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Abstract: Cyber-Physical Systems are experiencing a paradigm shift in which processing has been
relocated to the distributed sensing layer and is no longer performed in a centralized manner.
This approach, usually referred to as Edge Computing, demands the use of hardware platforms that
are able to manage the steadily increasing requirements in computing performance, while keeping
energy efficiency and the adaptability imposed by the interaction with the physical world. In this
context, SRAM-based FPGAs and their inherent run-time reconfigurability, when coupled with
smart power management strategies, are a suitable solution. However, they usually fail in user
accessibility and ease of development. In this paper, an integrated framework to develop FPGA-based
high-performance embedded systems for Edge Computing in Cyber-Physical Systems is presented.
This framework provides a hardware-based processing architecture, an automated toolchain, and a
runtime to transparently generate and manage reconfigurable systems from high-level system
descriptions without additional user intervention. Moreover, it provides users with support
for dynamically adapting the available computing resources to switch the working point of the
architecture in a solution space defined by computing performance, energy consumption and fault
tolerance. Results show that it is indeed possible to explore this solution space at run time and
prove that the proposed framework is a competitive alternative to software-based edge computing
platforms, being able to provide not only faster solutions, but also higher energy efficiency for
computing-intensive algorithms with significant levels of data-level parallelism.

Keywords: edge computing; Cyber-Physical Systems; FPGAs; Dynamic and Partial Reconfiguration;
energy efficiency; fault tolerance

1. Introduction

The traditional Wireless Sensor Network (WSN) paradigm, based on a distributed sensing scheme
followed by a centralized processing of data, is being shifted by the emergence of edge-centric
computing [1,2]. More computational resources are being placed at the edge of data acquisition
networks, physically distributing not only the sensors but also the computational resources,
with the aim of reducing the communication overheads and the response latency of the network,
while increasing scalability and processing performance.

One of the major fields where WSNs are applied nowadays are Cyber-Physical Systems (CPSs),
where WSNs act as a bridge connecting the physical and the cyber worlds [3]. In this regard, let us
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think about some inspiring scenarios where CPSs are playing an important role. It is not unreasonable
to foresee, for instance, a near future with networks of autonomous self-driving cars going around
our cities, deeply sensing and understanding the environment, while making run-time decisions
about where to go and how to deal with the countless number of potential situations that may appear
during each route. Smart grids composed of millions of consumers connected to thousands of energy
production centers need to make a great deal of decisions at run-time in order to increase the operation
efficiency of generators and distributors, allowing flexible usage choices for consumers, while being
able to balance the peak and average demands of electricity. The Industry 4.0 revolution envisages
digital factories where production machines are interconnected providing intelligent, resilient and
self-adaptable operation, working together in a more cost-effective and efficient manner. In all those
scenarios where CPSs are becoming ubiquitous, multiple domain-specific sensor and actuator networks
are integrated under collaborative and distributed decision-making schemes, raising the level of
autonomy of the systems, but also their complexity and computational demands. These scenarios show
how highly constrained networked embedded systems have evolved to cope with the requirements
imposed by CPSs, bringing more resources to the edge and conforming the foreseen scenario of seven
billion people surrounded by seven trillion devices.

Edge Computing makes necessary to seek alternatives to the use of low-profile microcontrollers
as it has been traditionally done in WSNs [4]. When algorithms become more computing
intensive, Field Programmable Gate Arrays (FPGAs) can prove beneficial when used as processing
platforms [5–7]. Moreover, System-on-Programmable Chips (SoPCs), integrating FPGAs with
microcontrollers on the same device, allow combining the flexibility of software with the performance
of hardware. While some FPGA technologies can provide competitive power consumption rates
(e.g., Flash-based), only SRAM-based FPGAs can meet the requirements imposed by high-performance
embedded applications. The price to be paid for this performance is power consumption, and therefore,
additional power management strategies need to be implemented to maintain the energy efficiency
always required in traditional WSNs.

On top of that, some other non-functional requirements for CPS edge computing platforms are
dynamic adaptability and dependability. Adaptability is derived from the need of interaction with a
changeable physical world, while dependability is related with the criticality of the physical entities
controlled by these systems. Whenever these non-functional requirements are present on the Edge,
the applicability of other competitor hardware architectures such as domain-specific accelerators
or embedded GPUs is reduced. In this regard, the run-time reconfiguration capabilities available
in SRAM-based FPGAs, which enable the time-multiplexing of computing resources, make them
appropriate for the adaptability levels required by CPSs. However, specific techniques are required to
enhance the dependability of solutions running on FPGAs.

In this paper, a framework to design adaptive high-performance embedded systems for edge
computing is presented. The framework is based upon three elements: an architecture for flexible
hardware acceleration, called ARTICo3, an automated toolchain to build FPGA-based reconfigurable
systems, and a run-time execution environment to manage running applications.

The ARTICo3 architecture offers hardware-based, dynamically-adaptable, high-performance
embedded computing, exploiting both task-level and data-level parallelism. The use of Dynamic
and Partial Reconfiguration (DPR), together with a slot-based partitioning of the reconfigurable
fabric, allows module replication and, in some cases, even relocation. Hence, application-specific
hardware accelerators can be instantiated as many times as required (i.e., replicated using hardware
“copy and paste”), provided that there is enough space available, to better exploit parallelism at both
task and data levels. An optimized, bus-based and DMA-powered communication infrastructure
is used to feed the accelerators and retrieve data when computing is finished. This infrastructure
transparently maps data transfers between an external RAM memory and the hardware accelerators.
Moreover, the mapping strategy can be dynamically changed when multiple copies of an accelerator
are instantiated in the reconfigurable region. In addition, the architecture features dedicated modules to
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enhance the functionality of the system, once combined with the adequate mapping strategy. The data
delivery pattern that enables redundant execution is complemented by a voter unit that is inserted in
between the returning datapath from the accelerators to achieve fault-tolerant execution. Moreover,
the mapping strategy that enables parallel execution is complemented with a hardware reduction unit,
able to perform atomic operations (addition, maximum, minimum, etc.) on the fly, i.e., during data
transfers, and merge data coming from different accelerators without additional overheads that would
compromise computing performance.

The use of complex hardware-based processing architectures for high-performance embedded
computing has been around for a certain amount of time. However, the lack of both design- and
run-time support made it extremely difficult for these platforms to become widely used by the general
public. In this regard, the proposed architecture is complemented with a toolchain to automatically
generate ARTICo3-based systems from high-level descriptions (C/C++ code) of both application and
hardware accelerators using High-Level Synthesis (HLS), even though legacy designs using HDL are
also supported.

