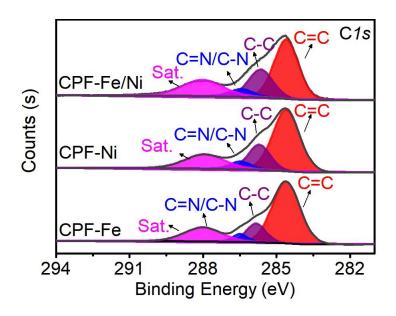
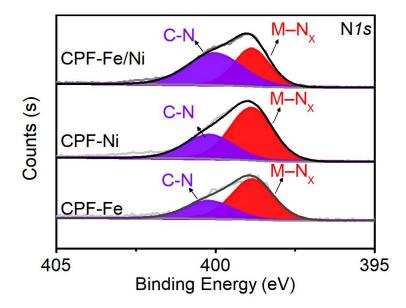
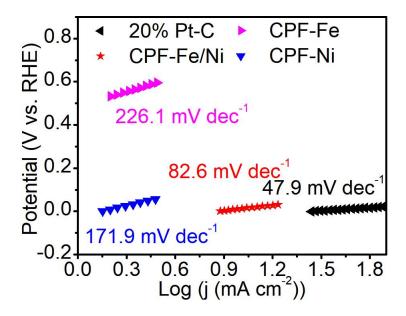

Supporting Information

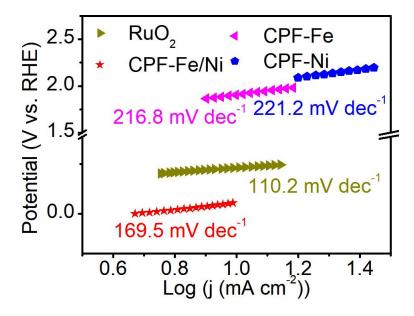
A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting

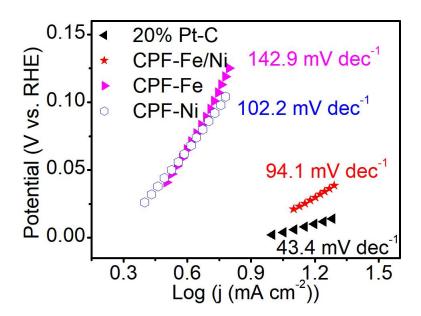

Ying Zang,^{1,2} Di-Qiu Lu,¹ Kun Wang,^{2,3} Bo Li,³ Peng Peng,^{2*} Ya-Qian Lan,¹ Shuang-Quan Zang^{2*}

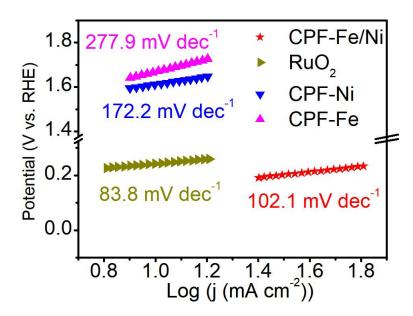
^{*}Corresponding author. E-mail: 13020010407@163.com, zangsqzg@zzu.edu.cn

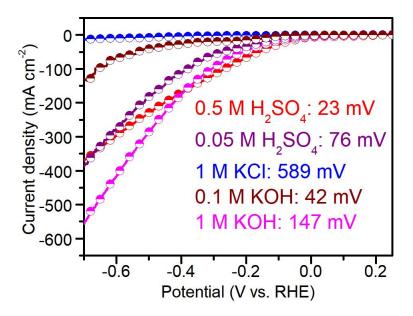

Supplementary Figures

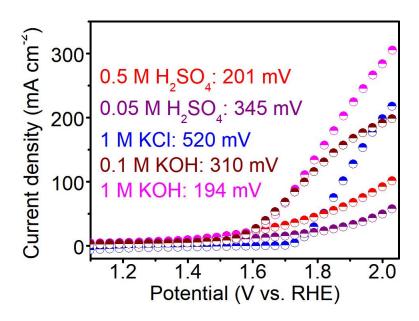

Supplementary Fig. 1. FT-IR of TCNB, CPF-Fe and CPF-Fe/Ni.

