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Globally, nearly 40 percent of all diabetic patients develop serious diabetic kidney disease
(DKD). The identification of the potential early-stage biomarkers and elucidation of their
underlying molecular mechanisms in DKD are required. In this study, we performed
integrated bioinformatics analysis on the expression profiles GSE111154, GSE30528 and
GSE30529 associated with early diabetic nephropathy (EDN), glomerular DKD (GDKD)
and tubular DKD (TDKD), respectively. A total of 1,241, 318 and 280 differentially
expressed genes (DEGs) were identified for GSE30258, GSE30529, and GSE111154
respectively. Subsequently, 280 upregulated and 27 downregulated DEGs shared
between the three GSE datasets were identified. Further analysis of the gene
expression levels conducted on the hub genes revealed SPARC (Secreted Protein
Acidic And Cysteine Rich), POSTN (periostin), LUM (Lumican), KNG1 (Kininogen 1),
FN1 (Fibronectin 1), VCAN (Versican) and PTPRO (Protein Tyrosine Phosphatase
Receptor Type O) having potential roles in DKD progression. FN1, LUM and VCAN
were identified as upregulated genes for GDKD whereas the downregulation of PTPRO
was associated with all three diseases. Both POSTN and SPARC were identified as the
overexpressed putative biomarkers whereas KNG1 was found as downregulated in
TDKD. Additionally, we also identified two drugs, namely pidorubicine, a topoisomerase
inhibitor (LINCS ID- BRD-K04548931) and Polo-like kinase inhibitor (LINCS ID- BRD-
K41652870) having the validated role in reversing the differential gene expression patterns
observed in the three GSE datasets used. Collectively, this study aids in the understanding
of the molecular drivers, critical genes and pathways that underlie DKD initiation
and progression.
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kidney disease
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INTRODUCTION

Diabetes is a major global health crisis projected to affect 642
million people by 2040 (1). According to the statistics from the
World Health Organization (WHO), the rapid rise in the
population prevalence in low- and middle- income countries
led to the dramatic rise in the number of diabetic patients from
108 million in 1980 to 422 million in 2014. Unfortunately, nearly
40 percent of all diabetic patients develop serious diabetic kidney
disease (DKD) (2). The dangerous liaison between diabetes and
DKD is well-established. Currently, diabetes is one of the leading
causes of both end-stage renal disease (ESRD) and chronic
kidney disease (CKD) (3, 4). According to one study, the
mortality due to the DKD rose by 94 percent between 1990
and 2012 (5).

In 2015, the Global Burden of Disease (GBD) assessed 1.2
million deaths and 19 million disability-adjusted life-years
attributed to the hostile ailments of diabetes directly related to the
reduced glomerular filtration rates (6, 7). According to the data
from the WHO, nearly 100 million Chinese people are currently
suffering from diabetes (8). Several studies reported the prevalence
and risk of CKD andDKD in Chinese residents. Liu et al. conducted
a cross-sectional survey including 23,869 clinical samples to
measure the prevalences and risk factors associated with CKD
and DKD in a Chinese rural population (9). In participants with
diabetes, the overall prevalence of CKD was more than 35 percent.
The Chinese cohort study conducted from 2003 through 2015
implicated a higher mortality rate and shorter life expectancy in the
patients suffering from DKD. Taken together, there is an urgent
need to develop the methods for early detecting the progression of
kidney diseases in diabetic patients.

Based on anatomical distinction between the different
sections of human kidney, the DKD which is also commonly
known as diabetic nephropathy (DN) are subdivided into
glomerular or tubular (10). Henceforth, the diseases associated
with the glomerular and tubular region will be called glomerular
diabetic kidney diseases (GDKDs) and tubular kidney diseases
(TDKDs). The GDKDs are characterized by reduced glomerular
filtration capacity, and the deposition of immune leading into the
damage of the glomerular basement membrane (11) whereas the
TDKDs are characterized by the dysfunctions of transporters and
channels in the renal tubular system, and the destructions of the
normal tubular tissues (12).