Moreover, to ease the development of user-defined applications using the ARTICo3 framework,
a runtime library (accessible through a simple API) has been developed. Run-time mechanisms
such as FPGA reconfiguration or parallel-processing deployment using DMA transfers are also
managed transparently, making it possible for designers without prior knowledge of FPGA-based
processing systems to implement fully-fledged DPR-capable systems. Furthermore, the execution
model associated with the architecture, mainly based on massive data-level parallelism, provides
transparent scalability in terms of computing performance, a fact that can be also combined with
energy efficiency or fault tolerance to cover the full spectrum of available solutions when using the
ARTICo3 architecture.

In summary, the main contributions of this paper are:

• A dynamically reconfigurable architecture for hardware-accelerated edge computing that supports
tradeoffs between computing performance, energy consumption and fault tolerance (driven by
user applications) at run-time.

• An optimized on-chip communication infrastructure to enable configurable, DMA-powered
memory transactions.

• An automated design methodology to generate custom FPGA-based edge computing systems
from either high-level (HLS) or RTL descriptions.

• A run-time scalable parallel execution model for FPGAs that exploits data-level parallelism and is
based on DPR.

The rest of this paper is organized as follows. Section 2 presents an overview of the related work.
The ARTICo3 framework is presented in Section 3, and validated through experimental results in two
scenarios in Section 4. Finally, Section 5 presents the conclusions and the future work.

2. Related Work

For the sake of clarity, this section is divided into two subsections. The first one addresses the
importance of FPGA technology in the context of CPSs, whereas the second one presents different
FPGA-based embedded processing architectures, design tools, and run-time management techniques.

2.1. CPSs and FPGAs

As it was already envisioned in [8], the cyber part of CPSs, usually conformed by embedded
systems, has an inherent need for networking. Hence, it is common to establish clear relationships
between CPSs and the Internet of Things (IoT) paradigm. Moreover, resource limitations in current
end devices (i.e., the edge of the network) demand additional computing power either in the cloud or
closer to the edge (i.e., fog computing [9,10]).
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The use of FPGAs (or even SoCs with FPGA parts) in elaborated IoT scenarios can be seen
throughout the literature. For instance, Venuto et al. [11] presented an FPGA-based CPS built around
wearable IoT technology that includes complex machine learning algorithms for healthcare applications.
The work presented in [12], on the other hand, proves that FPGAs provide better results than optimized
software running in GPUs when implementing Binarized Neural Networks [13]. Both examples show
a promising path for embedded machine learning in IoT using reconfigurable technology inside
edge devices.

The research around FPGAs for IoT spans a wide range of topics, from new FPGA technologies
to enable the ultra-low power consumption rates required in some applications on the edge [14],
to different processing architectures, either with or without DPR capabilities, to be implemented on
top of the FPGA substrate. For instance, Johnson et al. [15] presented a DPR-enabled security-oriented
architecture for IoT applications. However, it does not support dynamically scalable execution of
hardware accelerators (only one accelerator is assumed per function) as in the ARTICo3 architecture.
Another architectural example can be found in [16], where a low-end node for resource constrained
IoT deployments is presented, but where DPR is not supported due to the FPGA being flash-based.

2.2. FPGA-Based Embedded Processing: Architectures and Tools

The use of reconfigurable technology adds new challenges to the already huge design space
of multiprocessor systems (this section provides a brief overview on Reconfigurable Computing
Architectures and methodologies; please refer to [17] for a more in-depth reading on the matter).
These challenges have been divided in the literature in several categories [18]: architectures, tools for
design space exploration, simulation and programming, and infrastructures and Operating Systems
(OS) for run-time operation.

2.2.1. Architectures

Architectural support for reconfigurable computing has been widely studied and therefore,
several examples can be found in the literature. ReCoBus [19], for instance, shows a custom bus-based
architecture where reconfigurable modules are dynamically attached to a bus communication interface,
as opposed to the approach applied in ARTICo3, in which accelerators are not attached to the bus
directly but to a configurable gateway to support dynamic datapath changes. ReCoBus allows
interconnections between reconfigurable modules by an architecture called I/O bars to achieve point to
point communication among accelerators. Although this is an interesting approach, it is different from
the proposal of ARTICo3, where accelerators do not share data to enable a scalable and data-parallel
execution model. These I/O bars allow direct interfacing with on chip memory and I/O resources.
All the reconfigurable modules having access to a shared memory can lead to memory hazards that
need to be taken care of by a complex scheduler. In ARTICo3, each accelerator has a local memory
and they have no master capabilities over the bus. ReCoBus allows loading hardware modules with
different sizes, as it is done in ARTICo3. Although replication to increase performance and redundancy
could be potentially added, there is no specific reference to that or how this could be addressed.
Another example can be found within GUARD [20], which is a methodology to increase fault tolerance
in SRAM-based FPGAs on demand. It includes a generic architecture where reconfigurable modules
are attached to a bus. By monitoring error rates and some other parameters, the level of required
redundancy is managed. As in ARTICo3, the static part is assumed to be hardened by other methods
and they are only focused on adding redundancy to the dynamic region.

However, there are additional challenges derived from having reconfigurable hardware
architectures that need to be taken into account. The first challenge is related to the number and type
of processing elements (PEs) used. The reconfiguration of PEs can be carried out from two different
perspectives: virtually adapting the inner datapath of the PE using multiplexers [21], or actually
modifying the configuration memory of the FPGA to completely change the PE in a coarse-grain DPR
approach, which is the one followed in ARTICo3. An example of the first type of reconfiguration can
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be seen in [22], where the authors use Reconfigurable Instruction Set Processors (RISPs) to change
instructions at run time, being able to modify the functionality of the PEs. Alternative techniques
such as virtual reconfiguration [23], or multiplexing similar to in [24] can be also used to change the
configuration of PEs. This reconfiguration approach can be faster, since less data need to be configured
but it is also less flexible, due to the need of having fixed logic resources. When working with
coarse-grain DPR (e.g., ReCoBus), on the other hand, each PE can have different memory structures
and therefore, the PE is usually reconfigured together with its local memory [25], which is also the
case of ARTICo3-based accelerators. The use of reconfigurable infrastructures such as the MORPHEUS
platform [26], with different levels of reconfiguration granularities for real-time processing, has also
been analyzed.

The second challenge for reconfigurable architectures is how to handle communication interfaces
among the PEs, since both the number of them and their locations can be changed dynamically.
Important aspects are, for example, the architecture reduction on demand, i.e., changing the number
of communication ports according to the changing number of PEs. Depending on the number of
processors, different approaches are used: point-to-point communications for a low number of PEs,
bus-based architectures for medium, and Networks on Chip (NoCs) for a higher number of processors.
Star-wheels [27] or CoNoChi [28] are examples of NoCs, or the work presented in [29], where the
number of processors can be changed at run time while DPR is used to change the number of switches
on demand. In [19,30], it is possible to find bus architectures capable of changing the number of PEs.
This is also the approach applied in ARTICo3.

