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To enhance pig production, feed efficiency (FE) should be improved; however, the

mechanisms by which gut microbes affect FE in pigs have not been fully elucidated.

To investigate the differences between the composition and functionality of the gut

microbiota associated with low and high FE, microbial compositions were characterized

using 16S rRNA sequencing, functional annotations were performed by shotgun

metagenomics, and metabolomic profiles were created by GC-TOF-MS from female

Landrace finishing pigs with low and high feed conversion ratios (FCRs). Lactobacillus

was enriched in the gut microbiota of individuals with low FCRs (and thus high FE), while

Prevotella abundance was significantly higher in individuals with high FCRs (and thus

low FE). This may be linked to carbohydrate consumption and incomplete digestion. The

activity of pathways involved in the metabolism of cofactors and vitamins was greater

in pigs with lower FE. We also identified differences in pyruvate-related metabolism,

including phenylalanine and lysinemetabolism. This suggests that pyruvatemetabolism is

closely related to microbial fermentation in the colon, which in turn affects glycolysis. This

study deepens our understanding of how gut microbiota are related to pig growth traits,

and how regulating microbial composition could aid in improving porcine FE. However,

these results need to be validated using a larger pig cohort in the future.

Keywords: feed efficiency, microbial communities, metagenomics, metabolite, pigs

INTRODUCTION

Feed consumption is the largest variable expense associated with swine production, accounting
for 50–85% of the total cost (1). Therefore, to enhance pig production, feed efficiency (FE) needs
to be improved. Routine evaluation of FE is carried out using residual feed intake (RFI) or feed
conversion ratio (FCR) values (2). A high FE means that an animal has a low RFI and FCR: gaining
body weight while consuming less feed (2). Enhanced pig FE is associated with economic benefits
in the swine industry, and progress has been made to optimize it using genetics, management
practices, and dietary strategies (3).
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The gut microbiota can ferment and metabolize nutrients
such as, polysaccharides (to provide energy for the body), and
regulate the energy harvest and carbohydrate metabolism of
the host (4–6). Gut microbes are also significantly associated
with weight gain of livestock (7–9). Although it does not
necessarily have a major impact recent studies have reported
possible links between the gut microbiota and pig FE (10), with
some gut bacteria associated with and potentially serving as
biomarkers for, desirable pig FE traits (11). These bacterial taxa
could therefore be used as probiotics in dietary or breeding
strategies to improve pig productivity. Many FE-associated
bacteria are involved in carbohydrate degradation, including,
those in the Christensenellaceae family and the Treponema,
Methanobrevibacter, and Actinobacillus genera. These bacteria
are enriched in the feces (12, 13), ileum (12, 14), caecum (15,
16) and colon (14) of pigs with high FE. By participating in
polysaccharide degradation and subsequently producing a large
amount of short-chain fatty acids, such as acetate, propionate,
and butyrate, they provide an additional source of energy that
can be directly utilized by the host via the intestinal tract. Some
of the bacteria associated with improved FE are also capable of
exerting anti-inflammatory effects, with some being particularly
associated with butyrate production, including Ruminococcus,
Butyricicoccus, Roseburia, and the Lachnospiraceae, which are
enriched in feces and the ileum, caecum, and colon (11, 17).
Some bacterial taxa linked to improved gut health and disease
prevention are also FE-associated. For example, Oscillibacter,
which was found to be more abundant in pigs with high FE,
produces anti-inflammatory metabolites and is a useful probiotic
(18). Additionally, Lactobacillus species are more prevalent in
pigs with high FE and are commonly used as probiotics (15,
19). Most previous studies have focused on the association
between the composition and predicted functions of the gut
microbiota and FE. Gut microbiota metabolites are also closely
related to host characteristics (20), with the regulation of host
or microbe metabolites potentially altering the host phenotype
(21–23). Host-microbiota interaction studies found that altered
the diet composition could increase the animals intake of
fructose and fructooligosaccharides and this was accompanied
by the modulation of gut microbiota composition and functional
pathways (especially for the degradation or biosynthesis of
L-histidine), ultimately increased the production of short chain
fatty acids (SCFAs) and promoted animals growth (24, 25).

