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Abstract

Notch signaling is an evolutionarily conserved pathway that regulates cell-cell interactions

through binding of Notch family receptors to their cognate ligands. Notch signaling has an

essential role in vascular development and angiogenesis. Recent studies have reported that

Notch may be implicated in Alzheimer’s disease (AD) pathophysiology. We measured the

levels of soluble Notch1 (sNotch1) in the plasma samples from 72 dementia patients (aver-

age age 75.1 y), 89 subjects with amnestic mild cognitive impairment (MCI) (average age

73.72 y), and 150 cognitively normal controls (average age 72.34 y). Plasma levels of

sNotch1 were 25.27% lower in dementia patients as compared to healthy control subjects.

However, the level of Notch1 protein was significantly increased in human brain microvascu-

lar endothelial cells (HBMECs) after amyloid-beta treatment. Also, Notch1 mRNA level was

significantly increased in HBMECs and iPSC-derived neuronal cells from AD patient com-

pared to normal control. These results indicate that altered expression of Notch1 might be

associated with the risk of Alzheimer’s disease.

Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative syndrome caused by abnormal accu-

mulation of biological products for decades. Recently, it has been reported that Notch signal-

ing in cerebrovascular diseases is associated with angiogenesis and the functioning of the

blood-brain barrier (BBB)[1]. Notch1 could mediate neurodegenerative progress including

AD. Notch is involved in regulating proteolytic processing of amyloid precursor protein

(APP) through cleavage by ADAM10/17 and γ-secretase[2, 3]. The membrane-bound Notch

receptor is cleaved into a secreted Notch extracellular truncation domain (NEXT) and an acti-

vated Notch intracellular domain (NICD). NICD translocates into the nucleus and modulates

the expression of several genes[4]. Notch signaling cascade is involved in various intracellular

signaling processes including BBB functioning, cerebrovascular formation, and the develop-

ment of tissue-specific cell types[5, 6]. In BBB, during the vessel formation process, vascular
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endothelial growth factor A (VEGFA) is the most potent mitogen acting on endothelial cells

(ECs). VEGFA stimulates vasculogenesis through VEGF receptor 2 (VEGFR2)-induced activa-

tion of DLL4 and Notch1 signaling pathway[7]. A recent study showed that Notch and VEGF

signaling mediates vasculogenesis and angiogenesis through regulation of VEGFR2 in BBB[8].

In the brain, Notch signaling plays an important role in the developmental processes, syn-

aptic plasticity, and glial cell activation[9–11]. Notch might also be involved in the neural stem

cell activation in response to exercise, learning, or injury. However, the mechanism of Notch

signaling-mediated fine-tuning of neurogenesis is not fully understood. Recently, it has been

reported that Notch1 protein expression is significantly increased in the brain of patients with

AD and Notch1 is deposited in Aβ1–42 positive plaques[12]. Plasma Notch1 and tumor necro-

sis factor-α converting enzyme (TACE) levels were significantly higher in the abdominal aortic

aneurysm (AAA) postulating that the Notch1 signaling in macrophages plays an important

role in AAA development and progression[13]. However, the plasma level of Notch1 has never

been explored in AD. The level of full-length and truncated Notch1 in the cerebrospinal fluid

(CSF) is reduced in AD patients suggesting its accumulation in the brain parenchyma[12].

These studies indicate that imbalance of Notch1 signaling might be implicated in AD. In our

previous study, we examined the plasma levels of soluble VEGFR2 (sVEGFR2) are significantly

decreased in AD patients[8]. We found that that the NOTCH1 mRNA level was significantly

increased in human umbilical vein endothelial cells (HUVECs) after Aβ treatment. Overex-

pression of NICD significantly decreased the sVEGFR2 and VEGFR2 mRNA levels in HUVEC

indicating that the altered VEGFR2 expression might be associated with AD[8].