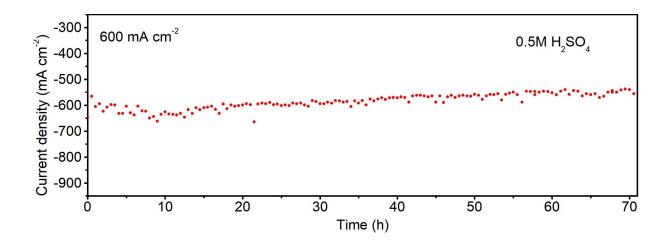

Supplementary Fig. 2. High-resolution C1s spectra of CPF-Fe and CPF-Fe/Ni.

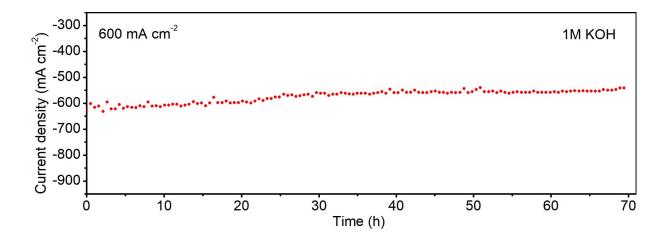

Supplementary Fig. 3. High-resolution N1s spectra of CPF-Fe and CPF-Fe/Ni.

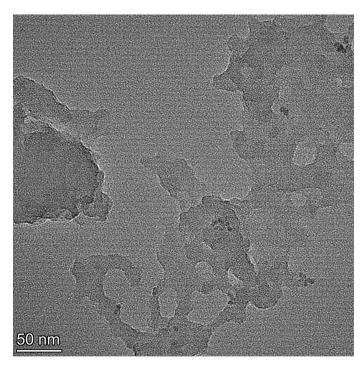

Supplementary Fig. 4. Tafel slopes for 20% Pt-C, CPF-Fe, CPF-Ni and CPF-Fe/Ni as HER catalysts in $0.5\ M\ H_2SO_4$.

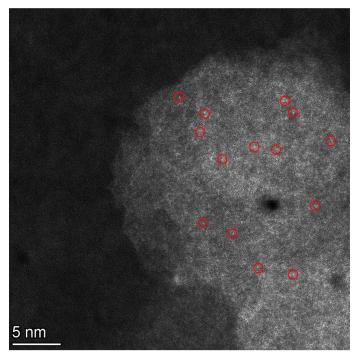

Supplementary Fig. 5. Tafel slopes for RuO₂, CPF-Fe, CPF-Ni and CPF-Fe/Ni as OER catalyst in 0.5 M H₂SO₄.

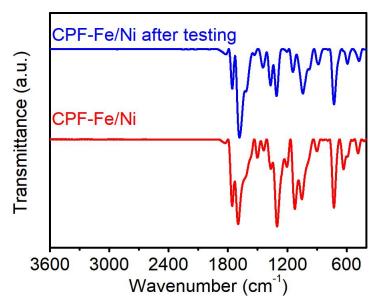

Supplementary Fig. 6. Tafel slopes for 20% Pt-C, CPF-Fe, CPF-Ni and CPF-Fe/Ni as HER catalyst in 1 M KOH.

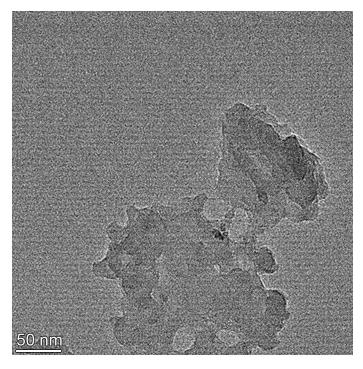

Supplementary Fig. 7. Tafel slopes for RuO₂, CPF-Fe, CPF-Ni and CPF-Fe/Ni as OER catalyst in 1 M KOH.

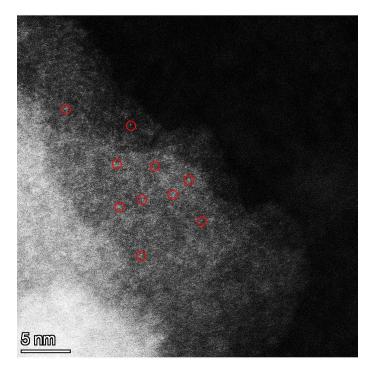

Supplementary Fig. 8. HER polarization curves with a speed of 10 mV s⁻¹ in a wide pH.