The third challenge related to reconfigurable architectures is the memory structure. As it was
already mentioned, PEs can have different memory structures and thus, sometimes, it is convenient to
reconfigure the whole block. Besides, architectures based on shared memory might need to handle
a changeable amount of agents accessing the memory as shown in [31,32]. A particular example of
memory structure can be seen in VAPRES [33], where run-time assembly of streaming processors
with hardware module replacement and communication reconfiguration is done. In ARTICo3,
the memory structure is hierarchical and has three different levels: global (shared with host
microprocessor), local (common to all logic within an accelerator), and registers (fast access storage
within an accelerator).

2.2.2. Design Tools

The complexity faced by developers at design time is a huge concern when working with
dynamically and partially reconfigurable systems built on FPGAs. As a result, several toolchains
have been introduced throughout the years to increase productivity and make low-level technology
dependencies transparent for designers. In this regard, RecoBus-Builder [34] is presented as a means
to easily build DPR-enabled systems based on the ReCoBus architecture. It not only generates the
communication infrastructure for the reconfigurable partitions, but also provides a ready-to-deploy
configuration bitstream to be loaded in the FPGA. The ARTICo3 toolchain does not generate the
communication infrastructure (it is part of the static region), but does also provide output binaries to
program the FPGA and the host microprocessor. Another academic tool is GoAhead [35,36], which goes
one step further and enables the floorplanning and automatic generation of DPR-enabled systems
with no initial restrictions in the communication infrastructure. The flow also supports relocation
of partial bitstreams, i.e., being able to move a certain circuit from one reconfigurable region of the
FPGA to a different one. Although relocation capabilities have not been enabled for all target devices,
the ARTICo3 framework can rely on legacy tools for relocatable bitstream generation [37].

Apart from academic tools, there are also some commercial solutions aimed at system-level design
for FPGAs. Recently, Xilinx has introduced the so-called SDx design flows, which include SDAccel
and SDSoC. SDAccel enables FPGA-accelerated datacenter development by using HLS from OpenCL
code. The ARTICo3 and OpenCL execution models are similar in some aspects, since both aim at
exploiting massive and explicit data-level parallelism. However, while SDAccel also relies on DPR to
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load accelerators in the FPGA, the reconfiguration granularity is coarser than the one used in ARTICo3,
where individual accelerators (and not a full set of them) can be changed. Moreover, SDAccel requires
PCIe coprocessing boards for application deployment; thus, it is not a suitable solution for the Edge.
SDSoC, on the other hand, targets embedded systems and uses HLS to generate accelerators from C
or C++ code. In terms of design automation, SDSoC and the ARTICo3 toolchain have some common
features such as automatic and transparent system generation with communication infrastructures
and HLS-based accelerator design. Nevertheless, the main difference between ARTICo3 and both
SDAccel and SDSoC is the run-time component of the ARTICo3 framework, which allows transparent
and scalable data-parallel processing with selectable fault tolerance and energy efficiency using DPR.
Table 1 shows the main similarities and differences between the ARTICo3 framework and alternative
tools. The last column refers to the possibility of performing user-driven tradeoffs between computing
performance, energy consumption and fault tolerance at runtime.

Table 1. Design tools comparison.

Tool Kernel Specification DPR Parallelism Support for Dynamic
Entry Point Support Exploited Adaptation at Runtime

RecoBus-Builder VHDL/Verilog Accelerator Not Explicit No
GoAhead VHDL/Verilog Accelerator Not Explicit No
SDAccel C/C++, OpenCL Accelerator Group Task, Data No
SDSoC C/C++, OpenCL No Task No

ARTICo3 VHDL/Verilog, C/C++ Accelerator Task, Data Yes

2.2.3. Run-Time Support

Dedicated hardware accelerators working as software-like threads can improve computing
performance. Moreover, the way they are managed can help cover not only a performance increase but
also control over energy consumption and dependability needs. However, even though pure hardware
solutions can be optimal, hybrid solutions taking advantage of software flexibility and hardware
processing power are shown to be more efficient [38]. The concept of hardware threads is studied in [39]
as part of ReconOS, an OS for reconfigurable computing. Hardware threads are treated as additional
processes by the OS. Each hardware thread has two interfaces: one with system memory and another
with the OS. This approach is similar to the one followed by ARTICo3, which provides two interfaces
(control and data) and works under an OS. However, in the case of ARTICo3, hardware accelerators
have no master rights over system memory since those rights can cause conflicts or an additional
complexity in the management of the communication protocol. Another example of the use of
hardware threads can be found in [40]. The work presents an architecture that allows dynamic
allocation of processing units and multithread management at OS level. It includes point to point
streaming communication among hardware threads. These streaming interfaces are configurable at
run time. In addition, there is a resource manager that uses certain identifiers for the management
of the hardware threads, called stubs, as it does with software threads. More examples of OS-level
run-time management of reconfigurable systems can be found in [41,42].

3. The ARTICo3 Framework

The proposed framework provides three components required in high-performance embedded
processing solutions: a multithreaded reconfigurable processing architecture, an automated toolchain
to deploy edge computing applications using it, and a run-time environment to manage the
implemented systems. The ARTICo3 architecture is device agnostic. However, the need for low-level
DPR support, which is highly technology-dependent, limits the range of devices that can be used as
targets. Only Xilinx devices are supported in the current version of ARTICo3.
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An overview of the ARTICo3 framework is presented in Figure 1: all user input files
(application definitions) appear at the top; the toolchain that generates both the hardware files to
reconfigure the FPGA and the application executable that will run in the target platform (hardware and
software components, respectively) appear in the middle; and the final platform, managed by an OS
and making use of the ARTICo3 architecture through its runtime, appears at the bottom. The following
subsections cover each of these components in depth.
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HLS Engine

C/C++ 
Application
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Figure 1. The ARTICo3 Framework.

3.1. Architecture

ARTICo3 stands for Reconfigurable Architecture to enable Smart Management of Computing
Performance, Energy Consumption, and Dependability (Arquitectura Reconfigurable para el Tratamiento
Inteligente de Cómputo, Consumo y Confiabilidad in Spanish).