The diagnosis of the DKD has posed a challenge due to the
complicated etiopathology and comorbidity associated with other
related diseases. Identification of both prognostic and diagnostics
biomarkers to monitor the initiation and progression of DKD has
been recommended (13). Several diagnostic biomarkers mainly
identified by monitoring the morphological changes in diabetic
kidney were reported. The marker of tubular damage such as
neutrophil gelatinase-associated lipocalin (NGAL), alpha-1-
microglobulin, kidney injury molecule-1 (KIM-1), N-acetyl-beta-
D-glucosaminidase, angiotensinogen, uromodulin, liver-type fatty
acid-binding protein (L-FABP), and transferrin were also reported
(14). However, the prognosis of the disease is still poorly
understood. To this end, gene expression profiling can aid
tremendous value in identifying the putative prognosis biomarkers.
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The integrated use of differential gene expression (DEG)
analysis and bioinformatics approaches have been advocated in
early detection and monitoring of disease progression. It has also
been used in identifying the chemical perturbagens capable of
intervening the critical molecular pathways in diseased
conditions. For example, the genomics and transcriptomics
data profiling has helped in elucidating the pathogenesis of
diabetes (15–17) and in identifying potential new mechanisms
in DN (18, 19). However, there are only a few studies that shed
light on the potential pathogenesis mechanism and cross-talks
between GDKD, TDKD and early diabetic nephropathy (EDN).
For example, Woroniecka et al. conducted the transcriptomics
profiling of GDKD and TDKD on human kidney samples (20).
The integration of multiple genomics data and their reanalysis
offers a great avenue to identify certain disease-related
biomarkers and help overcome the pitfalls of single cohort
study, poor reproducibility and consistency (21).

In the current study, we analyzed the gene expression profiles
of EDN (GSE111154) (22), GDKD (GSE30528) (20) and TDKD
(GSE30529) (20) accessed from the NCBI‐Gene Expression
Omnibus database (NCBI‐GEO). We identified the
differentially expressed genes (DEGs) and further examined the
molecular factors that drive the DKD pathogenesis using an
integrated bioinformatics approach. We further conducted the
drug perturbation analysis using the LINCS L1000 data
repository (23) to study the effect of small-molecules and
identified the potential drug candidates which have the ability
to induce and reverse the transcription profile signatures.
MATERIALS AND METHODS

Dataset and Identification of DEGs
The high throughput gene expression profile datasets of EDN
(GSE111154) (22), GDKD (GSE30528) and TDKD (GSE30529)
(20) were obtained from NCBI-GEO (24). The datasets
GSE30528 and GSE30529 were the subseries of GSE30122 and
based on the GPL571 platform- HG-U133A_2 Human Genome
Affymetrix array. GSE111154 was based on the platform
GPL17586- [HTA-2_0] Affymetrix Human Transcriptome
Array 2.0. The GDKD dataset had 9 samples and 13 samples
collected from the glomerular tissues of DKD and normal
patients, respectively. The TDKD dataset had 10 samples and
12 samples collected from tubular tissues of DKD and normal
patients, respectively. The EDN dataset consisted of 4 clinical
samples of the early DN and 4 non-diabetic control samples
obtained from the kidney tissues and blood. The GEO2R module
of the bioconductor package was used to identify DEG. The
datasets were standardized, normalized by TPM (Transcripts Per
Kilobase Million) and log transformed to identify DEGs with
respect to the diseased vs control samples. In this study, the genes
with log2FC > 1.5 and P value < 0.05 were defined as DEGs (25,
26). The datasets were examined both individually and in groups
to identify the genes unique to the respective diseases. Volcano
plots and heatmap clusters of the DEGs were plotted using the
ggplot modules of R package 3.5.8 and R studio 1.4.1106 (27).
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Gene Ontology and Pathway Enrichment
Analysis
The functions of the candidate DEGs were annotated using the
DAVID gene annotation tool (https://david-d.ncifcrf.gov/) (28).
The annotations were evaluated for three sub-ontologies viz.
biological process (BP), molecular functions (MF) and cellular
components (CC). The pathways enrichment analysis was
performed using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (29, 30) and REACTOME (31) databases.
The interrelation analysis of the molecular pathways were
conducted using the ClueGo (version 2.5.7) (32) implemented
in Cytoscape software (version 3.8.2) (33). In this work, we have
plotted the clusters based on the Benjamini Hochberg statistical
significance including enrichment/depletion hypergeometric
tests and a kappa score cutoff of 3 (21).

