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Abstract: Induced pluripotent stem cell (iPSC) technology and advancements in three-dimensional (3D) bioprinting 
technology enable scientists to reprogram somatic cells to iPSCs and 3D print iPSC-derived organ constructs with native 
tissue architecture and function. iPSCs and iPSC-derived cells suspended in hydrogels (bioinks) allow to print tissues and 
organs for downstream medical applications. The bioprinted human tissues and organs are extremely valuable in regenerative 
medicine as bioprinting of autologous iPSC-derived organs eliminates the risk of immune rejection with organ transplants. 
Disease modeling and drug screening in bioprinted human tissues will give more precise information on disease mechanisms, 
drug efficacy, and drug toxicity than experimenting on animal models. Bioprinted iPSC-derived cancer tissues will aid in 
the study of early cancer development and precision oncology to discover patient-specific drugs. In this review, we present 
a brief summary of the combined use of two powerful technologies, iPSC technology, and 3D bioprinting in health-care 
applications.
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1 Introduction

The advent of induced pluripotent stem cell (iPSC) 
technology in 2006 paved the way for paradigm 
shifting changes in regenerative medicine, disease 
modeling, and drug discovery applications. 
The technology facilitates to de-differentiate 
an adult cell to its pluripotent stem cell state 
and then differentiate into defined cell lineages. 
iPSCs are phenotypically indistinguishable from 
embryonic stem cells and they can differentiate 
into specialized cells of the body in cell culture 
and in animal models. Initially, human iPSCs were 
derived using transduction of genes coding for 
four embryonic transcriptional regulators; Oct4, 
Sox2, Klf4, and c-Myc (OSKM), popularly known 

as the Yamanaka factors[1] or Oct4, Sox2, Lin28, 
and Nanog (OSLN)[2]. Each of the Yamanaka 
factor serve specific purposes, Sox2 interacts with 
Oct3/4 to control gene expression. This interaction 
is important in maintaining pluripotency[3]. C‐Myc 
plays an important role in controlling growth and 
differentiation of cells[4], whereas klf4 is crucial for 
cell division and maintenance of pluripotency[5]. 
Later, different combinations of at least 24 
embryonic transcription factors were identified to 
induce stemness in adult cells[6]. The Yamanaka 
factors are highly conserved and sufficient to 
induce pluripotency across species.

Reprogramming of somatic cells is 
orchestrated by cooperative binding of pioneer 
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factors (Oct4, Sox2, and Klf4)[7], followed by 
epigenetic remodeling of entire genome and two 
waves of transcriptional events[8,9]. Each cell 
type in the body require different combinations 
of transcriptional factors to induce the stemness 
where Oct4 is considered as an indispensable 
core pluripotency gene in the reprogramming 
process[10]. Exogenous supply of Oct4 alone could 
convert adult neural stem cells into iPSCs. Recent 
work by An et al. showed that Sox2 and Klf4 
were enough to prepare iPSCs from various types 
of somatic cells[7]. Small molecules that inhibit 
DNA or histone modifications were also used for 
generating iPSCs more efficiently along with the 
use of reprogramming transcription factors. The 
hematopoietic stem cells can be de-differentiated 
into iPSCs much more efficiently compared 
to the highly specialized cells such as B and T 
lymphocytes[11,12].

Fibroblasts are the most popular cell type used 
to generate iPSCs. However, well-differentiated 
adult cells such as keratinocytes, neural cells, fat 
cells, melanocytes, amniotic fluid cells, pancreatic 
beta cells, and peripheral blood derived cells 
had also been successfully reprogrammed to 
pluripotent stem cells. The capacity to induce 
pluripotency to somatic cells helps to generate 
pluripotent patient-specific cell lines that can 
help model human diseases and can aid in the 
reconstruction of damaged tissues and organs. 
The “disease in a dish” models derived from 
IPSCs provide insights into disease pathogenesis 
and can serve as a novel tool for drug evaluation 
in precision medicine field[13-15]. Human 
iPSCs reinforced with biocompatible scaffold 
materials are valuable in three-dimensional (3D) 
bioprinting applications[16]. Current bioprinting 
techniques allow to print undifferentiated iPSCs 
and iPSC-derived cells mixed with a suitable 
bioink[17,18]. Popular bioprinting techniques used 
to print iPSCs are extrusion, stereolithography 
(SLA), laser-assisted, and drop-on-demand 
bioprinting[19-22]. A single biomaterial or a mixture 
of several biomaterials in the bioink are used to 
suspend the desired cells for bioprinting[23,24]. The 
bioinks should be non-toxic, biocompatible and 
should provide structural support for the printed 

cells. The commonly used bioinks for printing 
iPSC derived cells are hydrogels derived from 
alginate, carboxymethyl chitosan, agarose, nano-
fibrillated cellulose, hydroxypropyl chitin, gelatin 
methacryloyl (GelMA), and Matrigel. Most of 
these hydrogels need a crosslinker to give the 
final structure of the intended tissue constructs. 
Calcium chloride, ultraviolet (UV) radiation, 
photo crosslinking, and altered temperatures are 
used for crosslinking the bioink molecules[25-27]. 

Here, we review the applications of the 
3D bioprinted iPSCs or iPSC-derived cellular 
products in healthcare, especially in regenerative 
medicine, disease modeling, and drug testing 
(Figure 1). The methods of reprograming of iPSCs 
were described. Glimpses of the technological 
advancement in organ bioprinting were discussed. 
The advantages, limitations, and future directions 
of using iPSCs in clinics were outlined.

2 Human iPSC reprogramming methods 

For clinical application and disease modeling, 
the reprogramming method of choice should 
have adequate efficiency to produce iPSCs from 
less abundant samples[28]. Production of iPSCs 
using a combination of reprogramming methods 
can augment the efficiency of iPSCs generation 
even from the most difficult type of adult cells[29]. 
More than 10 years of extensive research on iPSC 
technology lead to the establishment of novel 
strategies for the production of iPSCs including 
the use of right cell type for reprogramming, use 
of non-integrative gene introduction methods, 
overexpression of gene enhancers of transcription 
factors, and the use of small molecules[30,31] 
(Figure 2).