The architecture was originally conceived as a hardware-based alternative for GPU-like embedded
computing. Although additional features have been added to this first concept to make it suitable for
edge computing in CPSs (e.g., energy-driven execution, fault tolerance, etc.), the underlying hardware
structure still resembles GPU devices in the way it exploits parallelism. As a result, for the architecture
to be meaningful, applications are required to be a combination of sequential code with data-parallel
sections (host code and kernels, respectively). The host code runs in a host processor but, whenever a
section with data-level parallelism is reached, the computation is offloaded to the kernels, implemented



Sensors 2018, 18, 1877 8 of 30

as hardware accelerators. Moreover, data-independent kernels can be executed concurrently, extending
the parallelism to task level.

The key aspect of the ARTICo3 architecture is that it offers the possibility of adjusting
hardware resources at run-time to comply with changing requirements of energy consumption,
computing performance and fault tolerance. Hence, the working point of the architecture can be
altered at run-time from the application code, dynamically adapting its resources to tune it to the best
tradeoff solution for a given scenario.

As in most DPR-enabled architectures, ARTICo3 is divided into two different regions:
static, which contains the logic resources that are not modified during normal system execution,
and dynamic (or reconfigurable), which contains the logic partitions that can be changed at run-time
without interfering with the rest of the system. The reconfigurable region is, in turn, divided into
several subregions to host different hardware accelerators. The partitioning of the dynamic region
follows a slot-based approach, in which accelerators can occupy one or more slots, but where a given
slot can only host logic from one hardware accelerator at a given instant. It is important to highlight
that, although the static region is completely independent of the device in which the architecture is
implemented, the reconfigurable region has strong, low-level technology dependencies: the size of the
FPGA or the heterogeneous distribution of logic resources inside the device impose severe restrictions
on the amount and size of the reconfigurable partitions.

The communication infrastructure of ARTICo3, optimized for the hierarchical memory approach
of the architecture, uses two standard interconnections, one for control purposes (register-based
with AXI4-Lite protocol) and another fully dedicated to move data using a burst-capable DMA
engine (memory-mapped with AXI4-Full protocol). A gateway module called Data Shuffler acts
as a bridge between the twofold bus-based approach of the static region and the reconfigurable
hardware accelerators, supporting efficient data transfers between both domains. This bridging
functionality is used to mask custom point-to-point (P2P) communication channels behind standard
communication interfaces (AXI4 slaves) that can be accessed by any element in the static region
(e.g., the host microprocessor for configuration/control purposes, or the master DMA engine for data
transfers between external memory and accelerators). This communication infrastructure constrains
data transactions between external memory and local accelerator memories to be burst-based and
memory-mapped. Application-specific data access patterns can still be implemented, but need to be
managed explicitly either in software (the host application prefetches and orders data in the DMA
buffers) or in hardware (the user-defined accelerator logic accesses its local memories with the specific
pattern, providing additional buffer descriptions as required).

The top-level block diagram of the ARTICo3 architecture, with the distribution of both static and
dynamic partitions, together with the communication infrastructure, is shown in Figure 2. The ARTICo3

framework does not impose where the host microprocessor should be: it can be either a soft core
implemented in the static partition of the FPGA, or a hard core tightly-coupled with the SRAM-based
FPGA fabric.

The internal architecture of the Data Shuffler module enables dynamic changes in the datapaths
to and from the reconfigurable hardware accelerators. Write and read channels alter their structure to
fit a specific processing profile, which is defined by a combination of one or more of the supported
transaction modes: parallel mode, redundant mode or reduction mode. Note that the convention used
here implies that write operations send data to the accelerators, whereas read operations gather data
from the accelerators. The dynamic implementation of the datapath in the Data Shuffler is shown
in Figure 3.



Sensors 2018, 18, 1877 9 of 30

Flash

D
at

a 
B

us
 (D

M
A

-E
na

bl
ed

, A
XI

4-
Fu

ll)

Shuffler

Fault
Monitor

Performance
Monitor

In
te

rc
on

ne
ct

io
n

R
ed

uc
tio

n
En

gi
ne

Vo
te

r
U

ni
t

Registers

Local
Memory

Accelerator
Logic

Registers

Local
Memory

Accelerator
Logic

Registers

Local
Memory

Accelerator
Logic

Host
�P

RAM

Control Bus (AXI4-Lite)

Reconfiguration
Engine

Core Core

Figure 2. Top-level block diagram of the ARTICo3 architecture.
Co

n
gu

ra
bl

e 
In

te
rc

on
ne

ct
io

n

Voter
Unit

St
at

ic
 R

eg
io

n
AX

I4

Ac
ce

le
ra

to
rs

AR
TI

Co
3  

P2
P

0

1

Reduction 
Engine

OP

0

1

N-1

Voting
Lanes

0

1

Simplex
Bypass

Figure 3. ARTICo3 datapath. Its configurable structure allows dynamic changes to support
fault-tolerant operation using the voter unit, parallel execution using the Simplex bypass, and data
reduction using the configurable reduction engine.

The different transaction modes supported by the architecture and enabled by the Data Shuffler
can be summarized as follows:

• Parallel mode: Different data to different hardware accelerators, SIMD-like approach
(parallel execution, even though the bus-based nature of the communication infrastructure forces
all transfers to be serialized between Data Shuffler and external memory). Targets computing
performance and energy efficiency.

• Redundant mode: Same data to different hardware accelerators, majority voting for fault-tolerant
execution. Targets dependability.
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• Reduction mode: Different data to one or more hardware accelerators, accumulator-based
engine to perform computations taking advantage of data serialization in the bus.
Targets computing performance.

The parallel transaction mode (Figure 4) is used to take full advantage of data-level parallelism
when more than one copy of a given accelerator is present. Burst-based write transactions are split in
as many blocks as available accelerators. This process is done on the fly, without incurring additional
latency overheads. When using this mode, overlapping periods of memory transactions and data
processing occur, since each accelerator starts working as soon as its corresponding data block has
been written to its local memory. The resulting burst-based read transaction is composed also on the
fly by retrieving data from the accelerators in the same order that was used during the write operation.
This mode boosts computing performance using a SIMD-like approach: several copies of a hardware
accelerator (same functionality) process different data.
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Figure 4. Parallel operation mode.

The redundant transaction mode (Figure 5) is used to enforce fault-tolerant execution,
taking advantage of Double or Triple Module Redundancy (DMR and TMR, respectively).
Hence, two or three copies of a given accelerator must be present for this mode to be applied. In this
mode, burst-based write transactions are issued using a multicast scheme: all the accelerator copies get
the same data strictly in parallel. Once the processing is done, a burst-based read transaction is issued,
retrieving data also in parallel from all accelerators through a voter unit that decides which result
is correct. This unit modifies its behavior according to the required fault-tolerance level, acting as a
bypass for compatibility with the parallel mode (i.e., Simplex, no redundancy), a comparator in DMR,
and a majority voter in TMR. Notice that the proposed scheme only ensures fault tolerance in the
reconfigurable region. The rest of the system, including the Data Shuffler (which can be considered as
a single point of failure), is assumed to have been previously hardened, if required, using additional
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fault tolerance techniques (e.g., configuration memory scrubbers [43]) that are out of the scope of
this paper.
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Figure 5. Redundant operation mode.