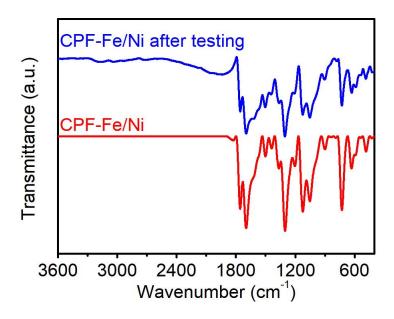

Supplementary Fig. 9. OER polarization curve with a speed of 10 mV s⁻¹ in a wide pH.

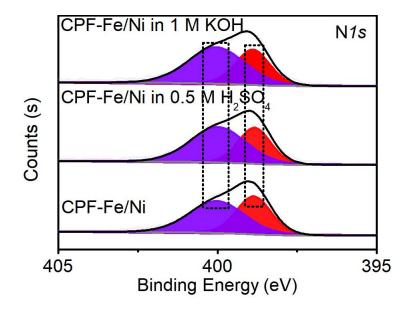

Supplementary Fig. 10. The chronopotentiometry of CPF-Fe/Ni in $0.5~M~H_2SO_4$ at $600~mA~cm^{-2}$.

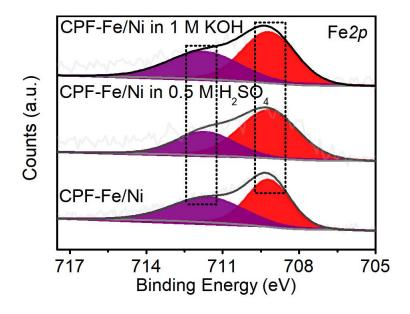

Supplementary Fig. 11. The chronopotentiometry of CPF-Fe/Ni in 1 M KOH at 600 mA cm⁻².

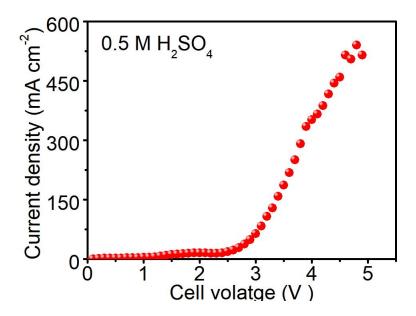

Supplementary Fig. 12. HR-TEM of CPF-Fe/Ni after electrocatalysis testing in 0.5 M H₂SO₄.


Supplementary Fig. 13. HAADF STEM image of CPF-Fe/Ni after electrocatalysis testing in 0.5 M H₂SO₄.

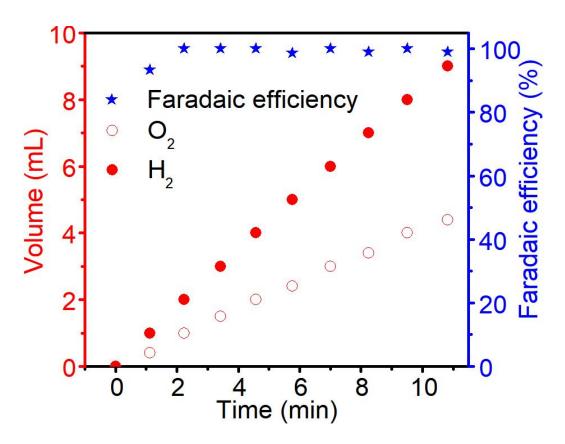

Supplementary Fig. 14. FT-IR of CPF-Fe/Ni after electrocatalysis testing in $0.5\ M\ H_2SO_4$.