Protein-Protein Interaction (PPI) Network
Establishment and Modular Analysis
The DEG-encoded proteins and their interactions amongst each
other were established using the STRING database (http://stringdb.
org/) (34). The PPI-network was created and evaluated using the
Cytoscape software. Additionally, the significant interactions within
the PPI-network were screened using MCODE plugin (35)
implemented in Cytoscape software. The selections were made
based on the highest MCODE score, degrees and the number of
nodes. In this work, the significant clusters were selected based on
the network scoring degree cutoff of 2. The parameters to find the
clusters were optimized to the haircut option with K- score cutoff of
2 and node score cutoff of 0.2.

Validation of Hub Genes
The expression levels of the hub genes in various tissues were
investigated using the expression atlas platform (https://www.
ebi.ac.uk/gxa/home) (36). The presence and absence of the genes
were considered as the biomarker for the kidney diseases based
on the standard expression levels of the genes in the renal and
associated systems. The protein expression levels of the hub
genes were also identified from the protein atlas database (www.
proteinatlas.org). The tissue pathology, transcript expression of
hub genes as identified from Genotype tissue Expression dataset
(GTEx) and their cell specific protein expression from human
proteome atlas (HPA) in normal cells of glomeruli, and tubules
were predicted.

Confirmation of Hub Genes
The hub genes identified needed confirmation and hence a single-
cell transcriptome data of early diabetic nephropathy (37) from
Humphreys Lab (http://humphreyslab.com/SingleCell/) was
analyzed with the data visualization tool. The dataset with GEO
accession GSE131882 had an integrated single-nuclear (sn) RNA
data that included 3 control and 3 early diabetes samples from
podocytes (PODO), proximal convoluted tubules (PCT), cells of the
loop of Henle (LOH), connecting tubule cells (CNT), distal
convoluted duct cells (DCT), principal cells of collecting duct
(CTP), glomerular endothelial cells (EDC), intercalated cell B
from collecting duct (CTB), intercalated cell A from the collecting
Frontiers in Endocrinology | www.frontiersin.org 3
duct (CTA), parietal epithelial cells (PEC), messenger cells and
immune cells (38). The hub genes were compared to the snRNA
dataset to confirm their potential effect. Their expression in diabetic
nephropathy vs healthy human donor was predicted through
Nephroseq v5 tool (https://nephroseq.org). The cut off thresholds
were p value of 0.05, and log2FC of 1.5 to filter out the expression
patterns of the putative candidate biomarker genes.

Drug Perturbation Analysis
We have conducted the transcriptomic signature similarity
search on the identified DEGs using L1000FWD web server
(http://www.lincsproject.org/LINCS/dmoa). The potential drug
candidates which mimicked and reversed the gene expression
signatures were ranked based on the similarity score close to 1
and -1 (39).
RESULTS

Identification of DEGs in DKD
We obtained the gene expression profiles of diseased and
controlled samples of GDKD, TDKD and EDN from the
GSE30528, GSE30529 and GSE111154 datasets and identified
the DEGs using the GEO2R package. Upon setting the cut-off
criterion as log2FC > 1.5 and P < 0.05, we identified 1,241, 318
and 280 DEGs from GSE30528, GSE30529 and GSE111154,
respectively. The overlapping DEGs between the three datasets
were also identified (Figure 1A) The volcano plots of the DEGs
of each dataset are shown in Figure 1B. The heat map of the
DEGs based on Hierarchical clustering between patients with
DKD and healthy controls are shown in Figure 1C. We have
identified 44 upregulated and 23 downregulated genes
overlapped between the EDN and GDKD, 188 upregulated and
5 downregulated genes were found overlapped between the
GDKD and TDKD, and 52 upregulated genes were found
commonly between the EDN and TDKD. Interestingly, two
upregulated genes SULF1 and DCN, and one downregulated
gene PTPRO were observed as common to the three datasets
(Figure 1A). The overall statistics are shown in Table 1.