2.1 Integrating viral vectors 

Initial iPSC experiments used lentivirus and 
retrovirus vectors to deliver Yamanaka factors 
in adult fibroblasts[2,32]. These retroviral-vectors 
possess the risk of creating mutagenesis by 
integrating to the host cell genetic material[33]. 
Moreover, the reprogramming procedure is 
tedious, also, it can cause chromosomal instability 
and potential threat of tumorigenesis from the 
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viral vectors[1,2,31-34]. It is essential to do the quality 
control of the iPSC lines created using viral 
vectors using whole-genome single nucleotide 
polymorphism array and karyotyping to verify the 
genomic integrity.

2.2 Non-integrating vectors 

To reduce the risk of unwanted genetic perturbations, 
there was introduction of non-integrating methods 

for transcription factor delivery. Recent methods of 
reprogramming use Sendai Virus (SeV) particles 
and episomes. SeV particles are used to transduce 
the reprogramming genes: Oct4, Sox2, Klf4, and 
c-Myc[8]. SeV reprogramming offers the absence 
of viral sequences in the host cell lines and is an 
efficient method to induce pluripotency[35]. In 2009, 
Yu et al. reported the episomal reprogramming in 
human cells where Epstein-Barr virus–derived 

Figure 1. Bioprinting of induced pluripotent stem cell (Ipsc)-derived tissues for regenerative medicine, 
disease modeling, and drug testing. Adult somatic cells are collected from a donor or a patient; the cells 
are reprogrammed to iPSCs and differentiated to specialized cells.

Figure 2. Reprogramming methods used to generate induced pluripotent stem cell.
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sequences were used for the non-integrated 
expression of the transcription genes that enable 
episomal plasmid DNA replication in dividing 
cells[36]. Polycistronic expression plasmids 
generates transgene-free and vector-free iPSCs 
with limited genomic integration, but this method 
requires multiple transfections[37,38].

2.3 mRNAs and miRNAs 

Human primary fibroblasts were reprogramed by 
introducing synthetic modified mRNAs coding for 
reprogramming proteins. MicroRNAs like miRNA-
367/302s are used to reprogram human primary 
fibroblasts into iPSCs[39]. The mRNA transfection 
is foot print free reprogramming. The capped 
mRNAs coding for a 6-factor modified-mRNA 
referred to as 5fM3O mod-mRNAs was used in 
fibroblasts to make iPSCs[40]. Yamanaka factors and 
the miRNA-367/302s act synergistically to increase 
the efficiency of transfection[41]. It has been reported 
that microRNAs such as miR-294, miR-291-3, and 
miR-295 can replace c-myc transcription factor 
and help to generate homogeneous populations of 
iPSC colonies[42]. Downregulation of let-7 miRNA 
upregulates the expression of target genes of c-myc 
and Lin-28 to promote cell reprogramming[43,44].

2.4 Reprogramming proteins 

This method allows the direct introduction of 
the recombinantly expressed reprogramming 
factors to cells[49]. This method mitigates the 
risks associated with the introduction of viral and 
external DNA and harmful chemicals into the 
cells[46]. The reprogramming proteins Oct4, Sox2, 
Klf4, and c-Myc were successfully delivered 
into adult somatic cells with the help of cell 
penetrating peptides (CPP). The cationic amino 
acid rich CPPs are capable of penetrating the 
cell membrane barrier and deliver the exogene-
free reprogramming proteins directly inside the 
cells[47]. This method enables the production of 
foot print-free iPSCs.

2.5 Small molecules

Reprogramming can be achieved using small 
molecules by epigenetic modifications[48]. Small 

molecules used for reprogramming fall under 
the category of epigenetic events regulators, 
mesenchymal-epithelial transition inhibitors, 
metabolic pathway modulators, wingless and 
integration site growth factor (WNT) signal 
pathway modulators, regulators of cell death, and 
senescence pathways[48]. These small molecules 
alone or in combination can substitute exogenous 
transcription factors. Using valproic acid, a 
Histone deacetylase inhibitor improved the 
reprogramming efficiency to 100-fold compared to 
the transcription factor mediated reprogramming 
method[49]. Another histone methyltransferase 
inhibitor compound, BIX-01294 activated 
calcium channels in the cell membrane, and 
improve reprogramming efficiency by increasing 
the expression of October 4 and Klf4[50,51]. In 2013, 
Hou et al. replaced all transcription factors and 
made chemical induced iPSCs of mouse embryo 
fibroblasts using the small molecules VC6TFZ 
and 2i but the reprogramming was incomplete[52]. 
Optimizing the use of small molecules to enhance 
reprogramming will definitely help to generate 
safer and higher quality iPSCs for clinical use 
without the risk of genomic integration and tumor 
induction. 

The advantages and limitations of these 
reprogramming methods are summarized in 
Table 1.