Although many studies have been conducted on growth-
related traits and gut microbiota, the results are sometimes
conflicting. This may be due to differences in the studies animals
and experimental conditions. However, a study that minimized
such genetic, nutritional, and management diffienences also
found multiple RFI-associated taxonomic differences, none of
which were common to all geographic locations or batches within
a location (13).

An increased understanding of the community structure
and functional capacity of the gut microbiota will help
elucidate the interaction between microbial activity and host
physiology and metabolism. Therefore, in this study, colonic
microbiota sequencing was undertaken to investigate the
difference between the colonic digesta microbiota of two groups

(high and low FE) of female finishing Landrace pigs, with
regards to community structure and composition, functions,
and metabolites. Correlations between these bacterial population
variables and pig production performance were then identified.
We hope that our founding will allow for a greater understanding
of the microbial activity and material digestion that occurs in the
large intestine, and how this affects the growth traits of pigs.

MATERIALS AND METHODS

Animals and Sample Collection
In this study, we utilized 120 purebred female Landrace pigs,
provided by Tianjin Ninghe Primary Pig Breeding Farm (Tianjin,
China). All experimental pigs were weaned at the age of 28
days and were raised under similar feeding management regimes.
When a pig’s body weight reached 30 kg, it was transferred to
the fattening room, where 10 pigs were housed in each pen.
During the study, all experimental pigs were fed the same
commercial formula diet and were kept under controlled farm
management conditions. The feed was mainly composed of corn,
soybean meal, lysine, and calcium hydrogen phosphate. This was
available ad libitum from automated individual feeding systems
(Velos; Nedap Co., Ltd., Groenlo, Netherlands), that recorded the
feeding behaviors of each of the pigs, including the daily feed
intake and daily body weight gain. All experimental pigs were
healthy and antibiotic-free during the study period.

Two groups of 20 pigs were chosen for a further assessment
based on feed and weight gain data obtained between 120 and 165
days: the HFCR group (low FCR and thus high FE) and the LFCR
group (high FCR and thus low FE). The FCR values for these
groups were significantly different (Supplementary Table 1). At
166 days, fresh fecal samples were collected from each animal’s
anus. Four pigs from each group with the most extreme FCR
phenotypes were then selected and paired (two full-sibling pairs
and two half-sibling pairs), with each pair having opposing
FCR phenotypes (Supplementary Table 2). The selected pigs
were euthanized and colonic digesta samples were immediately
collected from each euthanized animal. After dipping the samples
in liquid nitrogen, all samples were transferred to a freezer
temperature −80◦C until metagenomic analysis. These samples
were allocated to one of two groups: the Lco group (colonic
digesta samples from pigs with low FE and high FCR values) and
the Hco group (colonic digesta samples from pigs with high FE
and low FCR values).

All experimental procedures described in this study
were approved by the Animal Welfare Committee of China
Agricultural University (Permit Number: DK996) and conducted
under the approved slaughtering guidelines (GB/T 17236–2008)
of the Quality Supervision, Inspection, and Quarantine
Committee of the People’s Republic of China. All efforts were
made to minimize animal suffering during the study.

DNA Preparation and Sequencing Analysis
A QIAamp DNA Stool Mini Kit (Qiagen Ltd., Germany) was
used to extract the fecal and colonic digesta DNA following the
manufacturer’s instructions. The V3–V4 region of the 16S rRNA
gene was amplified (341F−806R) by polymerase chain reaction
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(PCR) using universal bacterial 16S rRNA gene PCR amplicon
primers (26), forward primer was CCTAYGGGRBGCASCAG,
the reverse primer was GGACTACNNGGGTATCTAAT. After
purification, PCR products were used to construct the libraries.
which were sequenced on an Illumina MiSeq platform, with
250 bp paired-end reads, and generated at Novogene (Beijing,
China). The metagenomic sequencing of the eight colonic
digesta DNA samples was performed using the Illumina
HiSeq 2500 platform. The libraries were constrained according
to Illumina’s instructions, and bioinformatics analyses of
the sequencing data were performed following the standard
protocol (27).