In this study, we evaluated the changes in the plasma levels of Notch1 in AD and deter-

mined the role of Notch1 in regulating cerebrovasculogenesis in ECs. We demonstrated that

the soluble Notch1 (sNotch1) levels are significantly decreased in the plasma of AD patients.

These results highlight the importance of Notch1 as a potent biomarker in patients at risk for

AD.

Materials and methods

Subjects

Control, subjects with mild cognitive impairment (MCI) and dementia subjects were selected

from the population-based Ansan Geriatric (AGE) cohort established in 2002 to study the

common geriatric diseases of elderly Koreans aged between 60–84 years. The sampling proto-

col and design of the AGE study have been previously described[14, 15] and the population of

this study has referenced in our previous study[8, 16]. Cognitive functioning and memory

impairments of the subjects were assessed using a Korean version of Consortium to Establish a

Registry for Alzheimer’s disease (CERAD-K) neuropsychological battery[17]. The basic struc-

tures of all measures in the original CERAD batteries were maintained in Korean translation.

All participants were clinically evaluated according to published guidelines. All the dementia

patient met the criteria as described in the Diagnostic and Statistical Manual of Mental Disor-

ders, fourth edition[18] and the National Institute of Neurological and Communicative Disor-

ders and Stroke and the Alzheimer’s Disease and Related Disorders Association (NINCDS–

ADRDA)[15]. MCI was diagnosed on the basis of the Mayo Clinic criteria [19] as described

previously[20, 21]. In total, blood samples from 311 subjects were included in our study. The

distribution of control, MCI, and dementia subjects are shown in Table 1. The study subjects

consisted of 72 dementia patients (average age 75.1 ± 0.68, 17 males, 55 females), 89 subjects

with MCI (average age 73.72 ± 0.52, 36 males, 53 females), and 150 unrelated healthy control

subjects (average age 72.34 ± 0.37, 65 males, 85 females). Table 1 summarizes demographic

and clinical measures for all covariates tested here, including diagnosis (normal, MCI,
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dementia), the mini-mental state exam (MMSE), and global clinical dementia rating (CDR).

CDR scores are 0 for normal, 0.5 for questionable dementia, 1 for mild dementia, 2 and 3 for

moderate to severe dementia[22]. All participants provided written informed consent and no for-

mal psychological tests or assessments were used to determine whether participants were able to

provide written informed consent. The consent procedure and data acquisition procedure of this

study were approved by the Institutional Review Board (IRB) of the Korea Centers for Disease

Control and Prevention (KCDC) with approval numbers (2016-02-22-P-A, 2017-05-05-P-A). All

experiments were performed in accordance with relevant guidelines and regulations.

Cell cultures

Human umbilical vein endothelial cells (HUVECs) (Lonza, Walkersville, MD, USA) were cul-

tured on 0.2% gelatin-coated wells in Endothelial Growth Medium-2 (EGM-2) media (Lonza)

with 2% fetal bovine serum (FBS) at 37˚C in a humidified incubator with 5% CO2, as previ-

ously described passages[23] 6–9 were used for experimentation. Primary human brain micro-

vascular endothelial cells (HBMECs) were from Cell systems (Kirkland, WA, USA) and

maintained in CSC complete medium with 10% serum and CultureBoost (Cell systems). All

primary HBMECs cultures were used between passage 4 and 9. Human iPSC-derived neural

progenitor stem cells were obtained from Axol Bioscience (Little Chesterford, UK) and were

differentiated to cerebral cortical neurons in approximately 7 days following the recom-

mended manufacturer’s protocol.

Antibodies and Reagents

The following primary antibodies were used: anti-Notch1 intracellular domain (NICD) (Cell

Signaling Technology, MA, USA), anti-Notch1 extracellular domain (NEXT) (Thermo Fisher

Scientific, MA, USA), anti-Hey-1 (GeneTex, CA, USA), anti-Actin (TransGen, Beijing,

China). Synthetic amyloid-beta peptides 1–40 (Aβ1–40) were purchased from Invitrogen (Invi-

trogen, CA, USA) and dissolved in hexafluoreisopropanol (HFIP) (Sigma, MO, USA) for 2 h

at room temperature, and lyophilized peptide was dissolved in dimethylsulfoxide (DMSO).