GO Term Enrichment Analysis of DEGs
Gene ontology enrichment is significant to elucidate the
mechanisms of differentially expressed genes and we performed
DEG GO analysis using the DAVID (https://david-d.ncifcrf.gov/)
gene annotation tool. Three sub-ontologies viz. BP, MF and
CC were examined. The DEGs of the respective datasets were
examined and based on the P- value, the top 10 best ranked gene
annotations were considered for further analysis (40). The GO
annotations for the up- and downregulated genes are shown
in Supplementary Figures 1 and 2, respectively. As shown in
Supplementary Figure 1 illustrating the BP term, the upregulated
genes were mainly enriched in extracellular matrix organization,
regulation of cell migration, response to cytokine stimulation,
regulation of coagulation and glomerular epithelial cell
differentiation; downregulated genes were largely enriched in
regulation of glomerular filtration, chemotaxis and cellular
September 2021 | Volume 12 | Article 721202
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response to vascular endothelial growth factors. For MF,
enrichment of upregulated genes were mainly involved in the
metalloendopeptidase inhibitor activity, tau protein binding,
integrin binding and prostaglandin E receptor activity, and that
of downregulated genes were mainly in the filamin binding, VEGF
(Vascular Endothelial Growth Factor) receptor binding and CMP
alpha 2-3 sialyltransferase and immunoglobulin binding
mechanisms. For CC, enrichment of upregulated genes were
primarily in the phagocytic vesicles and granular lumen and the
downregulated genes mainly in secretory vesicles, exocytic vesicles,
platelet alpha granules and endolysosomes. We have also
performed the GO term enrichment analysis for the overlapped
genes (Supplementary Table 1).

Signaling Pathway Enrichment Analysis
KEGG andREACTOMEpathway enrichment analyses of theDEGs
(both up- and downregulated) were performed (Supplementary
Figure 3). The significantly upregulated pathways were identified
to be the hemostasis, aggregation and activation of platelets, collagen
formation and complement cascade activation. Enrichment of
downregulated DEGS was mostly in vascular endothelial growth
factor receptor dimerization, VEGF- ligand interactions, defective
Frontiers in Endocrinology | www.frontiersin.org 4
B3GALTL (Beta 3-Glucosyltransferase) and pathways associated
with O-glycosylation. We further performed the interrelational
analysis of pathways by examining KEGG processes of up- and
downregulated DEGs in ClueGO. Interestingly, the upregulated
DEGs were primarily associated with the complement activation,
collagen formation, collagen biosynthesis, humoral immune
response, regulation of prostaglandin, perception of neurofibrillary
tangle, cold stimulus and nephron morphogenesis (Figure 2). The
downregulated DEGs were primarily associated with the regulation
of axon guidance, endothelial cell chemotaxis, vascular endothelial
growth factor signaling, MAP kinase signaling, protein kinase
activity, glomerular filtration, collagen biosynthesis, formation of
fibrin clots and coagulation (Figure 3).

PPI Network Construction and
Identification of Hub Genes
We have investigated the integrated pathways and PPI of the
DEGs using the STRING database and Cytoscape software. The
overall interactions were further validated with the MCODE
module (shown in Figure 4). Significant PPI clusters for up- and
downregulated DEGs were identified with the maximum score of
13.286 and 6.25, respectively. The PPI cluster of the upregulated
September 2021 | Volume 12 | Article 721202
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FIGURE 1 | Identification of differentially expressed genes (DEGs) in the three datasets (EDN: GSE111154, GDKD: GSE30528 and TDKD: GSE30529). (A) Venn
diagrams representing commonly changed DEGs in the three datasets. (B) Respective volcano plot of the three datasets. Red and blue plots represent up- and
downregulated genes, respectively (log2FC > 1.5 and P value < 0.05). Black plots represent the remaining genes with no significant difference. (C) Heatmap of the
top 500 DEGs are shown.
TABLE 1 | Identification of the commonly changed DEGs in the three datasets.