The 16S rRNA gene sequence analyses were performed
using QIIME (version 1.80) (28). Tags were clustered into
operational taxonomic units (OTUs) at 97% similarity using
UPARSE. Taxonomic assignments were screened against the
16S rRNA microbial reference database SILVA using the
Ribosomal Database Project Classifier version 2.2 (29). Alpha
and beta diversities were calculated using QIIME (30). The
weighted pair-group method with arithmetic mean was used
in R to cluster between-sample differences with evolutionary
information. Linear discriminant analysis (LDA) effect size
was used to identify biomarkers with significant differences in
abundance among the different groups (31).

Clean short reads of the shotgun metagenomics were
assembled using SOAPdenovo version 1.05 (32). Low quality
reads, adaptor reads, and host sequences were removed.
Redundant contigs were excluded to obtain maximum N50
values (27). The non-redundant contigs were mapped to
microbial genomes in NCBI using SOAPdenovo (version
1.05). The aligned reads were classified at different microbial
levels, and relative abundances were calculated. The assembled
sequences were analyzed to predict open reading frames using
MetaGeneMark (version 2.10). All predicted genes were clustered
(identity > 95%, coverage > 90%) using CD-HIT (version 4.6.1).
Clean reads were compared to the non-redundant gene set,
which was constructed by removing redundant genes, using
SOAPaligner and the parameters described above. The non-
redundant gene set was mapped to the KEGG gene database
to obtain KEGG ontology (KO) annotation information using
BLAST (Version 2.2.28+). In addition, the non-redundant gene
set was mapped to the Carbohydrate-Active Enzymes Database
(CAZy) to acquire functional EC-classification information (33)
for understanding metabolic mechanisms for the digestion of
microbial carbohydrates. Differentially abundant genes were
aligned to the Antibiotic-Resistance Genes Database (ARDB) to
compare the types, quantities, and functions of the antibiotic-
resistant (AR) genes in both groups (34). All sequencing
data were deposited in the National Center for Biotechnology
Information (NCBI) under the Sequence Read Archive (SRA)
accession number SRP116179.

To identify differences in microbial communities and genes
between the two groups, wilcox tests were carried out. The
significance level was declared at P < 0.05 and adjusted by
FDR (false discovery rate) with threshold value < 0.05. Z-score
of row was calculated to homogenization control a heatmap
to demonstrate the relative abundances of antibiotic-resistance

genes between the colonic microbiota of the high- and low-
FE groups.

Untargeted Metabolomics Study and Data
Analysis
Each colon content sample (50mg) was transferred into a
2mL tube, and 500 µL of a pre-cold extraction mixture of
methanol/chloroform (3:1, v/v) with 10 µL of internal standard
(L-2-Chlorophenylalanine, 1 mg/mL stock) was added. Next, the
samples were vortexed for 30 s and homogenized with a ball
mill for 4min at 40Hz, followed by ultrasonication for 5min
in ice water. This was repeated three times. After centrifugation
(4◦C, 12,000 rpm) for 15min, 200 µL of the supernatant was
transferred to a fresh tube. After evaporation in a vacuum
concentrator, 50 µL of methoxyamination hydrochloride (20
mg/mL in pyridine) was added. The samples were then incubated
at 80◦C for 30min, and then derivatized by 70 µL of BSTFA
reagent (1% TMCS, v/v) at 70◦C for 1.5 h. Gas chromatography
coupled with a time-of-flight mass spectrometry analysis of
the colonic contents was performed by Beijing Biomarker
Technologies Co., Ltd. (Beijing, China) on an Agilent 7,890
gas chromatograph (Agilent, Germany). The raw data analysis,
including peak extraction, baseline adjustment, deconvolution,
alignment, and integration, was completed using Chroma TOF
4.3X software (LECO Corporation, St Joseph, MI, USA). The
LECO-Fiehn Rtx5 database was used formetabolite identification
by matching the mass spectrum and retention index (35).