The reduction transaction mode (Figure 6) can be thought of as an extension of the parallel
transaction mode, where the burst-based read operation is forwarded to an accumulator-based
reduction engine before reaching the bus-based communication interface. This mode can be used to
enhance computing performance by using a memory transaction not only to move data between the
reconfigurable and static domains but also to perform a specific computation (addition, maximum,
minimum, etc.) on the fly. An example application where the reduction mode can be used is a
distributed dot product, where each accelerator computes a partial result and the reduction unit
adds them to obtain the final result with no additional access to the external memory. The proposed
accumulator-based approach is inherently efficient: on the one hand, only a small area overhead
is introduced (an accumulator, an ALU, and its lightweight control logic); on the other hand,
certain computations can be performed without adding latency and memory access overheads other
than the ones imposed by data serialization in the bus (which are always present when moving data
between memories).

The true power of the ARTICo3 architecture resides in the method used to access the reconfigurable
hardware accelerators, use the different transaction modes and take advantage of the embedded
add-on modules (voter unit and reduction engine): the addressing scheme (shown in Figure 7).
Taking advantage of the memory-mapped nature of the static region, hardware accelerators are
addressed using a unique identifier, which is inserted in the AXI4 destination address for write
transactions or in the AXI4 source address for read transactions. Therefore, addressing is made
independent of the relative position of a given accelerator in the dynamic region, since it uses virtual
sub-address ranges within the global map of the Data Shuffler to address hardware accelerators.
Virtual sub-mappings are transparently managed by the framework, making kernel design agnostic
from this process. As a consequence of this smart addressing scheme, the system can support user-driven
task migration without compromising execution integrity in case a reconfigurable slot presents
permanent faults (e.g., on-board processing in a satellite might suffer from severe radiation effects).
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Moreover, the proposed addressing scheme is also used to encode specific operations as part of the
transaction addresses. For instance, the destination address in write transactions provides support for
multicast commands (e.g., reset all accelerators with a given identifier), whereas the source address in
read transactions can be used to encode the operator which is to be used when the reduction mode
is enabled.
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Figure 6. Reduction-oriented operation mode.
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Figure 7. ARTICo3 addressing. Accelerator locations are abstracted using an ID that is embedded
within the address itself.
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However, the architecture not only includes an optimized datapath and a smart addressing
scheme, but it also features embedded Performance Monitoring Counters (PMCs) to enable
self-awareness, and could also be extended by attaching additional sensor interfaces to enable
environment-awareness (a common scenario in CPSs, where sensing physical variables is fundamental).
There is a number of common PMCs for all implementations, measuring useful performance metrics
such as execution times per accelerator, bus utilization (memory bandwidth), or fault tolerance metrics
such as the number of errors found per slot (this report comes from the voter unit). In addition,
some implementations also feature power consumption self-measurement (provided that the required
instrumentation infrastructure is available). As a result, the architecture provides an infrastructure
to get relevant information that can be used to make sensible decisions on whether to change the
current working point. Nevertheless, closing this feedback loop is out of the scope of this paper, and is
assumed to be managed from user applications.

3.2. Toolchain

The ARTICo3 architecture provides a good starting point for edge computing in CPSs.
However, FPGA-based systems, especially when enhanced by DPR, have been traditionally restricted
to Academia due to their inherent complexity at both design and run time. To make the design of
ARTICo3-based systems accessible to wider range of embedded system designers, an automated
toolchain has been developed with two main objectives: on the one hand, to encapsulate user-defined
hardware accelerators in a standard wrapper and automatically glue them to the rest of the hardware
system; and, on the other hand, to generate the required binaries for software and hardware execution.
Note that the hardware/software partitioning of the application is a step that needs to be done
beforehand, either manually or using an automated tool. The ARTICo3 toolchain assumes independent
hardware and software descriptions are provided as inputs. The components to enable a transparent
use of ARTICo3 at run time, which are also required to make the framework accessible, are covered in
the next section.

The generation of custom hardware accelerators in ARTICo3 is very flexible, since developers can
choose whether to use low-level HDL descriptions of the algorithms to be accelerated, or use HLS
from high-level C/C++ code (the current version of the ARTICo3 toolchain only supports Vivado HLS).
Either way, the resulting HDL code is then instantiated in a standard wrapper, which provides
not only a fixed interface to be directly pluggable in the Data Shuffler, but also a configurable
number of memory banks and registers (see Figure 8). The toolchain parses and customizes this
wrapper for each kernel that has to be implemented. Hence, the key aspect of the toolchain is
that it encapsulates hardware-accelerated functionality within a common wrapper that has a fixed
interface with the rest of the architecture, but whose internal structure is specifically tailored for
each application. This customization process, together with the generation of DPR-compatible
implementations, is performed transparently and without direct user intervention.

The ARTICo3 kernel wrapper provides direct connection between user logic and the Data Shuffler
using a custom P2P protocol. This protocol relies on enabled read/write memory-mapped operations
(enable en, write enable we, address addr, write data wdata, and read data rdata), a mode signal to select
the target from memory or registers, two additional control signals to start the accelerator and check
whether the processing has finished (start and ready), and, finally, the clock and reset signals.

Local memory inside ARTICo3 accelerators is specified using two parameters: total size,
and number of partitions (or banks) in which it has to be split. This approach increases the potential
parallelism that can be exploited by providing as many access ports as necessary, while at the same time
keeping all the banks as a uniform memory map for the communication infrastructure (i.e., the DMA
engine only sees a continuous memory map for each accelerator, even if more than one bank is present).
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Figure 8. ARTICo3 wrapper. The configurable structure (i.e., number of configuration registers or
memory banks) is tailored for each functionality that is to be implemented.

