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ABSTRACT Bacillus licheniformis is a well-known industrial bacterium. New strains
show interesting properties of biostimulants and biological control agents for agri-
culture. Here, we report the draft genome sequence, obtained with an Illumina
MiniSeq system, of strain UASWS1606 of the bacterium Bacillus licheniformis, which
is being developed as an agricultural biostimulant.

Bacillus licheniformis is a Gram-positive, endospore-forming, saprophytic motile bac-
terium that commonly occurs in plants, soils (1), or even birds’ feathers (2). Current

taxonomy shows that it is closely related to Bacillus subtilis (3). It is a well-known
bacterium used for its enzymes and antibiotics in a wide range of industries (4, 5), and
some strains have already demonstrated interesting features for agronomic applica-
tions, such as imparting increased resistance to salt-alkaline stress (6), presenting endo-
phytic behavior with biocontrol properties (7), and promoting plant growth and demon-
strating fungus-antagonizing properties (8, 9). Bacillus licheniformis UASWS1606 was
isolated from an agricultural clay loam soil in Presinge, Geneva, Switzerland (10), and
initially identified as Bacillus licheniformis by 16S rRNA gene Sanger sequencing.

DNA was extracted with a modified cetyltrimethylammonium bromide (CTAB) pro-
tocol (11) from a culture grown exponentially overnight in Luria-Bertani broth at 25°C
from a single colony. A sequencing library was built with the TruSeq Nano DNA library
preparation kit (Illumina, USA). Whole-genome sequencing was performed using a
MiniSeq high-output kit within one Illumina MiniSeq run with a 2 � 151-bp paired-end
read length, which produced 6,409,906 reads, resulting in 220� genome coverage. The
overall quality metrics of the reads were assessed with FastQC v0.11.5 (12). Genome
assembly was performed with the SPAdes genome assembler v3.13.0 (13) with a setting
of “paired-end assembly, careful mode,” yielding 33 contigs (�200 bp), ordered with
BioEdit v7.0.5 (14), and analyzed with QUAST v4.6.3 (15) with the setting of �QUAST: skip
contigs shorter than 200 bp.� The total genome length is 4,370,390 bp, with a GC
content of 45.69% and an N50 value of 1,154,533 bp. Automated gene annotation
carried out with the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v4.1 (16)
identified 4,396 coding sequences and 83 RNA genes, while RAST v2.0 (17), using the
classic RAST annotation scheme, detected 4,677 coding sequences and 81 RNA genes.
PlasmidFinder v1.3 (18) and plasmidSPAdes, both using default settings, did not detect
any plasmids. RAST v2.0 (17) did not find any complete transposons or phages
integrated. NCBI BLAST (19) showed that the whole 16S rRNA gene (1,456 bp) shared
99.93% identity with 7 Bacillus paralicheniformis strains and then 99.86% identity with
13 Bacillus licheniformis and 2 Bacillus paralicheniformis strains. According to the NCBI
SRA Taxonomy Analysis Tool (STAT), based on raw sequencing read analysis, Bacillus
licheniformis UASWS1606 shares 56.5% of its genome with Bacillus licheniformis, 18.7%
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with Bacillus paralicheniformis, and 17.6% with Bacillus haynesii. The annotation con-
firmed the absence of toxins and superantigens, as well as virulence and disease genes,
allowing this bacterium to be considered for agronomic and environmental uses.
Regarding its agronomic application, four genes of the auxin biosynthesis pathway and
many protein-coding genes involved in the biocontrol process, such as genes for
transporters, plant cell lytic enzymes, siderophores, and other secondary metabolites,
are present. Like Bacillus licheniformis strain CKA1 (20), the presence of 15 genes related
to phosphorus metabolism, including the Pho operon, suggests a strong ability to
solubilize phosphate. Phenotypic profiling confirmed auxin synthesis and phosphate
solubilization. Annotation also revealed 22 genes linked to nitrogen metabolism, some
of which may increase plant growth rates and biomass production.

Data availability. This whole-genome shotgun project was deposited in DDBJ/
EMBL/GenBank under the accession number JAAOWI000000000. The version described
in this paper is the first version, JAAOWI010000000. Raw sequencing data sets have
been deposited in the NCBI Sequence Read Archive (SRA) database under the accession
number SRX7906581.
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