RESULTS

Sequencing, Assembly, and Taxon
After quality control and demultiplexing, the number of available
sequences for the 40 fecal samples ranged from 26,158 to
42,174. With a 97% identity cut-off as one OTU, the number
of OTUs ranged from 1,658 to 3,030 (Supplementary Table 3).
The bacterial diversity was compared between the HFCR
and LFCR groups using diversity and richness estimators.
The LFCR group had significantly higher Simpson, Shannon,
PD_whole_tree, Chao1, and Observed_species indices than the
HFCR group (P < 0.05; Supplementary Table 4). Firmicutes,
Bacteroidetes, Spirochaetes, and Proteobacteria were the four
most abundant phyla, accounting for more than 95% of the
fecal sequences in both groups (Figure 1A). The most abundant
sequences detected at the phylum level were from Firmicutes,
comprising nearly 60% of all normalized reads; Bacteroidetes
accounted for 22.36 and 27.16% of the notmalized reads in
the HFCR and LFCR groups, respectively, while Spirochaetes
accounted for 11.23 and 5.51%, respectively. Proteobacteria
accounted for ∼2.5% in both groups. At the genus level, a
total of 293 genera were detected (Figure 1B), however, due to
limitations of the targeted amplification sequencing, unclassified
bacteria accounted for more than half of the total reads
in both groups. Prevotella (HFCR, 7.97% abundance; LFCR,
12.23%), Treponema (HFCR, 10.74%; LFCR, 4.88%), Oscillospira
(HFCR, 4.82%; LFCR, 4.90%), Streptococcus (HFCR, 3.43%;
LFCR, 3.24%), Ruminococcus (HFCR, 3.03%; LFCR, 2.67%),
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FIGURE 1 | Histogram of bacteria at the (A) phylum and (B) genus level in multiple samples, based on fecal 16S rRNA gene and colonic shotgun metagenomic

sequencing.

and Lactobacillus (HFCR, 3.52%; LFCR, 2.01%) were the
predominant genera detected.

Considering the limited resolution of the bacterial taxa based
on the 16S rRNA gene sequencing data, eight colonic samples
were taken from pigs with extreme FCR values (four samples
from the HFCR group [Hco] and four from the LFCR group
[Lco]. These samples were subjected to metagenomic sequencing
analysis to identify the potential bacterial species associated
with FE. A total of 1.2 million contigs with an average size of
1,094 and 1,161 bp with an average N50 length were obtained
(Supplementary Table 5). Firmicutes and Bacteroidetes were the
most abundant phyla as per de novo sequencing, this was a similar
finding to that of the amplification sequencing (Figure 1A). At
the genus level, contigs were assigned to a total of 1,271 genera,
and the most abundant genera were Prevotella, Bacteroides, and
Lactobacillus (Figure 1B). Across both the Hco and Lco groups,
a total of 3,706 species of microbes were identified, but most had
relatively low abundances. Prevotella, Bacteroides, Lactobacillus,
Clostridium, and Ruminococcus were the five most abundant
genera among the colonic microbes, representing more than half
of the microbial population, on average.

Association Between Microbial
Composition and FE
Principal component analysis was used to compare the microbial
composition of the feces from the HFCR and LFCR pig

groups. Although some of the HFCR and LFCR samples
had similar compositions, most could be clearly divided
into two groups based on microbial abundance profiling by
determining Bray–Curtis distances (Supplementary Figure 1).
Using metagenomics, clear significant differences at
both the genus and gene levels were observed between
the colonic microbes of the Hco and Lco groups
(Supplementary Figure 2). These differences indicate that
the microbial community is significantly correlated with the FE
of pigs.

In the fecal samples, 25 genera were considered to be suitable
biomarkers for distinguishing between high and low FE of
finishing pigs (LDA score > 2). Eight genera were significantly
enriched in the LFCR group, including Prevotella, while 17
genera were more abundant in the HFCR group, particularly
Treponema and Lactobacillus (Supplementary Figure 3). A total
of 177 out of 4,986 species showed significantly different
relative abundances between the HFCR and LFCR groups, while
some species were uniquely identified by LDA as biomarkers
for colonic microbes in the Hco and Lco groups by LDA
(Figure 2). Two species in particular were clearly distinguishable
as potential biomarkers for FE, with LDA scores >4, one
Prevotella species CAG: 604 was more abundant in the colonic
digesta of the Lco group than in that of the Hco group,
whereas Lactobacillus reuteri wasmore abundant in the digesta of
Hco group.
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FIGURE 2 | Identification of gut bacterial species associated with porcine FE using LEfSe analysis based on metagenomic sequencing data. Hco: colonic microbiota

from pigs with high FE. Lco: colonic microbiota from pigs with low FE. The X-axis shows LDA scores. The LDA (linear-discriminant analysis) plot indicates biomarkers

by ranking according to the effect size (2.0) for the species.