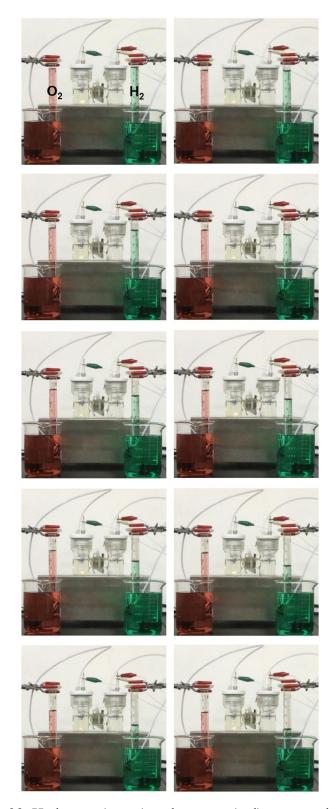

Supplementary Fig. 15. HR-TEM of CPF-Fe/Ni after electrocatalysis testing in 1 M KOH.

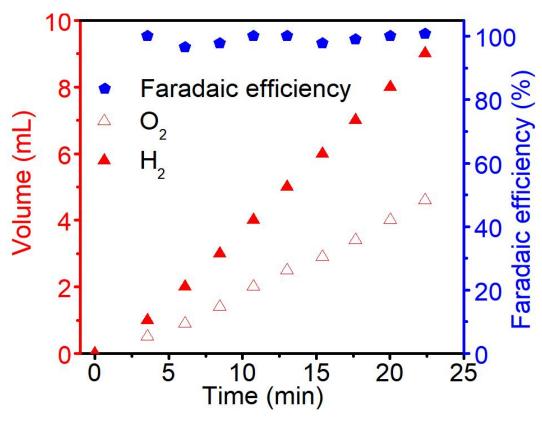

Supplementary Fig. 16. HAADF STEM image of CPF-Fe/Ni after electrocatalysis testing in 1 M KOH.

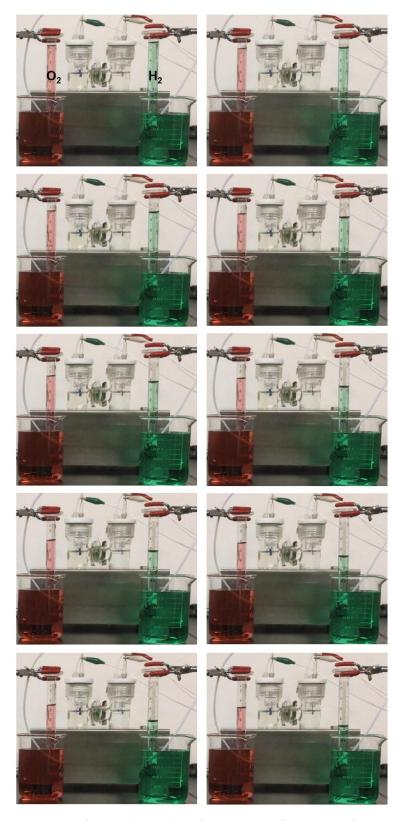

Supplementary Fig. 17. FT-IR of CPF-Fe/Ni after electrocatalysis testing in 1 M KOH.


Supplementary Fig. 18. High-resolution N1s spectra of CPF-Fe/Ni after electrocatalysis testing in 0.5 M H₂SO₄ and 1 M KOH, respectively.


Supplementary Fig. 19. High-resolution Fe2p spectra of CPF-Fe/Ni after electrocatalysis testing in 0.5 M H₂SO₄ and 1 M KOH, respectively.


Supplementary Fig. 20. LSV curves of CPF-Fe/Ni coupled water electrolysis cell at a scan rate of 10 mV s $^{-1}$ in 0.5 M H₂SO₄.


Figure S21. LSV curves of CPF-Fe/Ni coupled water electrolysis cell at a scan rate of 10 mV s⁻¹ in 1 M KOH.


Supplementary Fig. 22. Experimental gas volumes of H₂ and O₂ during water splitting at a current density of 30 mA cm⁻² for 11 min in 0.5 M H₂SO₄, and the corresponding Faradaic efficiency of CPF-Fe/Ni.

Supplementary Fig. 23. Hydrogen (green) and oxygen (red) generated at 0, 1.12, 2,23, 3.43, 4.58, 5.77, 7, 8.25, 9.5, and 10.83 min in 0.5 M H₂SO₄, respectively.

Supplementary Fig. 24. Experimental gas volumes of H₂ and O₂ during water splitting at a current density of 30 mA cm⁻² for 25 min in 1 M KOH, and the corresponding Faradaic efficiency of CPF-Fe/Ni.