3 Sources of iPSCs for bioprinting and cell 
differentiation strategies of iPSCs to different 
cell lineages

The iPSC technology allows the use of autologous 
cells derived from the patients to be used in 
regenerative medicine. The iPSC cell lines have 
been derived from a variety of cells namely neuronal 
progenitor cells, keratinocytes, hepatocytes, B 
cells, fibroblasts, hepatocytes, gastric epithelial 
cells, muscles, adipocytes, and adrenal glandular 
cells. The reprograming efficiency varies 
among the type of cells used depending on the 
developmental origins and the epigenetic status. 
Multiple studies showed that the efficiency of 
reprogramming of keratinocytes is better than 
fibroblasts[53-55]. The difference in the efficiency is 
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attributed to the high-level endogenous expression 
of c-Myc and Klf4 in keratinocytes compared to 
other cell types. For therapeutic scenarios such 
as internal organ reconstruction (e.g., liver, and 
peripheral nerve), an ideal starting material 
to create iPSCs should be peripheral tissue. 
Peripheral tissue samples such as keratinocytes 
collected from patients can be reprogrammed 
to produce iPSCs and these iPSCs can serve as 
a valuable source for the cellular component in 
the tissue bioprinting[56]. Peripheral blood cells 
may represent a good source to derive iPSCs 
because taking blood samples from patients are a 
less invasive clinical procedure. Several research 
groups standardized the protocols for making 
iPSC lines from blood cells[57,58]. The iPSC-derived 
cells such as neurons, hepatocytes, osteoblasts, 
myocytes, skin cells, and pancreatic beta cells 
are in great demand in clinics for regenerative 
medicine applications[59-61]. Small molecules and 
growth factors such as recombinant proteins are 
used in the iPSC cultures to differentiate specific 
lineage cells from iPSCs[62,63].

4 Application of bioprinted iPSCs in healthcare

3D bioprinting using iPSCs hold high potential 
for several applications in the health-care sector. 
Current bioprinting techniques allow to print 
undifferentiated iPSCs and differentiated iPSC-
derived cells embedded in a suitable bioink. 
Development of novel bioinks, iPSC-derived cells, 

and the technological advancement in devising 
new generation 3D bioprinters has created a 
whole new field of medical bioprinting that hold 
great promise for artificial tissue/organ printing 
for regenerative medicine, disease modeling, and 
drug testing[64]. Here, in section 4, we describe 
about the commonly used bioprinting techniques 
to print iPSCs and the application of bioprinting 
in health-care field.

4.1 Commonly used iPSC 3D bioprinting 
technologies

Bioprinting iPSCs could avoid the ethical and 
immunological bottle necks of organ printing. 
iPSCs and iPSC derived cells for developing 
into cartilage, bone, skin, heart, liver, and 
neural tissues have been successfully printed 
using 3D bioprinting technology. iPSC-derived 
chondrocytes along with irradiated chondrocytes 
were bioprinted to cartilage tissues using mixture 
of alginate and nanocellulose bioink. RegenHu 
3D discovery bioprinter was used to print the 
chondrocytes. Extrusion bioprinting is the most 
commonly used method to print iPSCs and 
organs, followed by SLA, laser-assisted, drop-on 
demand, inkject, and microvalve based methods. 
The extrusion method applies a pneumatic (air) 
or mechanical (screw or piston) force to extrude 
iPSCs or its derivatives embedded in hydrogel 
bioinks through a nozzle orifice using seamless 
direct printing[65]. The printing is carried out 

Table 1. Advantages and limitations of the reprogramming methods.
Delivery method Advantages Limitations References
Integrated viral vectors High efficiency, validated in 

many cell types
Create insertional mutations, tumor 
induction

[1,2,31-34] 

Integration free viral vectors. 
For example, Sendai virus, 
Episomes

Completely free of vector and 
transgene sequences and can 
use in clinical applications, 
GMP compatible 

Low efficiency of reprogramming, 
reprogramming efficiency varies with 
cell types

[8,35-38] 

mRNAs and miRNAs Faster, high efficiency, absence 
of integration, need low input 
of starting cells 

Multiple transfection required, may 
elicit immune response, not evaluated 
in many cell types

[40-44]

Reprogramming Proteins Foot print-free, cGMP 
compliant

Not evaluated in many cell types, 
expensive 

[45-47] 

Small molecules Foot print-free, cGMP 
compliant, economical

Incomplete reprogramming, 
reprogramming efficiency varies from 
cell to cell

[48-52] 
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in a spatially controlled layer-by-layer fashion 
precisely to biofabricate 3D tissue constructs. 
Extrusion printing permits printing of cell-dense 
high viscous hydrogels, but cells may experience 
high shear force stress during the printing process. 
All three germ layers[66], neural tissues[67], cortical 
neural constructs[68], chondrocytes[69], cardiac 
tissue,[70] and peripheral blood mononuclear cells 
have been bioprinted from iPSC or iPSC derived 
cells using extrusion method. 

SLA and digital light projection (DLP) are 
popular nozzle-free bioprinting techniques work 
through photopolymerization. The liquid resin 
is solidified by UV laser beam in SLA. The 
DLP uses visible light for polymerization of the 
resin[71,72]. There are two types of SLA and DLP, 
i.e., bottom-up and top-down approach. The layer 
of resin on a support platform is cured by a light 
from above in bottom-up biofabrication, while the 
light source is located under a transparent platform 
in the top-down fabrication. iPSC-derived 3D 
liver models which mimic the native liver module 
architecture were printed using this technique[73]. 
The flipside of SLA is that, it can be detrimental to 
the living cells by damaging the genetic materials 
due to the use of UV. Moreover, the use of photo-
initiator resins may be cytotoxic to the cells[74]. Vat 
polymerization (VP) based bioprinting is a novel 
and accurate bioprinting method tissue engineering 
applications[75]. Various types of photo-initiators 
are used for the cross-linking of the printed tissues 
in the VP based bioprinting. VP use light sensitive 
hydrogels such as polyethylene glycol–diacrylate 
(PEGDA) and gelatin-methylacryloyl (GelMA). 
Label-free diamagnetophoretic printing is another 
method for microtissue printing uses intrinsic 
diamagnetic forces to control positioning of cells 
in a paramagnetic medium. Magnetic bioprinting 
is a contactless technique which does not use 
nozzles and therefore promise less contamination 
of cell suspension. Whole blood cells were printed 
using this technique[76], this technique may be 
efficient to adopt to print iPSCs as there is fewer 
chemical manipulations that are involved.