ELISA measurements

The cell-free plasma samples were stored in aliquoted and stored at -80 ºC until assayed

collectively by an investigator who was blinded to the patient assignment. Enzyme-linked

Table 1. Baseline characteristics of the study population.

Features Control MCI Dementia p-value

N (Male/Female) 150(65/85) 89(36/53) 72(17/55)

Age (yr) 72.34±0.37 73.72±0.52 75.1±0.68 <0.001

Education 9.28±0.39 6.02±0.51 3.30±0.51 < 0.001

MMSE 27.33±0.17 24.65±0.34 15.92±0.68 <0.001

CDR 0.037±0.01 0.26±0.02 1.11±0.08 <0.001

sNotch1 (ng/mL) 2.81±0.17 2.23±0.07 a 2.1±0.07 b 0.015

Values are mean ± SEM
acompared with control
bcompared with control; p< 0.001

Key: MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; CDR, clinical dementia rating; SEM, standard error of the mean.

https://doi.org/10.1371/journal.pone.0224941.t001
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immunosorbent assay (ELISA) was used to measure the human Notch1 level according to the

manufacturer’s instructions (USCN, Wuhan, China).

Western blotting

Cells and mouse brains were collected and homogenized in radio-immunoprecipitation assay

buffer (RIPA buffer; 20 mM Tris, pH 7.4, 150 mM NaCl, 1 mM Na3VO4, 10 mM NaF, 1 mM

EDTA, 1 mM EGTA, 0.2 mM PMSF, 1% Triton X-100, 0.1% SDS, 0.5% deoxycholate), protein

concentration were determined using a Bradford protein assay following the manufacturer’s

instruction. Bolt 4~12% Bis-Tris gradient gels were used for SDS-PAGE in MES SDS buffer

(Life technology, NY, USA). The primary antibodies were diluted in PBS with 5% nonfat dry

milk and 0.1% Tween 20 as follows: anti-NICD (1:1,000), anti- NEXT (1:1,000), anti- Hey-1

(1:1,000), and anti-Actin (1:10,000).

Quantitative real-time polymerase chain reaction (qRT-PCR)

qRT-PCR was performed using SYBR Green PCR core reagent, in a two-step RT-PCR proto-

col according to the manufacturer’s instructions (Applied Biosystems, Warrington, UK). Ini-

tial denaturation at 95 ºC for 10 min was followed by 40 amplification cycles of 95 ºC for 15

seconds and 58 ºC for 1 min. The primer sequences are as follows; NOTCH1 sense 5’- GA
GGCGTGGCAGACTATGC -3’ and antisense 5’- CTTGTACTCCGTCAGCGTGA -3’;

ADAM10 sense 5’- TGGCCAACCTATTTGTGGAA -3’ and antisense 5’- CCTCTGGT
TGATTTGCATCG -3’; GAPDH sense 5’- CAGCCTCAAGATCATCAGCA -3’ and anti-

sense 5’- TGTGGTCATGAGTCCTTCCA -3’. GAPDH was used as an internal normalizer.

PCR reactions were performed using ABI Prism 7900 SDS (Applied Biosystems, Warrington,

UK). Data were analyzed using ΔΔCt method. ΔCt is the difference in the Ct values of the test

gene (in each sample assayed) and GAPDH gene, while ΔΔCt represented the difference

between the paired samples. All the experiments were performed in triplicates.

Statistical analysis

Data are presented as the mean ± standard error of the mean (SEM). To analyze demographic

and plasma levels of target proteins between dementia, MCI, and control groups, Kruskal-

Wallis test was performed followed by Mann-Whitney U-tests. Correlation between factors

was analyzed by Spearman’s method. Statistical analyses were performed using SPSS 12.0

(IBM, NY, USA). Values of p< 0.05 were considered statistically significant. Demographic

and clinical differences between control, MCI and dementia group were tested using the Pear-

son’s Chi-squared test, Fisher’s exact test and Kruskal-Wallis test.