Comparison of Microbiome Functionality
Between Hco and Lco Groups
Differentially expressed colonic genes were annotated in
the KEGG database (Supplementary Figure 4). Significantly
different KOs between the Hco and Lco group samples were
analyzed using the KO-annotation information obtained from
the KEGG database, and the proportion of differential KOs
in each classification was listed for both groups (Figure 3).
Carbohydrate metabolism, signal transduction, and transcription
were represented in relatively high proportions in the Hco
group, whereas amino acid metabolism, energy metabolism,
glycan biosynthesis andmetabolism, andmetabolism of cofactors
and vitamins were more abundantly represented in the
Lco group.

The CAZy database was used to align and categorize
differentially abundant genes into seven CAZy types. In total,
776 and 1,541 genes from the Hco and Lco group, respectively,
were mapped to the database. The proportions of CAZy types in
the two groups were then compared (Supplementary Figure 5).
Glycoside hydrolases (GHs) and glycosyl transferases (GTs) were
more abundant in the Lco group samples than in the Hco group
samples. The ARDB was used to annotate the abundance and
strength of AR genes to identify coexistingmicrobes that produce
antibiotics or toxins that compete for nutrients and inhibit the
growth of other microbes in the colonic fluid. The abundance of
AR genes in the samples was then presented in a heatmap after
z-score processing (Supplementary Figure 6). The top five AR-
type genes found in samples from both groups were “MacAB,”
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FIGURE 3 | Distribution of differential KOs associated with porcine FE based on KEGG classification of metagenomic sequencing data. The abscissa indicates the

name of the KEGG metabolic pathway and the ordinate indicates the number of KOs enriched for a certain function in the Hco or Lco group.

“aph,” “MLS_MFS,” “tet_efflux,” and “tet_RPP.” However, all AR
genes clustered into two major functional subsets, and the subset
distribution of the microbial-related AR genes in both groups
differed. The growth of undesirable microbes in response to
certain antibiotics may therefore be affected by the regulation of
microbial composition.

Based on statistical analysis of the differential KOs, the
differential pathways were investigated, and 22 pathways were
found to be significantly different (P < 0.05, Table 1). Most
of these pathways were metabolism-related, including amino
acid metabolism, carbohydrate metabolism, energy metabolism,
glycan biosynthesis and metabolism, nucleotide metabolism and
metabolism of cofactors, and vitamins.

Metabolite Profiles in the Colonic Digesta
of Hco and Lco Groups
A total of 429 metabolite characteristics of the colonic
digesta were detected using GC-TOF-MS. To distinguish the
differences between Hco and Lco group samples, orthogonal
projections to latent structures-discriminant analysis (OPLS-DA)
was performed using the R (version 3.3.2) package ropls. The
values of R2Y and Q2Y were 0.998 and 0.571, respectively,
indicating that the model built by the OPLS-DA method could
distinguish the correct sample group by metabolic expression;
it could therefore be used to screen for differential metabolites
(Supplementary Figure 7). At the significance threshold of fold
change value >1, P-value < 0.05, and variable importance
in projection value > 1, nine metabolites were detected with
significant associations between microbial metabolites and FE
(Table 2). Among these nine metabolites, six had a tendency
to be negatively correlated with FCR, including tetracosane,
palmitoleic acid, linolenic acid, and 2-Indanone, while three
metabolites showed a tendency to be positively correlated
with FCR, including 3-(3-hydroxyphenyl) propionic acid. The
pathway analysis showed that metabolites were enriched in

60 metabolic pathways, including microbial metabolism in
diverse environments, biosynthesis of secondary metabolites,
biosynthesis of plant secondary metabolites, and phenylalanine
metabolism. Four differential metabolites were enriched in
KEGG pathways (Table 2), palmitoleic acid was related to fatty
acid biosynthesis, while the other three metabolites were related
to multiple metabolic pathways.