Droplet-based bioprinting is simple, fast, and 
precisely controlled bioprinting method to deposit 
composites of cells, growth factors, biomolecules, 

drugs, and scaffolds. Droplet-based bioprinting 
is derived from inkjet printing technology. It has 
been noted as a prominent technique widely used 
in regenerative medicine to print cells due to its 
flexibility. The droplet-based bioprinting can be 
subdivided into inkjet, acoustic, and micro-valve 
bioprinting modalities. The drawback of using 
this technology is that the rage of biomaterials 
compatible for this method of bioprinting is 
limited[77]. A valve-based bioprinting method is 
used to print iPSCs differentiated post-printing 
into hepatocyte-like cells (HLC cells). A 40-layer 
thick alginate bioink containing HLC cells 
showed typical liver tissue structure and the 
construct secreted hepatic albumin throughout 
the differentiation protocol. The work proved that 
the valve-based printing process is safe to print 
human iPSCs by maintaining pluripotency and 
differentiation[19]. 

The laser-assisted bioprinting uses pulsed laser 
beam with a focusing device. It consists of an 
energy-absorbing layer coated with further layers 
of cell-encapsulated hydrogel. It is a nozzle-free 
bioprinting method that excludes clogging during 
printing[78]. Human iPSCs combined with bioinks 
were bioprinted with laser-assisted bioprinting 
method and the cells were evaluated for their 
efficacy, pluripotency, and differentiation capacity. 
The hyaluronic acid-based bioinks are ideal for 
laser-assisted bioprinting[16,79]. While designing 
a tissue structure for bioprinting, factors such as 
shape, size, resolution, scaffold materials, iPSCs, 
or iPSC derived cellular components, and post-
processing tissue dynamics are to be considered. 
Bioprinting can be carried out as direct printing, 
crosslinking during the bioprinting, post-printing 
crosslinking, and hybrid methods, where more 
than one technique is used for printing the final 
tissue construct. The factors appear to affect 
cell survival after bioprinting are shear stress, 
laser exposure, duration, temperature, humidity, 
mechanical pressure, and vibration of the printing 
process. The selection of the printing techniques 
depends on the end use of the printed tissues, such 
as organ/tissue transplantation, disease modeling, 
or drug evaluation. Among, all the methods 
mentioned, extrusion bioprinting is the most 
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commonly used technique in iPSC bioprinting[80,81] 
(Table 2). Extrusion method causes less damage 
to the cellular components while printing, as it 
uses adjustable mechanical forces with no harsh 
treatments for the deposition of the bioink to the 
platform.

4.2 Regenerative medicine 

Autologous iPSCs derived from individuals 
provide unlimited source of cells for tissue 
regeneration. The unspecialized iPSCs can 
differentiate and develop to organoids/spheroids 
with specific characteristics of organs in vivo[74,82-84]. 
These mini-organoids can serve as building blocks 
for bioprinting of whole organs. Bioengineers 
and surgeons are looking for novel methods to 
synthesize artificial skin substitutes that is readily 
available and easily implantable in burn injury 
patients[85,86]. Scaffold-free cellular spheroids 
obtained from a coculture of human iPSC-derived 
cardiomyocytes, fibroblasts, and endothelial 
cells were 3D printed and these cardiac cellular 
patches were tested successfully in rat models 
of myocardial infarction[87]. Bioprinted organ 
substitutes such as pancreas, ovary, liver, kidney, 
and nervous tissues also will be in high demand in 
the near future. Figure 3 shows the workflow of 

3D bioprinting of peripheral nerve tissue[88,89] for 
the treatment of peripheral nerve injury.

Human iPSCs are capable of differentiation 
into many types of specialized cells and have high 
value in clinical use. These cells require specific 
cell culture media to keep their pluripotent 
characteristics intact. The isolation, expansion, and 
maintenance of human iPSCs intended for clinical 
use should be cultured in xeno-free conditions 
in compliance with the good manufacturing 
practice to avoid hypersensitivity reactions after 
transplantation in patients[90,91]. However, many 
conventional protocols of iPSC culture require 
to culture in feeder cells. The feeder cells are 
usually derived from mouse embryonic fibroblasts 
(MEFs). The cells are cultured on feeder cells 
to reduce the genetic instability of the cultured 
cells[89]. Culturing in MEF feeder cells or the 
usage of matrix coating substance (e.g., gelatin 
or Matrigel) made of animal components make 
the iPSCs xeno-positive. Recent introduction of 
synthetic polymers enables to maintain the iPSC 
cultures in xeno-free environment[92].

Yamanaka factor introduction techniques use 
different type of retroviral or plasmid vectors 
to integrate to the genome of the cell to make it 
pluripotent. For making clinical grade iPSCs and 

Table 2. Summary of iPSC-based Bioprinting works
Printing 
technique

Cell source Cells/tissues 
printed

Bioink used Reference

Extrusion iPSCs, BJFF iPSCs Cardiac Collagen I, Matrigel, Gelatin [70]
Human iPSCs Chondrocytes Nano-fibrillated cellulose in alginate [69]
Fibroblasts derived human 
iPSCs

Germ layers Geltrex [66]

Human iPSCs ((WT I line) Neural construct Matrigel/alginate mixture [68]
Human iPSCs Neural tissues Alginate, carboxymethyl-chitosan, 

agarose
[67]

Human peripheral blood 
mononuclear cells derived 
iPSCs

Pluripotent cells Hydroxypropyl chitin, Matrigel [79]

Stereolithography Human iPSCs Hepatic 
progenitor cells

Gelatin methacrylate (GelMA),
Glycidal methacrylate-hyaluronic 
acid (GMHA)

[73]

Laser-assisted Human iPSCs from cord 
blood

Germ layers Matrigel, Collagen type I,
Alginate, Hyaluronic acid

[16]

Microvalve-based Human iPSCs Hepatocyte-like 
cells (HLCs)

Geltrex [19]



 Applications of 3D bioprinted iPSCs

66 International Journal of Bioprinting (2020)–Volume 6, Issue 4 

its products, the cells should be free from any 
genetic integration of foreign DNA materials 
in the iPSC genome. mRNA-based, episomal, 
and recombinant protein-based introduction of 
transcription factors eliminate the risk of genomic 
integrations or aberrations in the iPSCs, which is 
an important step toward using the iPSCs for cell-
based therapies in patients[93-95].