Results

Correlations of sNotch1 levels in dementia patients and healthy subjects

Participant’s characteristics are depicted in Table 1. Patients with dementia were older com-

pared to control subjects. The mean age of the control, dementia subjects, and subjects with

mild cognitive impairment (MCI) were 72.34 ± 0.37 years, 75.1 ± 0.68 years, and 73.72 ± 0.52

years respectively. The percentage of women amongst control, dementia, and MCI subjects

were 57%, 76%, and 60% respectively. Patients with dementia were less educated compared to

the control subjects. The overall MMSE scores were lower in patients with dementia, while it

was in the normal range in MCI and healthy control subjects.

For analyzing sNotch1 concentration in the plasma, we established a commercial sensitive

ELISA method (Fig 1A). Our results showed that the sNotch1 concentration in the plasma was
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different between the three groups (p< 0.05; Kruskal-Wallis test). It was lower in subjects with

MCI (2.23 ± 0.07 ng/mL) and dementia (2.1 ± 0.07 ng/mL), as compared to the control sub-

jects (2.81 ± 0.17 ng/mL) (p = 0.015; Mann-Whitney U-tests) (Table 1). Quantitatively,

sNotch1 levels in the plasma samples of dementia patients were 25.27% lower as compared to

control subjects (Fig 1B).

Table 2 indicates that there is a positive correlation between the plasma level of sNotch1

and the results of the MMSE assessments in the entire study population. In contrast, the CDR

assessment is negatively correlated with the plasma level of sNotch1. No correlation is

observed between sNotch1 levels and the age or the gender of the subjects in any of the studied

groups; however, it was associated with the participant’s level of education.

Notch1 is increased in endothelial cells by Aβ in vitro
To explore the molecular mechanisms regulating sNotch1 level in AD, we investigated

sNotch1 levels in endothelial cells (ECs). We examined whether Aβ could modulate sNotch1

levels, which could possibly explain its altered expression in AD patients. ECs were treated

with Aβ1–40 peptides for 8 h or 24 h, and relative mRNA expression of target genes was mea-

sured by quantitative real-time PCR. Notch1 mRNA level was significantly increased after Aβ
treatment for 8 h in human umbilical vein endothelial cells (HUVECs) (Fig 2A) as well as in

human brain microvascular endothelial cells (HBMECs) (Fig 3A). Further, we examined the

Fig 1. Comparison of the plasma levels of sNotch1. (a) Standard curve of the human Notch1 ELISA kit. (b) Plasma sNotch1 concentration was measured by

ELISA. The differences in the relative amounts of sNotch1 were compared between control, MCI, and AD by means of Mann-Whitney’s U-test within different

groups.

https://doi.org/10.1371/journal.pone.0224941.g001

Table 2. Correlation between plasma Notch1 and clinical rating scales.

Features Rho p Value

Ages 0.016 0.781

Education 0.140 0.013

MMSE 0.134 0.018

CDR -0.117 0.038

Spearman rank correlation coefficient test was used for assessment of correlations.

Bold values are p< 0.05.

Key: MMSE, Mini-Mental State Examination; CDR, clinical dementia rating.

https://doi.org/10.1371/journal.pone.0224941.t002
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Notch1 protein level in ECs. After HUVECs were treated with 10 μM or 20 μM Aβ1–40 peptides

for 24 h, NICD and Hey1 protein levels were significantly increased (Fig 2B). Consistently,

treatment with 5 μM Aβ1–40 peptides for 24 h significantly increased the Notch1 and Hey1 pro-

tein levels in HBMECs (Fig 3B). These findings suggest that Aβ increases Notch1 mRNA and

protein expressions in ECs.