DISCUSSION

Recently, with the widespread application of next-generation
sequencing, the understanding of the mechanisms by which
microbes affect their hosts has considerably increased.
Studies have found that approximately one-tenth of the
host transcriptome is regulated by microorganisms (36). Any
microorganism changes may therefore cause changes to the
host phenotype. Many studies, including our previous study,
have confirmed that there are differences in the microbial
structure of pigs with different FEs (12, 16, 37–39). Feed efficient
pigs showed superior antioxidant, metabolic, and cell repair
capabilities in the mitochondria of multiple tissues compared
to pigs with low FE (37–40). The body adjusts the composition
of the gut microbiota composition and fermentation products
by regulating digestion and secretion of the fermentation
substrates of the microorganisms in various gut regions (11).
This is an important factor for FE-related microbial community
in the large intestine. There are significant differences in
the proportions of certain bacteria in the guts of pigs with
different FEs. For example, Oscilibacter, Christensenellaceae,
and Cellulosilyticum are enriched in high-FE pigs (12).
Ruminococcaceae, Christensenellaceae, Akkermansia, and
Lachnospiraceae are also reported to be more abundant in high-
FE pigs, whereas Faecalibacterium has a negative association
with porcine FE (41). Studies have shown that differences in
the composition and function of the gut microbiota can lead
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TABLE 1 | Different KO pathways observed for porcine colonic microbiota in the Hco and Lco groups.

KO pathway Description Hco Lco P-value

Alanine, aspartate and glutamate metabolism Amino acid metabolism 0.0098 0.0109 0.0286

Phenylalanine, tyrosine and tryptophan biosynthesis Amino acid metabolism 0.0052 0.0058 0.0286

Lysine biosynthesis Amino acid metabolism 0.0045 0.0049 0.0286

Citrate cycle (TCA cycle) Carbohydrate metabolism 0.0050 0.0055 0.0286

Amino sugar and nucleotide sugar metabolism Carbohydrate metabolism 0.0092 0.0098 0.0286

Carbon fixation pathways in prokaryotes Energy metabolism 0.0090 0.0097 0.0286

Nitrogen metabolism Energy metabolism 0.0034 0.0037 0.0286

Lipopolysaccharide biosynthesis Glycan biosynthesis and metabolism 0.0022 0.0028 0.0286

Peptidoglycan biosynthesis Glycan biosynthesis and metabolism 0.0060 0.0064 0.0286

Thiamine metabolism Metabolism of cofactors and vitamins 0.0028 0.0032 0.0286

Ubiquinone and other terpenoid-quinone biosynthesis Metabolism of cofactors and vitamins 0.0008 0.0011 0.0286

One carbon pool by folate Metabolism of cofactors and vitamins 0.0043 0.0046 0.0286

Vitamin B6 metabolism Metabolism of cofactors and vitamins 0.0016 0.0017 0.0286

Porphyrin and chlorophyll metabolism Metabolism of cofactors and vitamins 0.0029 0.0033 0.0286

Riboflavin metabolism Metabolism of cofactors and vitamins 0.0010 0.0012 0.0286

Pantothenate and CoA biosynthesis Metabolism of cofactors and vitamins 0.0035 0.0040 0.0286

Nicotinate and nicotinamide metabolism Metabolism of cofactors and vitamins 0.0031 0.0035 0.0286

Taurine and hypotaurine metabolism Metabolism of other amino acids 0.0010 0.0011 0.0286

Terpenoid backbone biosynthesis Metabolism of terpenoids and polyketides 0.0036 0.0039 0.0286

Purine metabolism Nucleotide metabolism 0.0191 0.0202 0.0286

Biosynthesis of amino acids Overview of metabolism 0.0314 0.0340 0.0286

Homologous recombination Replication and repair in Genetic information processing 0.0083 0.0086 0.0286

TABLE 2 | Summary of differential metabolites and their functional KEGG annotations associated with different porcine feed efficiencies.