Supplementary Fig. 25. Hydrogen (green) and oxygen (red) generated at 0, 3.55, 6.1, 8.45, 10.76, 13.02, 15.42, 17.67, 20.03, and 22.38 min in 1 M KOH, respectively.

Supplementary Tables Supplementary Table 1. Comparison of different electrocatalytic activity for different water splitting catalysts under 10 mA cm⁻².

	0.5 M	1 M	0.5 M	1 M					
	H ₂ SO ₄	КОН	H ₂ SO ₄	КОН	Tafel	TOF (s ⁻¹)	Faradaic Efficiency (%)	Stability (h)	
	ŋ	ŋ	Cell	Cell	(mVdec ⁻¹)				Ref
	HER/OER	HER/OER	voltage	voltage	(m v dec ')				
	(mV)	(mV)	(V)	(V)					
					0.5 M H ₂ SO ₄ : 82.6 (HER)	H ₂ SO ₄ : 3.16 (H ₂)		H ₂ SO ₄ :	
CPF-Fe/Ni	23/201	42/194	1.44	1.57	94.1 (OER) 1 M KOH: 169.5 (HER) 102.1 (OER)	1.12 (O ₂) KOH: 2.64 (H ₂) 1.4 (O ₂)	~ 100	120 KOH: 120	Our Work
Ru/Co–N–C	13/232	23/247	1.49	1.5	0.5 M H ₂ SO ₄ : 40.7 (HER) 1 M KOH: 32.4 (HER)	9.2	96	H ₂ SO ₄ : 20 KOH: 15	1
W-NiS _{0.5} Se _{0.5}		39/171		1.44	1 M KOH: 51 (HER) 41 (OER)	0.21	~ 100	500	2
CoNiRu-NT		27/255		1.47	1 M KOH: 78 (HER) 67 (OER)	0.330	95	48	3
FMZP4		53/184		1.79	1 M KOH: 53.2 (HER) 51.9 (OER)	0.00893	~ 100	80	4
Co-Co0.85Se		97/265		1.47	1 M KOH: 70.7 (HER) 78.0 (OER)	4.4	~ 100	12	5
Mn ₂ P- Mn ₂ O ₃ /PNCF		98/330		1.56	1 M KOH: 46 (HER) 86 (OER)		~100	72	6
H-CoSx@NiFe LDH/NF		95/250		1.98	1 M KOH: 90 (HER) 49 (OER)	0.067	97	100	7
Co-BTC		437/370		2.03	1 M KOH: 115.1 (HER) 89.1 (OER))	1.23		5	8
BPIr be catalyst	25/290	198/290	1.57	1.54	0.5 M H ₂ SO ₄ : 30.9 (HER) 70 (OER) 1 M KOH:	22 (H ₂) 4.41 (O ₂)		H ₂ SO ₄ : 2.5 KOH: 2.5	9

					91 (HER)				
) (HER)				
					0.5 M				
					H ₂ SO ₄ :				
					30.9 (HER)				
Ru/RuS ₂ -2	45/201		1.501			0.71 (H ₂)		10	10
Ku/KuS ₂ -2	43/201		1.301		70 (OER)	0.61 (O ₂)		10	10
					1 M KOH:				
					91 (HER)				
					64 (OER)				
					1 M KOH:		~100 (H ₂)		
Ru1/D-NiFe LDH		10/189		1.419	29 (HER)	7.66 (H ₂)	99.6 (O ₂)	2.5	11
					31 (OER)		99.0 (02)		
D.C. D.W.MC					1 M KOH:				
D-CoP-HoMSs		93/294		1.57	50 (HER)			-	12
					67 (OER)				
					1 M KOH:				
NiCoPO@NC/P-NF-		73.1/221.4		1.5	82 (HER)	0.21 (O ₂)	98.5 (H ₂)	48	13
e		/3.1/221.4		1.5	87.8 (OER)	0.21 (02)	99.4 (O ₂)	-10	15
					1 M KOH:	1.44(H ₂)	400	• •	
Ni0.6Fe0.4-MOG		159/285		1.61	38 (HER)	1.38(O ₂)	~ 100	20	14
					63 (OER)	, ,			
Fe doped MOF					1 M KOH:				
CoV@CoO		78/220		1.53	86 (HER)	0.45		50	15
nanoflakes					59 (OER))				
							99.6±0.3		
					1 M KOH:		(H ₂)		
NiMoOx/NiMoS		38/186		1.46	38 (HER)	1.97	97.5±0.4	500	16
					34 (OER)		(O_2)		
					1 M KOH:		~ 100		
CoFeO@BP	<u></u>	88/256			51 (HER)		(H ₂)	24	17
		00/250			42 (OER)		99.2 (O ₂)	2-1	1
							99.2 (02)		
					1 M KOH:				
CoP-InNC@CNT		159/270		1.58	63 (HER)			15	18
					85 (OER))				
					1 M KOH:				
Ni@N-HCGHF		95/260		1.6	57 (HER)			20	19
					63 (OER)				
					1 M KOH:				
Co2P /CoNPC		208/328		1.64	83.0 (HER)			8.3	20
					72.6 (OER)				
					1 M KOH:				
D-Ni-MOF		101/219		1.5	50.9 (HER)	1.224		48	21
NSA		101/219		1.3	48.2 (OER)	1.224		70	
FeNi(BDC)(DMF		224/22=			1 M KOH:	0.500	100	2.2	
,F)/NF		234/227		1.58	96.2 (HER)	0.298	~ 100	30	22
					37.4 (OER)				