Group EDN vs GDKD GDKD vs TDKD EDN vs TDKD EDN vs GDKD vs TDKD

Upregulated genes 186 42 50 2
Downregulated genes 22 4 0 1
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FIGURE 3 | Interrelation analysis of pathways downregulated DEGs by examining KEGG processes in ClueGO.
FIGURE 2 | Interrelation analysis of pathways upregulated DEGs by examining KEGG processes in ClueGO.
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DEGs included 15 nodes with 94 degrees. The PPI cluster of the
downregulated DEGs included 7 nodes with 25 degrees along
with two subclusters containing 2 nodes and 2 degrees each with
a score of 3.32. CTGF (Cellular Communication Network Factor
2), IGFBP5 (Insulin Like Growth Factor Binding Protein 5) and
LOX (Lysyl Oxidase) were identified as two upregulated hub
genes for EDN. THBS2 (Thrombospondin 2), LUM, COL6A3
(Collagen Type VI Alpha 3 Chain), FN1 and VCAN were
identified as four upregulated hub genes for GDKD. FSTL1
(Follistatin Like 1), TIMP1 (TIMP Metallopeptidase Inhibitor 1),
POSTN, SPARC and COL3A1 (Collagen Type III Alpha 1 Chain)
were identified as five upregulated hub genes for TDKD. VEGFA,
PLCE1 (Phospholipase C Epsilon 1), BMP2 (Bone Morphogenetic
Protein 2) and FGF1 (Fibroblast Growth Factor 1) were identified
as four downregulated hub genes for EDN. HRG (Histidine Rich
Glycoprotein) was identified as the downregulated hub gene for
GDKD. Interestingly, two most significant candidate genes viz.
DCN (encodes decorin) and PTPRO (encodes receptor-type
tyrosine-protein phosphatase O) were found common for the
respective up- and downregulated DEGs in all three datasets.
Non overlapping upregulated gene COL1A2 (Collagen Type VI
Alpha 2 Chain) and downregulated THY1 (Thy-1 Cell Surface
Antigen), KNG1, EGF and THBS1 were also identified from the
string interactions.

Validation of Hub Genes
The hub genes were validated based on the comparison between
the standard expression levels from the Genotype tissue
expression (GTEx) dataset and the fold change as a measure of
Transcripts per kilobase million (TPM) with a maximum of
Frontiers in Endocrinology | www.frontiersin.org 6
11,749 TPM. Analysis of the distribution of the hub genes
revealed that they were significantly expressed in both left and
right cortex tissues of the kidney. As per the GTEx dataset, higher
expression levels of PTPRO, NPHS1, VCAN, COL6A3, THBS1
and FN1 were found in the cortex and pelvis of both the kidneys.
Medium expressions of KNG1, LOX, THY1, THBS2, PLCE1 and
VEGFA and lower expressions of HRG were identified in the
renal tissues (Figure 5). Validation was further extended with the
prediction of the tissue specific expression rates as per GTEx data
set and cell specific expression rates from Human Protein Atlas
maps and are represented in Table 2.

Mean TPM of DCN was higher in kidneys with an expression
rate of 301.3, followed by SPARC with a value of 158.7. Their
expression rates were the highest in the urinary bladder with
1509.2 pTPM and 345.8 pTPM for DCN and SPARC
respectively. DCN was identified as a renal cancer prognostic
marker with lower levels of its protein identified in glomeruli
cells of normal kidneys whereas higher levels of SPARC was
predicted in glomeruli and lower levels in tubuli cells of normal
kidneys. Higher protein expressions of PTPRO and FGF1 were
detected in glomerulus and not in tubuli. PTPRO and FGF1 were
already established prognostic biomarkers of renal cancers.
Higher protein expression levels of FN1 and KNG1 were
identified in normal tubular kidneys and medium levels in
glomerulus and bladder tissues. Expressions of LUM, VCAN,
COL6A3 were not detected in the normal glomerular, tubular
and bladder tissues.