Once the accelerators have been generated (i.e., once an HDL description for them is available),
the toolchain generates the whole hardware system to be implemented inside the FPGA by using
peripheral libraries (either provided by Xilinx or included in the toolchain itself). This process has
two different stages: first, a high-level block diagram is generated by instantiating all required
modules and connecting them together; second, the block diagram is synthesized, placed and routed,
generating FPGA configuration files for both static and dynamic regions (full and partial bitstreams,
respectively). In parallel, the toolchain also generates the required software project by combining
the user files (where the main application is defined) with the API to access the underlying ARTICo3

runtime library, creating a customized Makefile to transparently build the application executable.
As a result, the toolchain produces output binaries for both hardware and software components

without user intervention. This automated methodology greatly increases productivity by reducing
development time and error occurrences, especially when compared to legacy design methodologies
that were mainly handmade. For example, Figures 9 and 10 show ARTICo3-based systems in
two different devices that were manually generated and routed using legacy Xilinx tools (ISE),
whereas Figure 11 shows the outcome of the toolchain (which uses current Xilinx Vivado tools) for
another device. Although they are functionally equivalent, development time went down, on average,
from almost a week to a couple of hours (these figures are based on the authors’ experience on
designing reconfigurable systems). The main reason for this is that low-level technology and device
dependencies are transparently handled by the toolchain, hiding them from the developer, who can
now implement DPR-enabled systems with no extra effort.

The ARTICo3 toolchain, which is made up of Python and TCL scripts, is highly modular, relying on
common constructs that are particularized for each individual implementation (system templates for
hardware generation, and application templates for software generation). This is also a key aspect,
since it makes adding new devices to the ones supported by the toolchain, or changing the peripherals
present for an already existing device, really easy.



Sensors 2018, 18, 1877 15 of 30

Figure 9. FPGA floorplanning of an ARTICo3-based system in the HiReCookie node.

Figure 10. FPGA floorplanning of an ARTICo3-based system in the KC705 development board.
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Figure 11. FPGA floorplanning of an ARTICo3-based system in a Zynq-based board. Up-to-date design
tools (i.e., Vivado) are used for this implementation.

3.3. Run-Time

As it was already introduced in the previous section, providing designers with the capabilities to
transparently generate ARTICo3-based reconfigurable systems from high-level algorithmic descriptions
is not enough to make the whole framework accessible to embedded system designers with no prior
experience in hardware design. In addition, it is also necessary to provide a common interface to link
the automatically generated hardware platforms with the user applications, usually written in any
programming language (e.g., C/C++), that will use the proposed processing architecture.

To achieve this, a concurrent run-time environment has been also developed. This run-time
environment has been implemented as a user-space extension of the application code, relying on
a Linux-based OS. Although Linux may not seem the best approach for certain type of embedded
systems (e.g., safety-critical applications where specialized OSs are used instead), it shows several
advantages. On the one hand, its multitasking capabilities can be exploited to manage different kernels
concurrently; and, on the other hand, it is widely used, and developer-friendly.

User applications interact with the ARTICo3 architecture and accelerators by means of a runtime
library written in C code, which is accessible through a minimal API. The runtime library includes
functions to initialize and clean the system, perform DPR to load accelerators, change the working
point of the architecture, manage memory buffers between application and accelerators, run kernels
with a given workload, etc. Table 2 shows the function calls available in the ARTICo3 runtime API.

The ARTICo3 run-time environment automates and hides from the user two processes:
FPGA reconfiguration and parallel-driven execution management (i.e., workload scheduling over
a given number of accelerators using variable-size DMA transfers between external and local
memories). However, users are expected to actively and explicitly decide how many accelerators
need to be loaded for a given kernel and how to configure them using artico3_load (this function
performs DPR transparently). Moreover, users are also in charge of allocating as many shared buffers
(between external and local memories) as required by the application/kernels using artico3_alloc.
Once everything has been set up, users can call artico3_kernel_execute to start kernel execution.
This function takes advantage of the data-independent ARTICo3 execution model to automatically
sequence all processing rounds (global work) over the available hardware accelerators of a kernel
(each of which can process a certain amount of local work). The sequencing process sends data to
the accelerators (DMA send transfer), waits for them to finish and then gets the obtained results back
(DMA receive transfer) until all processing rounds have finished. The ARTICo3 run-time environment
creates an independent scheduling/sequencing thread for each kernel that is enqueued for processing.
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Host code can then continue its execution in parallel to the accelerators until it needs to wait for any of
the sequencing threads to finish, which can be done by calling the function artico3_kernel_wait.

Table 2. ARTICo3 Runtime API.

Group Function Description

General artico3_init Initializes the runtime and loads the static system
artico3_exit Releases the runtime and cleans environment

Slot artico3_load Loads a kernel in a slot and sets its configuration
artico3_unload Removes any previous slot configuration

Memory artico3_alloc Allocates a DMA-capable memory buffer for a kernel port
artico3_free Frees the memory buffer associated to a kernel port

Kernel

artico3_kernel_create Registers a kernel in the runtime (gets an ID)
artico3_kernel_release Removes a kernel from the runtime (frees the ID)
artico3_kernel_execute Executes a kernel asynchronously (delegate thread)
artico3_kernel_wait Waits for kernel completion
artico3_kernel_reset Reset all accelerators of a given kernel
artico3_kernel_wcfg Writes data to kernel registers
artico3_kernel_rcfg Reads data from kernel registers

Monitor artico3_hw_get_pmc_<name> Access the specific PMC and gets its current value

3.4. Previous Work

The ARTICo3 architecture was first introduced in [44]. It originally featured a PLB-based
communication infrastructure (for compatibility with legacy Xilinx FPGAs with PowerPC
microprocessors), and a reduced set of operation modes that were mutually exclusive. The current
implementation features AXI4-based communication infrastructures (for compatibility with modern
ARM-based SoCs), and enables configurable and additive transaction modes. At its initial stages, it did
not have any associated toolchain or runtime management software.

The first analysis of the solution space exploration capabilities of the ARTICo3 architecture was
presented in [45], were the data-parallel execution model that enables transparent scalability was also
introduced. However, the flow relied on custom ad-hoc bare-metal software libraries and manual
hardware implementation techniques that were application-specific and needed to be tailored for
each scenario. Currently, the ARTICo3 runtime library provides a standard methodology to interface
with hardware accelerators from user applications. This library also supports multikernel execution,
a feature that was not present in the bare-metal versions of the library. In addition, automatic hardware
system generation from kernel descriptions has been provided via the ARTICo3 toolchain.

The monitoring infrastructure available in ARTICo3 was presented in [46]. This, together with a
set of lightweight estimation models, designed to be embedded within the platform itself, enabled the
recreation of the solution space in any ARTICo3-powered application without actually having to load
and change the configuration of the accelerators.

4. Experimental Results

This section has two objectives: first, illustrate how the architecture can be actively adapted
from user code to explore the solution space, defined by a tradeoff between computing performance,
energy consumption and fault tolerance at run-time, for a given application; and, second, compare the
proposed solution with a software-based alternative in a common scenario for CPSs.