4.2.1 Type 1 diabetes mellitus (T1DM) treatment 
by the replacement of pancreatic beta cells 

T1DM is known to be associated with the immune-
mediated destruction of insulin producing pancreatic 
β-cells[96,97]. Effective treatment of T1DM is a long 
pending requirement in diabetes care. Islet cell 
transplantation is a traditional method of managing 
T1DM, but the transplanted islets are rejected by the 
host immune system. Bioprinted islets encapsulated 
in a suitable biocompatible material have been 
emerged as a treatment method to tackle this 
immune rejection. Biofabrication of 3D constructs 
of patient-derived iPSCs differentiated to insulin-
producing pancreatic islet cells can potentially be an 
allogeneic source of cells for T1DM treatment. In 

2019, Kim et al. successfully developed a pancreatic 
tissue-derived (pdECM)-bioink to provide the 
pancreatic tissue-specific microenvironment to 
bioprint the human iPSC-derived pancreatic islet 
cells. The study used decellularized porcine pancreas 
to provide the extra cellular matrix support for the 
growth of the cells[98]. Biotechnology companies 
such as Cellheal and Celprogen are working toward 
to bioprint the functional pancreatic tissues for 
diabetic treatment[99].

4.2.2 Reproductive system disorders 

Ovarian failure is a major cause of infertility 
worldwide[100,101]. Functional 3D printed ovarian 
tissues would be a boon for infertility treatment. In 
2017, Laronda et al. reported that the 3D bioprinted 
ovary using porous gelatin scaffold material could 
support the growth and maturation of printed 
ovarian follicles in laboratory conditions. The lab-
grown ovary is tested in a sterilized mouse model 
and found to be functional. The bioprosthetic ovary 
used scaffold materials such as gelatin and gelatin 
methacrylate for bioprinting[102]. The structural 
features of the scaffold material such as pore 

Figure 3. Workflow of three-dimensional bioprinting of peripheral nerve tissue for treatment of peripheral 
nerve injury. Sciatica is the pain due to the injury to the largest nerve in the body. Extreme case of sciatica 
needs surgical intervention and if possible, regenerative therapy. The autologous peripheral tissues can 
be collected from the patient, reprogram to induced pluripotent stem cells and differentiate to peripheral 
nerve tissue progenitors or peripheral neurons, then bioprint using a suitable scaffold material, allow the 
maturation of the bioprinted tissue in a bioreactor and transplant to the patient to repair and regenerate 
the injured nervous tissue.
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size, pore geometry, and the surface contact area 
are the deciding factors for successful growth of 
functional ovarian tissue. Stem cells isolated from 
the patient’s own ovarian tissue can serve as the 
starting material to bioprint the functional ovary.

4.2.3 Thyroid gland replacement in 
thyrectomized patients 

Bioprinting of a functional vascularized mouse 
thyroid gland construct from embryonic tissue 
spheroids was reported by Bulenova et al. in 
2017[103]. Self-assembling thyroid spheres, 
thyrocytes, and endothelial cells suspended in 
collagen gel were used for bioprinting the thyroid 
gland. The bioprinted construct was implanted in 
a hypothyroid mouse and it could normalize the 
blood thyroxine levels and body temperature in 
the tested mice. Bioprinting of functional mouse 
thyroid gland tissue represents a major advance 
in bioprinting technology and organ regeneration 
research. In March 2019, NASA announced a 
plan for bioprinting thyroid gland in international 
space station to study the effect of microgravity on 
organs[104].

4.3 Bioprinted iPSCs in disease modeling 

The most advantageous aspect of using induced 
pluripotent cells in clinics is the ability of 
reprogramming of autologous cells taken directly 
from patients. At present, the majority of disease 
modeling studies makes use of the traditional 
2D cultures. Any monogenic or polygenic 
disease conditions can be re-created in a cell 
culture system[83]. While 2D cultures are good 
to understand the molecular level interactions, 
they possess several limitations including lack 
of heterogenic cell environment and the cell 
to cell communication cues[105]. The disease 
progression hugely depends on the extracellular 
matrix (ECM) mechanics and the cell to cell 
interactions[106]. Cellular phenotypes and the 
non-cell autonomous disease pathogenesis 
require mimicking the disease conditions in 
a more realistic 3D environment. 3D disease 
models would help in understanding the disease 
mechanism in detail in the early stages of 

the disease[107,108]. A few examples of disease 
modeling in cardiac, neurodegenerative and 
neurodevelopmental diseases and oncology are 
briefly discussed in the following sections.

4.3.1 Cardiac diseases 

Cardiovascular diseases remain the leading cause 
of death in the developed world, accounting for 
more than 30% of all deaths. Collection of cardiac 
tissue from patients with disease causing mutations 
for genetic studies and functional analyses is a 
highly invasive procedure. iPSCs derived from the 
peripheral tissues of patients with disease specific 
mutations are a valuable tool to study the cardiac 
pathophysiology and drug development. Cardiac 
tissues were biofabricated using hydrogels 
and supporting cells such as cardiomyocytes, 
endothelial cells, smooth muscle cells, and 
fibroblasts[109,110]. The cells were cocultured and 
engineered to resemble their natural physiological 
microenvironment and recapitulate coordinated 
contractile and electrophysiological interactions 
with the ECM and heterogeneous cell types that 
make up the myocardial tissue environment[111]. 
The iPSC-derived cardiac cells were successfully 
used to model cardiac diseases such as dilated 
cardiomyopathy and myocardial infarction[112]. 
These disease models help identifying the cellular 
phenotypes critical to cardiac pathology[113,114]. 
The microfluidic organ-on-chip methods were 
also developed to evaluate the vascular perfusion 
in cardiac tissue. The tissue composition and 
architecture of the in vitro 3D microdevice can 
be precisely defined using microfabrication 
methods[115-117]. The iPSC and embryonic stem 
cell derived organ-on-chip systems are being used 
for modeling a wide range of diseases, including 
dilated cardiomyopathy, kidney glomerular injury, 
and wound healing[118,119].