From the overall analysis of hub genes and expression analysis,
overexpression of FN1, LUM, VCAN could be the potential
prognostic biomarkers of GDKD. Downregulation of KNG1 and
A B

FIGURE 4 | Protein–protein interaction (PPI) network of DEGs and module analysis. (A) Identification of a significant module based on the degree of importance
examined for upregulated DEGs. (B) Identification of a significant module based on the degree of importance examined for downregulated DEGs. The representations
are as follows: the potential genes unique to EDN, GDKD, and TDKD are shown in green, pink and cream colors respectively. The cyan color represents the common
gene noticed in all three datasets for the respective up- and downregulated DEGs.
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upregulation of POSTN and SPARC could be significant biomarkers
of TDKD. Upregulated CTGF represents a potential biomarker of
EDN. The below cutoff expression (represented in transcripts per
kilobasemillion or TPM) of PTPRO could represent any of the three
diseased conditions such as early diabetic nephropathy, glomerular
Frontiers in Endocrinology | www.frontiersin.org 7
and tubular diabetic kidney diseases. Although the DCN is normally
expressed inkidney tissue, high traces of its expressionwas also found
inotherorgans suchasheart andmuscles.Thus, despite its significant
expression in upregulated DEGs of all three datasets, it cannot be
proposed as a suitable biomarker for DKD.
FIGURE 5 | Hub genes identified from the expression atlas based on their transcripts per kilobase million expression level in the renal system.
TABLE 2 | Expression levels of the hub genes identified from GTEx and HPA data.

Hub genes RNA seq expression Protein Expression Sn RNA dataset

Kidney (pTPM) Glomerulus Tubules P- value Cell type

VEGFA 96.1 medium medium 0.962 PODO
PTPRO 22.6 high not detected 0.000339427082146 PODO
LUM 36.3 not detected not detected Not detected Not detected
COL6A3 6.8 not detected not detected 2.55212579805471E-06 MES
FN1 38.9 medium high 0.406463264506511 MES
POSTN 23.0 not detected low 0.010690303094222 MES
KNG1 126.5 medium high 1.10077051593139E-05 DCT-CT
FGF1 40.9 high not detected 0.002353864219147 PODO
BMP2 3.3 No data No data No data No data
LOX 18.9 No data No data No data No data
EGF 13.2 No data No data 0.027696802696135 DCT-CT
DCN 301.3 low not detected 0.800847912989593 PODO
SPARC 158.7 High low 0.018698295677998 PODO
VCAN 9.6 not detected not detected 9.57643667243769E-07 PEC
PLCE1 8.2 Medium Medium 0.455738614120668 PODO
CTGF 167.1 low low 0.862180638654418 PEC
September 2021 | Volume 12 | A
rticle 721202
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Comparison of Hub Genes With snRNA
Transcriptome Dataset
The hub genes were compared with the snRNA transcriptome
dataset to infer their potentiality. The genes SPARC, THBS1,
EGF, PTPRO, FGF1, POSTN, and COL6A3 were identified to be
significantly enriched in the PODO, MES, DCT, PODO, MES,
PEC, and MES samples respectively with significant p-value (38)
as seen in Table 2. LUM, BMP2 and LOX were not detected.
VEGFA, FN1, KNG1, FGF1, DCN, VCAN and CTGF were
identified in PODO, MES, DCT-CT, PODO, PODO, PEC and
PEC respectively. As seen in the Figure 6, Nephroseq v5
webserver predicted the over expression of FN1, SPARC, LUM,
VCAN, and POSTN with fold change of 2.808, 1.655, 6.25, 1.77,
and 3.324 in diabetic nephropathy respectively. Under
expression of PTPRO and KNG1 with fold change of -3.308
and -1.618 respectively were reported in diabetic nephropathy in
comparison with healthy living donors. These results correlated
with the identified putative biomarkers of GDKD, TDKD and
EDN except that of CTGF, where it has an under expression (fold
change of -4.728) in diabetic nephropathy in contrast to the
earlier predictions.