To this end, four different algorithms have been implemented on the ARTICo3 architecture: on the
one hand, two image filters based on sliding window algorithms (median and Sobel) and a block
ciphering algorithm (AES-256) using HDL descriptions; and, on the other hand, a 32-bit floating point
matrix multiplier using C code and HLS. All implementations used are in-house custom designs.
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These algorithms provide a rich variety of parallelization schemes, making it possible to test the
architecture in different scenarios: images can be split in stripes that can be individually processed
by different accelerators, block ciphers can work in parallel for certain operation modes (such as the
integer counter mode, named CTR in this manuscript), and there are several block-based approaches
to make matrix multiplication more efficient. Moreover, each algorithm that has been implemented
serves its own purpose. For instance, HDL-based kernels have been chosen to precisely illustrate the
way in which the solution space can be explored at run-time, whereas the C-based kernel has been
used to prove the feasibility of ARTICo3 in a context of energy-efficient edge computing for CPSs.

In addition, three different FPGA-based platforms have been used: a custom high-performance
wireless sensor node called HiReCookie that includes a Spartan-6 FPGA (XC6S150-2FGG484) [7],
a Xilinx KC705 development board that includes a Kintex-7 FPGA (XC7K325T-2FFG900C), and another
custom board that includes a Zynq-7000 SoC (XC7Z020-1CLG484). Manual, legacy implementations
have been developed in both the HiReCookie and the KC705 board and use an ad-hoc implementation
of the runtime library running as a standalone application in a soft-core microprocessor, whereas the
Zynq-based systems have been developed using the ARTICo3 toolchain and use the fully-fledged
runtime library under Linux (which runs on the ARM cores of the SoPC). Each board has a different
number of available slots (due to resource heterogeneity and device size): in the HiReCookie,
the reconfigurable region has been divided into 8 slots; in the KC705 board, the partitioning has
enabled 6 slots; and, in the Zynq-based board, only 4 slots have been generated after partitioning.

Resource utilization from the ARTICo3 infrastructure can be seen in Table 3, where the first column
corresponds to the Data Shuffler (both AXI4 interfaces, voter and reduction units, etc.). The second and
third columns include only the resources required inside the Data Shuffler to implement the AXI4-Lite
and the AXI4-Full interfaces. The fourth and fifth columns show the additional logic, placed outside
the Data Shuffler, that needs to be instantiated to generate the ARTICo3-based hardware system (i.e.,
AXI4 Interconnect IP Cores from Xilinx).

Table 3. Resource utilization: ARTICo3 infrastructure (Zynq-7000).

ARTICo3 Static System

Component Data Shuffler Data Shuffler Data Shuffler Control Bus Data Bus
AXI4-Lite Slave IF AXI4-Full Slave IF AXI4-Lite AXI4-Full

LUTs 4142 1669 520 449 0
FFs 2365 409 256 598 0

Table 4 presents the resource utilization of all the kernel implementations, as well as information
regarding their implementation (local memory size, number of memory banks inside each accelerator,
number of registers, input source, target board, and number of parallel threads inside each accelerator).
An additional column has been added to show the resource utilization of the ARTICo3 kernel wrapper
with no internal user logic. All these values correspond to one single accelerator (i.e., the contents of
one reconfigurable ARTICo3 slot).
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Table 4. Resource utilization: ARTICo3 kernels.

ARTICo3 Wrapper Median Filter Sobel Filter

Info

64 KiB, 4 banks 16 KiB, 2 banks 16 KiB, 2 banks
8 registers 8 registers 8 registers

- VHDL VHDL
- HiReCookie HiReCookie
- 1 thread 1 thread

LUTs 959 1136 1035
FFs 545 1123 819

DSPs 0 0 0
BRAMs 16 4 4

AES-256 CTR Matrix Multiplier

Info

32 KiB, 2 banks 64 KiB, 2 banks 64 KiB, 4 banks 48 KiB, 3 banks
8 registers 8 registers 8 registers 0 registers

VHDL VHDL VHDL C + HLS
HiReCookie KC705 KC705 Zynq Custom

1 thread 1 thread 2 threads 1 thread

LUTs 3710 3721 7005 3292
FFs 3479 3484 6329 2786

DSPs 0 0 0 20
BRAMs 9 17 18 16

4.1. Solution Space Exploration

As stated in the previous sections, one of the main characteristics of the architecture is that its
working point can be changed at run-time from the host application code. These points belong to the
so-called solution space of the architecture, which can be represented as a family of curves in a 2D plot
(execution time vs. energy consumption for each hardware redundancy level).

Figure 12 represents all the possible combinations in number of accelerators and their
configuration, which are the parameters that need to be changed to move the working point of the
architecture, for the image filtering and encryption accelerators in the HiReCookie node. From these
results, it is clear that the image filters show a memory-bounded execution profile, saturating the
available bandwidth in the dedicated data bus to almost full occupancy (99.3% of the theoretical
maximum). Furthermore, this confirms that, whenever a kernel enters in memory-bounded execution,
adding more accelerators to the architecture moves the working point to a worse scenario (more energy
is consumed by just having the extra accelerator loaded, but execution performance cannot be
increased), thus making working points close to that limit the optimal ones. The block cipher
accelerators, on the other hand, always show a computing-bounded execution profile, since no
saturation can be observed, and the system can move to better working points by increasing the
number of accelerators (less time, and less energy consumption). Two additional comments have to be
made regarding these results: the size of the accelerators is not the same (image filters use one slot,
whereas the block cipher uses two), and the dotted lines represent solutions that have been estimated
using models and kernel profiling using self-measurements [46] because their implementation is not
feasible (there are not enough slots to allocate that many accelerators). The estimation process uses
run-time measurements during a dummy execution of a given kernel to feed a parametric model and
then predict the evolution of the working point of the architecture.
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Figure 12. Solution space exploration in the HiReCookie node for memory-bounded (image filters, left)
and computing-bounded (block cipher) algorithms.

In certain occasions, slots are large enough to host accelerators with parallel datapaths inside, thus
increasing the amount of parallelism that can be exploited. An example of this situation can be seen in
Figure 13, where the same block cipher algorithm has been implemented on the KC705 development
board, but using up to six accelerators with one or two internal AES cores operating in CTR mode.
In this case, estimations have also been used to predict the maximum achievable performance for
this particular setup, rendering a saturation limit of 99.99% in terms of memory bandwidth or bus
utilization. Notice that in this case one ARTICo3 accelerator with two cores inside shows almost the
same performance and less energy consumption than two ARTICo3 accelerators with only one core
inside, mainly because it saves up the energy spent by the local memory banks and the associated
control logic.