HOF-			1 M KOH:			
Co0.5Fe0.5/NF	 170/278	 1.63	137 (HER)	 99.9	20	23
C00.3Fe0.3/NF			59 (OER)			

Supplementary Table 2. ICP of CPF-Fe/Ni before and after catalysis.

	Fe (%)	Ni (%)
CPF-Fe/Ni before catalysis	11.90	1.35
CPF-Fe/Ni after catalysis in 0.5 M H ₂ SO ₄	11.16	1.21
CPF-Fe/Ni after catalysis in 1 M KOH	11.32	1.18

Supplementary Note

Structural characterization.

Fourier transform infrared (FT-IR) spectra were recorded on a Bruker ALPHA | FT-IR spectrometer.

¹³C MAS solid-state NMR experiments were performed on AVANCE(3)400WB at a resonance frequency of 150.15 MHz. ¹³C NMR spectra were recorded with spinning rate of 15kHz with a 4mm probe at room temperature. ¹³C CPMAS experiments were performed with a delay time of 5s. Scan number: 2048 scans.

The X-ray photoelectron spectroscopy (XPS) measurements and were tested using ESCALAB 250 system (Thermo Electron) with an Al K α (300 W) X-ray resource (3.82 eV versus absolute vacuum value). All binding energies were calibrated to the C 1s peak (284.6 eV) arising from the adventitious carbon-containing species.

Field-emission scanning electron microscopy (FESEM) measurement was carried out using Zeiss Sigma 500.

The transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images were obtained in FEI TalosF200S equipment.

Sub-ångström-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) characterization was conducted on a JEOLJEMARM300F STEM/TEM with a guaranteed resolution of 0.08 nm.