ID MetaboliteNames HC_Mean LC_Mean Fold_change P-value VIP Regulated KEGG_pathway_annotation

meta_129 Tetracosane 0.014 0.035 2.442 0.047 1.852 Up –

meta_160 Palmitoleic acid 0.020 0.034 1.636 0.028 2.067 Up Fatty acid biosynthesis

meta_201 Linolenic acid 0.141 0.215 1.521 0.022 1.996 Up Alpha-Linolenic acid metabolism;

Biosynthesis of secondary

metabolites; Metabolic pathways;

Biosynthesis of plant secondary

metabolites; Biosynthesis of

unsaturated fatty acids; Biosynthesis

of plant hormones

meta_310 Analyte 64 0.003 0.005 1.653 0.037 2.071 Up –

meta_328 Analyte 593 0.080 0.032 0.395 0.042 1.963 Down –

meta_333 Analyte 584 0.005 0.002 0.363 0.042 1.973 Down –

meta_342 Analyte 56 0.001 0.002 2.150 0.030 2.041 Up –

meta_553 3-(3-hydroxyphenyl)

propionic acid

0.019 0.010 0.510 0.050 1.931 Down Phenylalanine metabolism;

Degradation of aromatic compounds;

Microbial metabolism in diverse

environments

meta_559 2-Indanone 0.005 0.010 1.925 0.029 1.976 Up Microbial metabolism in diverse

environments; Polycyclic aromatic

hydrocarbon degradation

to physiological and functional changes related to the pig’s FE
and growth. However, the results of these studies differed (11),
therefore, further research is necessary.

The results of our 16S sequencing showed that pigs with lower
FE had greater alpha diversity in their gut microbiota than pigs

with higher FE, which is not consistent with previous studies (11);
however, diversity was also inconsistent within the study groups.
This might be because some samples had similar microbial
composition despite being in different groups; the study was also
likely affected by the limited sample size. Regardless of FE, the
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overall distribution of dominant bacteria was consistent with
other studies (8). The bacterial genera Prevotella, Treponema,
and Lactobacillus were also found in other studies, and our
metagenomic results found that the two most significantly
different species in terms of their abundance in each group
were Prevotella sp. CAG_604 and Lactobacillus reuteri. Gene
annotation showed that many genes in both groups belonged to
the Oscillospira genus, the growth of which is probably induced
by potentially pathogenic bacteria and can be considered a sign
of a healthy gut (42). In addition, in the Hco group, most genes
belonged to Bacteroides and Lactobacillus. Contrastingly, in the
Lco group, most genes were annotated to Prevotella. These results
are consistent with previously identified differences between
high and low FE groups. In our previous studies, differentially
expressed genes in the cecal and colonic mucosa of animals
with high and low FE were mostly related to immunity and
disease (43). The results of the cecal metagenome revealed that
pyruvate-related metabolic pathways are significantly different
between high- and low-FE groups (15). In this study, data
from the colonic metagenomic and metabolome analyses also
revealed differences in pyruvate-related metabolism, including
phenylalanine and lysinemetabolism. This suggests that pyruvate
metabolism is closely related to microbial fermentation in
the large intestine, which in turn affects glycolysis. A higher
number of CAZy enzymes (CAZymes) is associated with better
digestive capacity in pigs (44). The identification of CAZymes
in the assembled set of differentially abundant genes suggests
that the variable microbiome evident in this study may have
formed due to microbial interactions with the surrounding
environment, especially owing to available nutrients. The
number of differentially enriched genes varied between groups,
and more genes were clearly mapped to the database in the Lco
group than in the Hco group. The distribution of genes encoding
six enzymes showed similar distributions. Predominant enzymes
were GHs and GTs, but differences in distributions were noted
for each type.

The large number of coexisting microbes in the gut lumen
causes competition for nutrients, and certain microbes may
secrete antibiotics or bacteriocins to inhibit the growth of other
bacterial species. The expression level and strength of antibiotics
in individuals can be annotated using ARDB (34). The annotated
AR genes in the individual pigs of each group (Hco and Lco) were
divided into two categories on a heatmap. The AR genes in both
categories also differed in the cluster. The diversity of growth was
correlated with antibiotic level; thus, targeting and regulating AR
genes may be helpful for distinguishing species and promoting
the healthy growth of hosts.

All 22 upregulated pathways belonged to the Lco group due
to the higher number of differentially abundant genes (Table 1).
Eight different pathways were related to the metabolism of
cofactors and vitamins; the colon itself does not perform
digestion, but microbes in the colon can digest cellulose and
synthesize vitamins. The different metabolic pathways were
significantly enriched in the Lco group partly because of the
larger number of genes with significant expression differences in
this group. This is potentially due to the incomplete digestion of
colonic nutrients, leaving more food residue in the colon, and

thus leading to greater microbial activity. Our findings might be
partially explained by the small sample size, which was difficult
to adjust for effectively, and may have caused a certain degree of
false-positive results. Therefore, the results of the study should be
verified with a larger sample size in future trials.