4.3.2 Neurodegenerative and 
neurodevelopmental diseases 

4.3.2.1 Alzheimer’s disease (AD)

AD is a progressive neurodegenerative disorder 
characterized by loss of cognition and disruption 
of basic functions, such as swallowing, walking, 
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attention, and memory[120]. All major nerve cell 
types can be differentiated from iPSCs and can be 
cultured in complex conditions, which mimic the 
AD conditions. Precise Genome editing techniques 
can be used to introduce or correct AD-linked 
mutations to examine phenotypes in isogenic 
backgrounds cells[14]. It has become increasingly 
clear in recent years that multiple different brain 
cell types can contribute to AD progression[121]. 
Thus, examining their interactions and impacts on 
each other are of critical importance. The iPSCs 
can be differentiated into neural crest or neural 
progenitor cells, which can subsequently be 
patterned to different neuron subtypes including 
glutamatergic, GABAergic, cholinergic, and 
dopaminergic neurons[122-124]. 3D bioprinted AD 
models will facilitate the development of effective 
therapeutics to combat AD-induced dementia. 
Moreover, bioprinted AD tissue models can serve 
as a more humanized model system for AD drug 
testing, as many drugs tried in experimental 
animals failed in clinical trials due to species 
variability[125,126].

4.3.2.2 Parkinson’s disease (PD)

PD is the second most common neurodegenerative 
disorder[127]. Studies using iPSC-derived 
dopaminergic neurons from patients with 
monogenic and sporadic PD have successfully 
illustrated key features of PD pathophysiology, 
including impaired mitochondrial function, 
increased oxidative stress, and accumulation of 
α-synuclein protein, namely, Lewy bodies[128]. 
Using iPSC-derived dopaminergic neurons 
from PD patients with mutations in the disease 
causing genes, many investigators have drawn 
mechanistic insights on how mutations of these 
genes are linked to PD. Coculturing glial cells and 
neurons both derived from iPSCs of PD patients 
should therefore be another platform to advance 
insights into the multifactorial pathogenesis of PD. 
Bioprinted dopaminergic neurons can be treated 
with neurotoxins such as 6-hydroxydopamine, 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 
paraquat, and rotenone to induce PD like syndrome 
to study PD pathogenesis[129-131].

4.3.2.3 Amyloid lateral sclerosis (ALS)

ALS is the most prevalent motor neuron (MN) 
disease characterized by the progressive loss of the 
upper and lower MNs, leading to muscular atrophy, 
paralysis, and death within 5 years after the first 
diagnosis[130]. The iPSC-derived disease models of 
ALS showed increased oxidative stress and DNA 
damage in neurons. ALS specific mutations and 
altered transcriptome profile were also noticed 
in the iPSC models. Osborne et al. reported the 
effectiveness of the small molecule vardenafil, in 
regaining the resilience of MNs by regulating the 
insulin-like growth factor-II signaling in an iPSC-
derived ALS model[132]. Researchers created 3D 
bioprinted ALS disease model using iPSC-derived 
MNs from a patient with TDP-43 gene mutation. 
TDP-43 gene mutation causes sporadic ALS. 
Bioprinted iPSC derived autologous tissue models 
of ALS disease serve as a valuable tool for studying 
the disease pathology as well as aid in the screening 
of personalized drugs against the disease[133].

4.3.3 Bioprinted iPSCs in oncology

The iPSCs derived from cancer tissues present a 
range of new opportunities for the study of human 
cancer. If human cancer cells were converted to 
pluripotency and then allowed to differentiate 
back into specific cancer tissue, they might shed 
light on the early stages of cancer[134]. 

Although 3D printing was developed decades 
ago, recent times witnessing a huge jump in 
adapting this versatile technology to the field of 
cancer modeling by fabricating sophisticated 
biological structures typical to cancer tissues. 
The cancer cells could be isolated from surgically 
removed cancer tissues. The isolated tumor 
cells are reprogrammed to pluripotent state by 
introducing the four transcription factors Oct4, 
Sox2, Klf4, and c-myc using a suitable method. 
The colonies are grown for a period of 2 – 4 weeks 
and cells with pluripotent stem cell morphology 
and molecular characters are expanded to create 
specific cancer iPSC lines[135]. These lines are 
differentiated into the tumor cell type of origin. 
The iPSC-derived differentiated cells could 
be then bioprinted into tumor tissues which 
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mimic the tumor microenvironment (TME). The 
commonly used cancer bioprinting methods are: 
Inkject printing, extrusion-based printing, lase-
assisted printing, and SLA. The tissues can be 3D 
bioprinted in the format of spheroids, organoids, 
coculture with other tumor TME cells, and organ-
on chip. Improvements in the 3D bioprinting 
technology enable to distribute the cancer 
derived iPSCs in a 3D space with high precision 
and reproducibility. The 3D bioprinted tissues 
can be used as cancer tissue-on-chip models or 
transplanted into animal models to study different 
stages of cancer pathogenesis. 

The most important hurdle in establishing 
iPSC-derived cancer models are the variation of 
intrinsic transcription factors in the cancer cells. 
This variation can affect the reprogramming 
efficiency of tumor cells. Many published studies 
showed that cancer cells are generally difficult to 
reprogram than normal cells[136]. The differentiation 
of cancer iPSCs to its initial tumor cell of origin also 
appears tedious and inconsistent. The success rate 

of establishing a cancer iPSC depends on the type 
cancer. So far, the successful reprogramming of 
myeloid tumors is established[137-139]. Establishing 
protocols for generating cancer iPSCs can help 
to model cancer progression, to understand the 
complex cancer genetics, and contribution of 
TME in cancer progression, anti-cancer drug 
development, and precision oncology (Figure 4).

