNN + RN-defined language hubs, which may reflect the

effect of neural plasticity on axonal reorganization, has not been

addressed by the present study. Our future study will focus on this

reproducibility test to determine if the dilated CNN + RN can be

translated to clinical cases in which current neuropschycometric lan-

guage assessment fails to evaluate language abilities. While neither

nonverbal intellect nor behavioral problems were correlated with lan-

guage scores (and due to the sample size, which limited the number of

variables to be included in data analyses), we did not statistically con-

trol for intellect/behavioral scores in the imaging-language data ana-

lyses. Thus, some of the findings could reflect an intellect/behavioral

influence on the outcomes; further study, with larger samples and

which controls for such extraneous concerns, will be needed to con-

firm the results of the present study. Due to retrospective nature of

the study, we had no control over the interval between assessment

and imaging. Finally, the present study did not consider combining

clinical variables with DWIC features and the effect of MRI-

assessment time interval to improve the prediction analyses. It is

anticipated that features from both sources could be combined to

improve the prediction accuracies further. As noted above, the sample

only included children with LLE, and which limits our understanding of

the meaning of the findings—future study including children with typi-

cally developing language skills is necessary to fully understand the

fuller meaning of the findings in the present study.

In summary, this study provides additional data that may further

elucidate the anatomical blueprint of the atypically developed lan-

guage networks in children with persistent language concerns. Our

approach may lead to the refinement of imaging and psychometric

language phenotype relationships in a detailed manner, and ultimately

may allow for earlier and more reliable identification of persisting lan-

guage impairment in small children, allowing for earlier onset of inter-

vention programs, and further may allow for the identification of the

type of language impairment, which could lead to more targeted inter-

vention in such children.
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