Modulation of sNotch1 level by Aβ in vitro
We next investigated the soluble Notch1 (sNotch1) protein levels in cell culture media using a

specific antibody against C-terminus of full-length Notch1, which could detect the secreted

sNotch1 extracellular domain (NEXT). After treatment with 5 μM Aβ for 24 h, secreted NEXT

protein levels were significantly increased in HBMECs culture media (Fig 3C) but was unde-

tectable in HUVECs culture media (Fig 2C). These findings suggest that Aβ may increase the

N-terminal cleavage of full-length Notch1 protein into secreted forms in ECs culture media.

ADAM10 is increased in endothelial cells by A β in vitro
To understand how sNotch1 is increased in culture media, we investigated ADAM10 expres-

sion levels in endothelial cells (ECs). ECs were treated with Aβ1–40 peptides for 8 h or 24 h, and

relative mRNA expression of target genes was measured by quantitative real-time PCR. After

treatment with 10 μM Aβ1–40 peptides, ADAM10 mRNA level was significantly increased in

HUVECs (Fig 4A, � p< 0.05) and HBMECs (Fig 4B, �� p< 0.01). Increased ADMA10 mRNA

expression might affect to the cleavage of Notch1 extracellular domain under the Aβ-treated

Fig 2. Modulation of Notch1 expression in HUVECs by amyloid beta (Aβ). (a) HUVECs were treated with 10 μM or 20 μM Aβ1–40 peptides for 8 h. Real-

time PCR results showing relative mRNA expression levels of Notch1 (n = 3). (b) HUVECs were treated with 10 μM or 20 μM Aβ1–40 peptides for 24 h. Notch1

intracellular domain (NICD) and Hey1 protein levels were detected in HUVECs lysate. Treatment with 10 μM Aβ1–40 peptides for 24 h significantly increased

the Notch1 and Hey1 protein levels (n = 3). Actin was used as a loading control. Secreted soluble Notch1 levels were analyzed by western blotting. Conditioned

media were harvested from HUVECs treated with 10 μM or 20 μM Aβ1–40 for 24 h. Notch1 extracellular domain (NEXT) protein was not detectable in

HUVECs culture media.

https://doi.org/10.1371/journal.pone.0224941.g002
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condition in ECs. So, it could be explain that secreted sNotch1 extracellular domain (NEXT) is

increased in HBMECs culture media.

Aβ increases Notch1 expression in human iPSC-derived neuronal cells

We next examined Notch1 mRNA expression in human iPSC-derived neuronal cells by quan-

titative real-time PCR. Notch1 mRNA levels were measured in human iPSC-derived neuronal

cells from an AD patient and a healthy control subject (n = 3). Human iPSC cells were differ-

entiated into neurons using commercial neuronal differentiation media. As we expected,

Notch1 mRNA expression was significantly increased in human iPSC-derived neuronal cells

from an AD patient compared to a healthy control subject with p< 0.05 (Fig 5A). We also

measured the Hey1 and Hes5 mRNA levels in iPSC-derived AD neurons and healthy neurons

(n = 3, respectively). Hey1 and Hes5 mRNA expression were significantly increased in human

iPSC-derived neuronal cells from an AD patient with both p< 0.01 (Fig 5B and 5C). These

results suggest that Notch1 levels are increased in patients with AD.

Discussion

Alzheimer’s disease (AD) and vascular dementia (VAD) are the two main types of dementia

affecting approximately 70% and 15%, respectively, of all demented patients[24]. Recent

neuropathological studies have demonstrated that patients with AD have concomitant cere-

brovascular pathology[25]. Notch signaling is involved in a number of cellular processes such

as cell-cell interactions, crosstalk with neighboring cells, vasculogenesis, angiogenesis,

Fig 3. Modulation of Notch1 expression in HBMECs by amyloid beta (Aβ). (a) HBMECs were treated with 5 μM or 10 μM Aβ1–40 peptides for 8 h. Real-time