Drug Perturbation of the Transcriptome
Data
Further, we identified the small-molecules chemical
perturbagens. The large publicly available gene expression
datasets from LINCS were explored to first identify the
signature genesets for kidney disease. Subsequently, we
identified the 50 different drug perturbation signatures for the
overlapping DEGs. We filtered out the similar and opposite
signatures for the DEGs from the human renal epithelial cell line
HA1E (41). Drugs with similar gene signatures represent the
ones strikingly mimic the current gene expression patterns
whereas the opposite gene signature patterns represent the
Frontiers in Endocrinology | www.frontiersin.org 8
ones capable of reversing the observed current expression
profiles (42). In this study, the top drugs were ranked based on
the similarity scores. Two drugs viz. pidorubicine, a
topoisomerase inhibitor (LINCS ID- BRD-K04548931) and
Polo-like kinase inhibitor (LINCS ID- BRD-K41652870) were
identified from the opposite signatures. Both the drugs were
validated to be effective on the renal epithelium cell line with the
similarity score of -0.9812 and -0.9516, respectively. The details
of the drug perturbation analysis is presented in Table 3. The
transcriptomic signatures and the action of the drugs BRD-
K04548931 and BRD-K41652870 on renal epithelium cell lines
(HA1E) are shown in Supplementary Figure 3.
DISCUSSION

Currently, due to the aggressive comorbidities associated with
the DKD poses an enormous challenge in their diagnosis. The
identification of the better biomarkers are urgently needed to
improve diagnosis. Niewczas et al. recently examined the
proteomic profiling of circulating proteins (19) in type 1 and
type 2 diabetes patients. They identified an extremely robust
inflammatory signature, consisting of 17 proteins enriched for
TNF Receptor Superfamily members with a 10-year risk of end-
stage renal disease. Mitrofanova et al., reported that SMPDL3b
modulates insulin receptor signaling in DKD (43). Bjornstad
et al., recently reported the relationships between markers of
tubular injury and intrarenal hemodynamic function in adults
with and without type 1 diabetes (44). Hirao et al., reported the
discovery of a useful biomarker for EDN discovery by
proteomics analysis of urine proteomes of DM patients
without microalbuminuria and healthy volunteers (45).
Cheung et al. performed an exome-chip association analysis in
Chinese subjects with type 2 diabetes (46). They noticed elevated
circulating pigment epithelium-derived factor levels were
associated with increased risks of DN and sight-threatening
diabetic retinopathy. Collectively, the identification of novel
markers for prognosis and diagnosis of DKD is an active area
of research.

In this work, we aimed to reanalyze the omics molecular profiles
available in the public databases to identify the prognosis
biomarkers and small-molecules chemical perturbagens of the
DKD. Similar approaches have been advocated in previous
studies. In the current study, we integrated gene expression
patterns of three stages of DKD viz. EDN, GDKD and TDKD.
We obtained three datasets of gene expression patterns fromNCBI-
GEO: GSE111154 with samples affected by EDN along with healthy
control, GSE30528 with samples from the affected GDKD along
with healthy control, and finally GSE30529 containing samples
affected with TDKD along with healthy control.

A total of 280 up- and 27 downregulated DEGs were identified
and the subsequent analysis was carried out on them. Gene
annotations of DEGs revealed the upregulations of biological
processes such as cell migration, cytokine stimulation, and
glomerular epithelial cell differentiation. Downregulated molecular
functions being metallopeptidase inhibitor, VEGFA receptor
FIGURE 6 | The box plot of seven candidate genes that exhibit the over and
under expression rates in diabetic nephropathy in comparison with healthy
living donors.
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binding and integrin binding ability. Cellular components like
phagocytic vesicles and granular lumen were found in higher
levels. Pathways enrichment analysis disclosed potential activation
and aggregation of platelets, collagen fiber formation, hemostasis
and activated complement cascade. Pathways involving the vascular
endothelial growth factor dimerization and its interaction with
ligands were substantially deferred from the normal occurrences.
The subsequent inter-relational analysis supported the above
findings. Strikingly, reduced developments of glomeruli and
nephrons were noticed in all three diseased conditions. The
determination of PPI networks allowed us to narrow down the
DEGs to identify potential biomarkers.