4.4 Bioprinted iPSCs for drug and cosmetic 
testing

4.4.1 Bioprinted iPSCs for drug testing

More than 90% of drug molecules under different 
phase of clinical trials fail to reach market because 
of unanticipated toxicity to vital organs or lack of 
efficacy. This failure rate is partly attributed to 
the use of overly simplistic 2D cell culture-based 
assays[140]. The spectrum of activity of most of 
the drug molecules varied across the species, so 
animal testing has limited predictive value[107]. 3D 
bioprinting and iPSC technology enable printing of 

Figure 4. Bioprinted cancer tissue with induced pluripotent stem cell (iPSC)-derived cells: Establishing 
protocols for generating cancer iPSCs can help to model cancer progression, to understand the complex 
cancer genetics, and contribution of tumor microenvironment in cancer progression, anti-cancer drug 
development, and precision oncology.
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any tissue in its native architecture by preserving 
the complexity of cellular pathways, cell-cell 
interactions, and cellular-microenvironment 
interactions. The tissue microenvironment is 
critical for the understanding of drug acting 
mechanisms in humans[141]. The use of 3D 
bioprinted tissue is predicted to be an integral part 
of future drug discovery research for improved 
in vitro assays with better predictive value.

4.4.2 Cosmetics testing

The European Union Cosmetics Directive 
was introduced in 1976 to enforce high safety 
standards for cosmetics across the EU member 
states. In 2009, the EU commission has introduced 
new directives to phasing out animal testing for 
cosmetic products. The directive bans the testing of 
the cosmetic products and cosmetic ingredients on 
animals. The law even prohibits the marketing of 
finished cosmetic products and ingredients tested 
on animals in the European Union[142]. Hence, 
the cosmetic industry is looking for methods to 
replace the animal testing. Bioprinted artificial 
skin tissue can substitute the use of animals for 

cosmetics testing (Figure 5). At present, the 
human skin models required for cosmetic testing 
are manufactured by layering fibroblasts in a 
collagen hydrogel, then adding keratinocytes on 
top. The cells are allowed to differentiate and 
mature into the different epidermal layers. This 
type of artificial skin models is simple and would 
not exactly reflect the complexity of the native 
skin. Advanced bioprinting technology and iPSCs 
as cell source allow fabrication of more realistic 
artificial skin models for drug testing as well as 
for regenerative medicine[143]. This would help 
develop skin models with different skin types with 
respect to race (Asian, Caucasian, etc.), character 
(dry, oily, etc.), or other specific skin types 
depending on the intended use of the cosmetic 
as these models incorporate iPSC-derived cells. 
Collagen-based skin construct reinforced with 
biocompatible materials such as polycaprolactone 
(PCL) mesh prevented the contraction of collagen 
during tissue maturation and enable manufacturing 
of biomimetic human skin models[144,145]. Other 
biomaterials such as polylactic acid, Pluronic, 
alginate, chitosan, hyaluronic acid, fibrin, and 

Figure 5. Bioprinting of human skin tissue models for cosmetic testing to replace the animal testing 
procedures. Use of induced pluripotent stem cell-derived skin cells would help develop skin models 
with different skin types (Asian, Caucasian, etc.), character (dry, oily, etc.), or other specific skin types 
depending on the intended use of the cosmetic.
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gelatin, or a combination of PEGDA and GelMA 
were used as the scaffold material for printing skin 
models[145-147].

5 Bioinks used in iPSC bioprinting

Native tissue has complex architecture consisting 
of different cell types, ECM materials, growth 
factors, and many signaling molecules. ECM is 
organized in a highly delicate manner in a tissue 
to serve the tissue specific functions such as shape, 
consistency, mechanical strength, and molecular 
miscibility. Bioinks are cell laden hydrogels 
containing ECM components of the tissue to be 
printed. The materials used in the bioinks should 
be biocompatible without eliciting any undesirable 
response inside the body, should allow seamless 
printing, and should have tissue compatible 
rheological properties[56]. The bioink components 
can be natural, synthetic, different types of cells, 
and soluble growth factors specific for the cell 
types used. Natural polymers such as collagen, 
gelatin, fibronectin, laminin, and silk fibroin 
have been widely used in bioinks to augment cell 
attachment and migration in the matrix material[148] 
Polysaccharides such as alginate, agarose, and 
chitosan are also widely using in bioinks. Alginate 
is obtained from a type of brown algae and is widely 
used in 3D bioprinting applications due to its 
biocompatibility, promotion of cell proliferation, 
low price, and the ability of crosslinking in 
calcium ion solutions. However, alginate lacks 
sufficient mechanical stiffness for 3D bioprinting. 
Agarose is another biocompatible polysaccharide 
but it liquifies above physiological temperatures. 
Chitin and chitosan obtained from crustaceous 
animal are widely used polysaccharide component 
of bioinks, but it is slow in solidification. The 
methacrylated form of gelatin (GelMA) is a 
popular bioink component to print iPSCs which 
possess easily tunable physiochemical properties 
to use in bioprinters[149].