CONCLUSION

In summary, the various fecal and colonic microbiota of
finishing pigs were correlated with different FEs. For example,
Lactobacillus tended to be enriched in pigs with high FE. The
abundance of Prevotella found in pigs with low FE may be linked
to the consumption of carbohydrates that were incompletely
digested. Our functional analysis suggests that the proportion
of differentially abundant genes affects host metabolism. The
pathways mediating the metabolism of cofactors and vitamins
were significantly different between groups. Furthermore, related
genes were linked to different microbes in the two groups. Data
from the colonic metagenomic and metabolome analyses also
revealed differences in pyruvate-related metabolism, including
phenylalanine and lysinemetabolism. This suggests that pyruvate
metabolism is closely related to microbial fermentation in
the large intestine, which in turn affects glycolysis. We have
shown that genomics-sequencing technique is convenient for
the study of pig gut microbial community structure, function,
and host gene expression, and our preliminary results provide
a starting point and reference for subsequent testing, thus
enhancing the understanding of the interaction between pig FE
and gut microbes.
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Supplementary Figure 2 | Different bacterial compositions at the genus and
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(A) PCA of metagenomics genera. (B) PCA of predicted genes. Differences

between boxes were tested by the Wilcoxon test (∗P < 0.05).

Supplementary Figure 3 | Identification of fecal bacterial genera associated with

porcine FE using the LEfSe analysis based on 16S rRNA gene sequencing data.

The X-axis shows LDA scores. The LDA (linear-discriminant analysis) plot indicates

biomarkers by ranking according to the effect size (2.0) for the species.

Supplementary Figure 4 | Classification statistics of KEGG-annotation results for

the Hco and Lco groups. The ordinate is the name of the level-1 KEGG metabolic

pathway, and the abscissa is the number of genes annotated to the pathway.

Supplementary Figure 5 | Distribution of differentially abundant genes clustered

by CAZy in the Hco and Lco groups. CAZy, Carbohydrate-Active Enzymes

Database; Hco, the proportion of significantly enriched genes in the samples from

four pigs with the highest FE; Lco, the proportion of significantly enriched genes in

the samples from four pigs with the lowest FE. The abscissa represents the CAZy

classification. The ordinate represents the proportion of differentially expressed

genes for each enzyme classification.

Supplementary Figure 6 | Heatmap diagram showing differences in the

abundances of antibiotic resistant genes in the colonic microbiota between the

Hco (high FE) and Lco (low FE) groups. FE, feed efficiency. Homogenization

control of rows is by z-score. Rows represent the types of antibiotic-resistant

genes, and the columns represent the samples.

Supplementary Figure 7 | OPLS-DA of the microbial metabolites in pigs with

high and low feed conversion ratios (FCRs). OPLS-DA, orthogonal projections to

latent structures- discriminant analysis. R2X and R2Y represent the interpretation

rate of the built model to the X and Y matrices, respectively, where the X matrix is

the metabolite quantitative matrix, the Y matrix is the sample-grouping matrix, and

Q2 is the predictive ability if the model can distinguish the correct sample grouping

by metabolic expression.

Supplementary Table 1 | Feed conversion ratios (FCRs) for fecal samples of

selected individuals. DFI, daily feed intake; ADG, average daily gain over the

assessed feeding period; BW, body weight.

Supplementary Table 2 | Individuals selected for metagenomics analysis.

Half-siblings, H1co and L1co, H2co and L2co; Full-siblings, H3co and L3co,

H4co and L4co.

Supplementary Table 3 | 16S rRNA gene amplicon sequencing of fecal

microbes from pigs with high and low feed efficiency (FE).

Supplementary Table 4 | Alpha diversity indices of fecal microbes in pigs with

high and low feed efficiency (FE). n = 20 in each measurement. Shannon and

Simpson indices were used to assess biodiversity. PD whole tree index was based

on the phylogenetic tree. Chao1 indices were used to estimate the number of

OTUs and microbial richness. The observed species index shows the number of

OTUs actually observed.

Supplementary Table 5 | Summary of metagenomic sequencing data.
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