We compared the gene expression levels of the identified hub
genes. FN1 (responsible for cell adhesion), LUM and VCAN
(veriscan) (involved in cytokine activity and signaling pathways)
could be the putative upregulated biomarkers of GDKD. We
predicted the lower expression of KNG1 (kininogen1)
responsible for elevated cytosolic calcium levels and fibrin clots
can be a putative prognostic biomarker for TDKD. Upregulation
of POSTN (peristin) and SPARC (secreted protein acidic and
cysteine rich) could also be putative biomarkers of TDKD.
Frontiers in Endocrinology | www.frontiersin.org 9
PTPRO (protein tyrosine phosphatase receptor O) responsible
for the chemotaxis and regulation of glomerular filtration was
proposed as an attractive downregulated candidate biomarker
for all three diseases. The genes FN1, and PTPRO were reported
by the Online Mendelian Inheritance in Man (OMIM) database
to be associated with glomerulopathy, renal fibrosis and
nephrotic syndrome, respectively (47). Correlation of
expression of the candidate genes were obtained in comparison
to the snRNA datasets, except that of CTGF which had a
contradictory under expression in diabetic nephropathy Thus,
the identified key candidate genes - FN1, SPARC, VCAN, LUM,
POSTN, KNG1 and PTPRO can be considered further for the
investigation in clinical research. Finally the two drugs viz.
pidorubicine, a topoisomerase inhibitor (LINCS ID- BRD-
K04548931) and Polo-like kinase inhibitor (LINCS ID- BRD-
K41652870) were also identified using the induced
transcriptional gene signature database. These drugs were
known to have the validated role in reversing the differential
gene expression patterns observed in all three datasets (48).

Though the study has integrated gene enrichment, pathways,
tissue and cell specific expression analysis in the identification of
TABLE 3 | Drug perturbation analysis of the overlapped DEGs.

Signature ID Pubchem ID Drug Similarity
score

Drug Structure

Similar signatures - drugs mimic the originally observed expression patterns
CPC002_HA1E_6H:BRD-K80348542-
001-01-4:10

442195 Cephaeline BRD-K80348542 1

CPC010_HA1E_6H:BRD-A24643465-
001-05-3:10

16219462
Homoharringtonine

BRD-A24643465 protein
synthesis inhibitor

1

Opposite signatures - drugs reverse the observed pattern of DEGs
CPC002_HA1E_24H:BRD-K91370081-
001-10-3:10

65348 Pidorubicine BRD-K04548931 Topoisomerase
inhibitor

-0.9812

CPC012_HA1E_6H:BRD-K41652870-
001-01-9:10

3190037 BRD-K41652870 Polo-like kinase
inhibitor

-0.9516
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hub genes for diabetic kidney conditions, there exists few
limitations as well. There are advanced sc-RNA and bulk
sequencing technologies available, yet the current study relied
upon the affymetrix microarray datasets to infer the diabetic
kidney disease pathogenesis for three reasons: first, majority of
the diabetic kidney disease datasets were based on affymetrix
platform, secondly, the human transcriptome data were limited
and finally, the datasets without any treatment conditions were a
little. The present study needs extensive clinical validation of the
proposed candidate genes and drug perturbations. Thus the field
demands more research and the current research opens up novel
directions to explore the biomarkers and pathology of diabetic
kidney diseases. Comparison of the hub genes with the sn-RNA
sequence data added confirmation and correlated with the main
findings of the study.

In conclusion, we have investigated the potential biomarkers/
key candidate genes for DKD using the integrated bioinformatics
analysis. We identified seven candidate genes FN1, LUM,
VCAN, KNG1, POSTN, SPARC and PTPRO significantly
associated with the progression of DKD, and further
investigation of these genes in clinical research is warranted.
Furthermore, the results of this study increase our understanding
of the molecular drivers, critical genes and pathways that
underlie DKD initiation and progression. Identification of the
small-molecules chemical perturbagens further validate their
potentials as therapeutic targets.
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