PCR results showing relative mRNA expression levels of Notch1 (n = 3). (b) HBMECs were treated with 5 μM or 10 μM Aβ1–40 peptides for 24 h. Notch1

intracellular domain (NICD) and Hey1 protein levels were detected in HBMECs lysate. Treatment with Aβ1–40 peptides for 24 h significantly increased the

Notch1 and Hey1 protein levels (n = 3). Actin was used as a loading control. Secreted soluble Notch1 levels were analyzed by western blotting. Conditioned

media were harvested from HBMECs treated with 5 μM or 10 μM Aβ1–40 for 24 h. After treatment with 5 μM Aβ peptides, Notch1 extracellular domain

(NEXT) protein level was significantly increased in HBMECs culture media.

https://doi.org/10.1371/journal.pone.0224941.g003
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Fig 4. ADAM10 mRNA expression in ECs by amyloid beta (Aβ). HUVECs (a) and HBMECs (b) were treated with 10 μM Aβ1–40 peptides for 8 h or 24 h. Real-time

PCR results showing relative mRNA expression levels of ADAM10 (n = 3). Treatment with 10 μM Aβ1–40 peptides significantly increased the ADAM10 mRNA

expression levels (� p< 0.05 and �� p< 0.001, respectively).

https://doi.org/10.1371/journal.pone.0224941.g004

Fig 5. Notch1 mRNA expression in human iPSC-derived neuronal cells. (a) Relative Notch1 mRNA expression levels were measured in human iPSC-derived

neuronal cells from an AD patient and a healthy control subject (n = 3). Human iPSC cells were differentiated to neurons by treating with neuronal

differentiation media. Notch1 mRNA expression was significantly increased in human iPSC-derived neuronal cells from an AD patient (� p< 0.05). (b-c)

Relative Hey1 and Hes5 mRNA expression levels were measured (n = 3, respectively) and significantly increased in human iPSC-derived neuronal cells from an

AD patient (both �� p< 0.01).

https://doi.org/10.1371/journal.pone.0224941.g005
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permeability, and survival. Although Notch signaling cascade responds to microenvironmen-

tal conditions through cell-cell interactions, several other stimuli including aging, shear stress,

inflammation, hypoxia, and hyperglycemia are known to activate this pathway[4, 26–29].

In endothelial cells (ECs), Notch signaling has been reported to modulate angiogenesis

through the repression of VEGFR2[30]. Angiogenesis and vascular dysfunction may be

involved in neurodegeneration[31]. VEGF levels are increased in tissues obtained from the

patients with AD[32] and VEGF/Notch signaling cascade may play an important role in the

pathology of AD including BBB leakage. Notch1 is proteolytically cleaved by γ-secretase,

releasing the NICD into the cytoplasm, which then translocates to the nucleus and regulates

expressions of several genes including Hey1 and Hes5[33]. Previous studies have reported that

Notch1 is upregulated in the brain of AD patients[34, 35]. Notch1 plays an important role in

the maintenance of neuronal stem cells[36], regulating neurogenesis[37], and activating stem

cells in response to injury for increased neurogenic demand[38]. Activation of Notch1 signal-

ing induced by cerebral ischemia results in a protracted nuclear factor-κB (NF-κB)-driven

microglia-mediated neuroinflammation and worsens ischemic brain damage and functional

outcome[39]. Activated microglial cells are detected in peri-infarct areas in clinical stroke and

though to orchestrate neuronal damages in the penumbra[10]. Recent studies raise the possi-

bility of the links between the Notch signaling pathway and diverse pathological disorders

including adaptive and innate immune responses, multiple sclerosis, inflammatory demyelin-

ating disease, which is providing Notch as a novel prospective target for the treatment of neu-

roinflammation-related degenerative disorders.