Supplementary References

- 1. Rong C, *et al.* Electronic Structure Engineering of Single-Atom Ru Sites via Co-N4 Sites for Bifunctional pH-Universal Water Splitting. *Adv. Mater.* **34**, 2110103 (2022).
- 2. Wang Y, et al. Highly Active and Durable Single-Atom Tungsten-Doped NiS0.5Se0.5 Nanosheet @ NiS0.5Se0.5 Nanorod Heterostructures for Water Splitting. Adv. Mater. 34, 2107053 (2022).
- 3. Wang Y, et al. Competitive Coordination-Oriented Monodispersed Ruthenium Sites in Conductive MOF/LDH Hetero-Nanotree Catalysts for Efficient Overall Water Splitting in Alkaline Media. Adv. Mater. 34, 2107488 (2022).
- 4. Huang L, *et al.* In situ phosphating of Zn-doped bimetallic skeletons as a versatile electrocatalyst for water splitting. *Energy Environ. Sci.*, **15**, 2425-2434 (2022).
- 5. Yu J, et al. Capture and recycling of toxic selenite anions by cobalt-based metal-organic-frameworks for electrocatalytic overall water splitting. *Chem. Eng. J.* **433**, 134553 (2022).
- 6. Wang X, et al. One-pot synthesis of Mn₂P-Mn₂O₃ heterogeneous nanoparticles in a P, N -doped three-dimensional porous carbon framework as a highly efficient bifunctional electrocatalyst for overall water splitting. Chem. Eng. J. 428, 131190 (2022).
- 7. Lee Y, et al. Metal-Organic Framework-Derived Hollow CoSx Nanoarray Coupled with NiFe Layered Double Hydroxides as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. *Small* 18, 2200586 (2022).
- 8. Shreyanka S, *et al.* Multiscale design of 3D metal-organic frameworks (M–BTC, M: Cu, Co, Ni) via PLAL enabling bifunctional electrocatalysts for robust overall water splitting. *Chem. Eng. J.* **446**, 137045 (2022).
- Mei J, et al. Surface-Dependent Intermediate Adsorption Modulation on Iridium-Modified Black Phosphorus Electrocatalysts for Efficient pH-Universal Water Splitting. Adv. Mater. 33, 2104638 (2021).
- 10. Zhu J, et al. Regulative Electronic States around Ruthenium/Ruthenium Disulphide Heterointerfaces for Efficient Water Splitting in Acidic Media. *Angew., Chem. Int. Ed.* **60**, 12328-12334 (2021).
- 11. Zhai P, et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. *Nat. Commun.* **12**, 4587 (2021).
- 12. Hou P, et al. Delicate Control on the Shell Structure of Hollow Spheres Enables Tunable Mass Transport in Water Splitting. *Angew., Chem. Int. Ed.* **60**, 6926-6931 (2021).
- 13. Gao H, et al. Nickel-cobalt phosphate nanoparticles wrapped in nitrogen-doped carbon loading on partially phosphatized foamed nickel as efficient electrocatalyst for water splitting. *Chem. Eng. J.* **426**, 130854 (2021).
- Zhang X, Zhao H, Li C, Li S, Liu K, Wang L. Facile coordination driven synthesis of metal-organic gels toward efficiently electrocatalytic overall water splitting. Appl. Catal. B: Environ. 299, 120641 (2021).
- 15. Muthurasu A, *et al.* Construction of iron doped cobalt- vanadate- cobalt oxide with metal-organic framework oriented nanoflakes for portable rechargeable zinc-air batteries powered total water splitting. *Chem. Eng. J.* **88**, 106238 (2021).

- 16. Zhai P, et al. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting. *Nat. Commun.* **11**, 5462 (2020).
- 17. Li X, et al. Adaptive Bifunctional Electrocatalyst of Amorphous CoFe Oxide@2D Black Phosphorus for Overall Water Splitting. *Angew., Chem. Int. Ed.* **59**, 21106-21113 (2020).
- 18. Chai L, et al. Stringing Bimetallic Metal-Organic Framework-Derived Cobalt Phosphide Composite for High-Efficiency Overall Water Splitting. *Adv. Sci.* 7, 1903195 (2020).
- 19. Yan L, et al. A Freestanding 3D Heterostructure Film Stitched by MOF-Derived Carbon Nanotube Microsphere Superstructure and Reduced Graphene Oxide Sheets: A Superior Multifunctional Electrode for Overall Water Splitting and Zn-Air Batteries. *Adv. Mater.* 32, 2003313 (2020).
- 20. Liu H, et al. Metal-Organic-Framework-Derived Co2 P Nanoparticle/Multi-Doped Porous Carbon as a Trifunctional Electrocatalyst. *Adv. Mater.* **32**, 2003649 (2020).
- 21. Zhou J, *et al.* Alkali-Etched Ni(II)-Based Metal-Organic Framework Nanosheet Arrays for Electrocatalytic Overall Water Splitting. *Small* **16**, 1906564 (2020).
- 22. Lin H-W, Senthil Raja D, Chuah X-F, Hsieh C-T, Chen Y-A, Lu S-Y. Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities. *Appl. Catal. B: Environ.* **258**, 118023 (2019).
- 23. Liu FQ, et al. Constructing bimetal-complex based hydrogen-bonded framework for highly efficient electrocatalytic water splitting. *Appl. Catal. B: Environ.* **258**, 117973 (2019).