Still, many of these polysaccharides are too 
fragile and lack sufficient mechanical strength 
to retain in the transplant tissue site and often 
suffer from low mechanical properties, and 
thus, other materials have been combined as 

additive elements in the bioinks[150]. PCL and 
Poly (propylene fumarate) are polymers utilized 
in bioprinting due to its superior viscoelastic 
and rheological properties, biodegradability, 
and biocompatibility compared to the natural 
compounds. Synthetic hydrogels such as PEGDA 
are used as resins in 3D bioprinting, where cells 
can be entrapped[147]. The major limitation of these 
kind of hydrogels is that the bioprinted structure 
tends to collapse because of low viscosity and 
low mechanical strength[151]. New generation 
bioprinters have enabled us to print combinatorial 
bioinks with spatial and nanoscale resolution in 
seamless swift ways, aiming to reproduce the 
complex architecture of the native tissues. There 
are different types of bioinks available depends 
up on the tissue structure. One example is that 
researchers bioprinted hepatic tissue constructs 
using iPSC derived hepatocytes, endothelial 
cells, and mesenchymal cells resuspended in two 
different bioinks; GelMA with stiffness similar 
to healthy liver tissues, and a mix of glycidyl 
methacrylate-hyaluronic acid/GelMA which 
supported vascularization[73,152]. New generation 
polymers responsive to light, thermal, magnetic, 
humidity, and pH stimuli would allow the 3D 
bioprinting to leap to the next level.

6 Challenges associated with the use of 
reprogrammed iPSCs and bioprinting: 

The combinatorial application of 3D bioprinting 
and iPSC technologies would have a major impact 
on regenerative medicine research. However, how 
much have we achieved to take this technique to 
clinics and how far we have to go? Many obstacles 
still remain regarding the production of safer 
iPSCs that are to be resolved to take full advantage 
of this technology for therapeutic purpose[67]. 
One of the most important problems is the use of 
retroviral and lentiviral vectors to introduce the 
transcription factor genes into somatic cells for 
cell reprogramming, which can cause mutagenesis 
and tumor induction in the host cell. The iPSCs 
derived using viral vectors may be still suitable 
for the study of disease mechanisms or for drug 
testing but they lack the suitability for clinical 
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bioprinting. The use of non-integrative methods 
and small molecules to activate the pluripotency 
program in somatic cells represents the safest 
approach to produce clinical grade iPSCs cells. 
High throughput screening to identify small 
molecules for cell reprogramming is ongoing 
in many laboratories, with a goal to establish 
iPSCs free of any exogenously introduced 
DNA fragments. Incompletely differentiated 
cells evoked immune response in transplanted 
animals[153]. Therefore, obtaining completely 
differentiated cells for therapeutic purpose are of 
prime importance. Futuristic technology should be 
focused on establishing safe strategies for genetic 
modification of iPSCs, devise efficient methods 
for differentiation and purification of iPSCs into 
required cell types in vitro for transplantation. 

After production of iPSCs, there are limitations 
in the bioprinting process itself and associated 
challenges in the preparation of optimized bioinks 
suitable for each cell type. 3D bioprinting has the 
advantage of reconstructing complex structures 
from computed tomography or magnetic 
resonance imaging images and producing accurate 
structures from predetermined digital designs such 
as computer-aided design models. The support 
scaffold materials with suitable mechanical 
and biological properties can be designed and 
printed using advanced 3D printers. Directed 
differentiation of printed iPSCs to different cell 
lineages is required for organ printing. When we 
use undifferentiated iPSCs for bioprinting, the 
printing parameters should be adjusted to avoid 
any mechanical damage to the cells, as iPSCs are 
highly sensitive cells. Depending on the type of 
the bioprinting method used, the cells are exposed 
to high shear forces, radiation-induced damage, 
and electric or thermal stresses during the printing 
process[154,155].

Vascularization and innervation of the 
bioprinted tissue are a challenge to achieve. 
Bioprinted iPSC constructs are unable to form 
long-term viable and vascularized tissue. To 
resolve this problem, researchers at Wyss institute 
recently developed a method called sacrificial 
writing into functional tissue (SWIFT), which is a 
multistep biomanufacturing process that involves 

creating organ building blocks composed of 
hundreds of thousands of iPSCs and then rapidly 
3D bioprinting vasculature into those building 
blocks[70]. The SWIFT method could create a 
perfusable cardiac tissue that fuses and beats 
synchronously for more than a week, taking the 
field of bioprinting vascularized functional tissues 
using iPSCs to the next level.

7 Future perspectives for iPSCs in bioprinting

Despite the challenges associated with the use 
of reprogrammed iPSCs and limitations of 
bioprinting, the potential of bioprinting iPSC-
derived tissue is tremendous in the health-care 
field. Resolution of these challenges will have 
significant implications in the understanding of 
human diseases and will have major effects on the 
treatment of these diseases. Future perspectives of 
bioprinting iPSCs should focus on:
•	 Establishing xeno-free and footprint-free 

clinical-grade iPSC reprogramming protocols: 
The use of non-integrative methods and 
small molecules should be further explored. 
High throughput screening to identify small 
molecules for cell reprogramming to establish 
iPSCs free of any exogenously introduced 
DNA fragments would be potential area to 
focus on.

•	 Development of tissue-specific bioinks 
for bioprinting: New bioinks with tunable 
mechanical and rheological properties 
that mimic the native tissue ECM is to be 
developed and a deeper understanding of 
cell-bioink interactions must be sought as the 
mechanobiology and the molecular pathways 
would have a major effect on the differentiation 
of the bioprinted iPSCs.

•	 Improved bioprinting strategies to mitigate 
harmful effects on cells: Since iPSCs are 
sensitive cells (not as sturdy as cancer cell 
lines), the mechanical, thermal, or chemical 
stressors induced by the bioprinting process 
might result in cell-phenotype changes and 
functionality. Strategies to mitigate the 
exposure of cells to these process-induced 
stressors must be developed.

•	 Integrated bioreactor systems for tissue 
maturation: Bioprinting of functional tissues 
with iPSC-derived cells would be successful 
only if they can be matured and maintained 
over a long-term in physiologically-relevant 
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environments. Hence, development of suitable 
post-processing strategies such as integrated 
perfusion bioreactor systems becomes necessary.

•	 Pathway for clinical translation: A coordinated 
effort between the clinicians, scientists, and 
bioengineers in solving the technological 
limitations and support from the government 
and policy-makers would go a long way in 
establishing a pathway for clinical translation 
of bioprinted iPSC-derived tissues for 
regenerative medicine, disease modeling and 
drug testing.
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