Notch signaling is also important for normal adult brain function and is implicated in vari-

ous neurological diseases. However, the role of Notch signaling in fine-tuning neurogenesis

and neurodegenerative pathology is not fully understood. Studies showed a link between

Notch and neurological disorders including Alagille syndrome, cerebral autosomal dominant

arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) syndrome, mental

retardation, and certain types of schizophrenia[40]. In addition, Notch1 is overexpressed in

the neurogenic and non-neurogenic regions of the brain in sporadic Alzheimer’s disease and

adults with Down syndrome[41]. Consistent with these findings, we found that Notch1 expres-

sion was increased in Aβ-treated ECs. These results indicate that the levels of Notch1 and

sNotch1 might be associated with dysregulated proteostasis in neurodegenerative disorders

such as AD. Mutations in Notch2 gene induces Down syndrome and Notch3 mutations lead to

cardiovascular disorder CADASIL that causes stroke and vascular dementia with degenerative

changes in the vascular smooth muscles. Several familial AD mutations are known to be asso-

ciated with diminished Notch activity but the mechanisms remain elusive[38].

Recent studies showed that chronic hippocampal expression of NICD induces vascular

thickening with the accumulation of amyloid beta (Aβ) which exacerbates spatial memory def-

icits in a rat model of early AD. In addition, chronic activation of Notch1 signaling causes

impaired blood flow while reducing nutrient delivery and worsening brain function in a

McGill-R-Thy1-APP transgenic (Tg) rat model of early AD. These results suggest that chronic

activation of Notch1 may accelerate Aβ accumulation and spatial memory deficits in Tg rodent

models of AD[42].

Notch signaling has a critical roles in arterial formation and maturation. Dll4 and Jagged1

are important Notch1 ligands and were shown to have opposing effects in developmental

angiogenesis. But the role of Jagged1/Notch signaling remains incompletely understood[43].

Notch signaling is associated with several pathological conditions and recent study shows that

Notch signaling foster macrophage maturation during ischemia causing inflammatory

responses[44]. Further studies will be required to examine Jagged1 and Dll4 to understand the

role of Notch signaling in AD.
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In our previous study, we showed the plasma levels of soluble VEGFR2 (sVEGFR2) in asso-

ciation with AD-related cognitive decline[8] and overexpression of NICD decreased the

VEGFR2 mRNA levels in HUVECs[8]. Since recent study has reported that Notch1 is

increased in AD[12], we further determined the alteration of the plasma levels of Notch1 in

AD with the population as described in detail previous[8, 16].

Here we investigated Notch1 expression in human AD patients. We found that NICD and

secreted soluble NEXT protein levels are significantly increased in Aβ-treated ECs in vitro.

Notch1 mRNA expression is also significantly increased in human iPSC-derived neuronal

cells. These results might implicate an increase in the Notch1 deposition in the amyloid pla-

ques within the brain tissue of AD patients. Although Notch1 expression was induced by Aβ in

ECs, the plasma levels of sNotch1 were significantly reduced in patients with AD. Our study

provides a possible explanation that increased full-length and truncated Notch1 proteins are

localized at the amyloid plaques, thereby reducing the sNotch1 level in the plasma. Decrease in

plasma sNotch1 level consequently leads to reduced full-length and truncated Notch1 protein

in cerebrospinal fluid (CSF) of AD patients[12]. The present study demonstrates that the

plasma level of Notch1 correlates with cognitive decline in patients with dementia. We found

that plasma levels of Notch1 were significantly lower in patients with AD than in patients with

MCI or healthy control subjects. Accumulation of Notch1 and colocalization with the amy-

loid-beta plaques in AD patient’s brain might explain the reduced levels of plasma sNotch1 in

these patients. Further studies are required to understand the mechanism of decreased plasma

sNotch1 levels in AD, which will be helpful in deciphering the role of Notch1 signaling in

neuropathological conditions.

In conclusion, our results show that plasma sNotch1 levels are decreased in patients with

AD. We suggest that alteration in sNotch1 level might be associated with those at risk for Alz-

heimer’s disease.
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