Figure 12. Solution space exploration in the HiReCookie node for memory-bounded (image filters,
left) and computing-bounded (block cipher, right) algorithms.

On certain occasions, slots are large enough to host accelerators with parallel datapaths inside,
thus increasing the amount of parallelism that can be exploited. An example of this situation can
be seen in Figure 13, where the same block cipher algorithm has been implemented on the KC705
development board, but using up to six accelerators with one or two internal AES cores operating
in CTR mode. In this case, estimations have also been used to predict the maximum achievable
performance for this particular setup, rendering a saturation limit of 99.99% in terms of memory
bandwidth or bus utilization. Notice that, in this case, one ARTICo3 accelerator with two cores inside
shows almost the same performance, with less energy consumption, as two ARTICo3 accelerators with
only one core inside, mainly because it saves up the energy spent by the local memory banks and the
associated control logic.
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Figure 13. Solution space exploration in the KC705 development board. A computing-bounded
algorithm (block cipher) with one or two parallel datapaths per accelerator is used.

Finally, Figure 14 shows a closeup capture of the memory-bounded configurations in each setup.
As mentioned above, execution time stalls when reaching a given number of hardware accelerators.
However, this situation is not likely to happen for computing-intensive kernels (which in turn are the
main target for ARTICo3 acceleration). This can be seen in the AES-256 CTR solution space, where the
saturation point is far from the maximum feasibility point (i.e., the maximum number of reconfigurable
slots), being all memory-bounded points just theoretical estimations obtained with the model.

Figure 13. Solution space exploration in the KC705 development board. A computing-bounded
algorithm (block cipher) with one or two parallel datapaths per accelerator is used.

Finally, Figure 14 shows a closeup capture of the memory-bounded configurations in each setup.
As mentioned above, execution time stalls when reaching a given number of hardware accelerators.
However, this situation is not likely to happen for computing-intensive kernels (which in turn are the
main target for ARTICo3 acceleration). This can be seen in the AES-256 CTR solution space, where the
saturation point is far from the maximum feasibility point (i.e., the maximum number of reconfigurable
slots), being all memory-bounded points just theoretical estimations obtained with the model.

Given the results presented in this section, it is possible to state that the ARTICo3 solution space
presents similar trends regardless of the implemented algorithm: almost linear scalability in the
computing-bounded region and execution bottleneck when reaching bus saturation (based on bus
data width and operating frequency alone) in the memory-bounded region. Hence, it is necessary to
analyze the overheads due to the ARTICo3 runtime to isolate the infrastructure-related contributions
from the algorithm-specific ones.



Sensors 2018, 18, 1877 22 of 30
Sensors 2018, 18, 1 22 of 30

0.32 0.34 0.36 0.38 0.4

Execution Time (ms)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
n

e
rg

y
 (

m
J
)

Median/Sobel Filter

Simplex

DMR

TMR

6.5 7 7.5

Execution Time (ms)

0

5

10

15

20

25

30

E
n

e
rg

y
 (

m
J
)

AES-256 CTR Multithread

Simplex (1 c/acc)

DMR (1 c/acc)

TMR (1 c/acc)

Simplex (2 c/acc)

DMR (2 c/acc)

TMR (2 c/acc)

3 acc

Memory-bounded execution

400 MB/s @ 100 MHz (32-bit words)

128 KiB in 0.33 ms (397.2 MB/s)

Bus occupancy: 99.3%

4 acc

Memory-bounded execution

400 MB/s @ 100 MHz (32-bit words)

2.5 MiB in 6.554 ms (399.98 MB/s)

Bus occupancy: 99.99%

13 acc 11 acc12 acc
> 4 acc

> 13 acc

Figure 14. Closeup from the solution space exploration near the bus saturation point (memory-bounded
behavior).

Given the results presented in this section, it is possible to state that the ARTICo3 solution space
presents similar trends regardless of the implemented algorithm: almost linear scalability in the
computing-bounded region and execution bottleneck when reaching bus saturation (based on bus
data width and operating frequency alone) in the memory-bounded region. Hence, it is necessary
to analyze the overheads due to the ARTICo3 runtime in order to isolate the infrastructure-related
contributions from the algorithm-specific ones.

The foremost contributor to the performance overhead in the ARTICo3 infrastructure is memory
management. The ARTICo3 runtime library provides transparent buffers between user applications
and hardware accelerators. These buffers reside in virtual memory to enable fast computation from the
software point of view, but they need a shadow counterpart in DMA-allocated (i.e., physical) memory.
Whenever a transaction is performed, data must be copied between original and shadow buffers.
In addition, setting up the DMA engine to perform a transaction between external and accelerator
memories introduces a fixed overhead that does not depend on the number of data to be transferred.
This means that, for the same workload to be processed, having more hardware accelerators leads to a
better utilization of the DMA engine.

Mean values of memory management overheads for both write and read operations have been
measured in a one-accelerator scenario and can be seen in Table 5. Notice that, in a worst-case scenario

Figure 14. Closeup from the solution space exploration near the bus saturation point (memory-bounded
behavior).

The foremost contributor to the performance overhead in the ARTICo3 infrastructure is memory
management. The ARTICo3 runtime library provides transparent buffers between user applications
and hardware accelerators. These buffers reside in virtual memory to enable fast computation from the
software point of view, but they need a shadow counterpart in DMA-allocated (i.e., physical) memory.
Whenever a transaction is performed, data must be copied between original and shadow buffers.
In addition, setting up the DMA engine to perform a transaction between external and accelerator
memories introduces a fixed overhead that does not depend on the number of data to be transferred.
This means that, for the same workload to be processed, having more hardware accelerators leads to a
better utilization of the DMA engine.

Mean values of memory management overheads for both write and read operations have been
measured in a one-accelerator scenario and can be seen in Table 5. Notice that, in a worst-case scenario
where the maximum amount of data needs to be transferred, the obtained overhead is less than six
clock cycles per 32-bit word (assuming a clock frequency of 100 MHz in the FPGA).

Table 5. Memory management overheads.

Operation memcpy Time (ns/B) DMA Time (ns/B) Total Overhead (ns/B)

Write 8.85 5.43 14.28
Read 7.57 5.98 13.55
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Once the infrastructure-related performance overheads have been characterized, it is possible
to also analyze application-specific performance metrics. Table 6 presents a quantitative comparison
between a standalone implementation of an AES-256 CTR accelerator with ideal DMA transfers (no idle
times) and three different ARTICo3 configurations processing the same workload. It is possible to see
that, in a one-accelerator scenario, the ARTICo3-based solution presents an overhead of 36% over the
standalone implementation. However, this performance overhead contrasts with the productivity gain
during the design stages (as stated in Section 3.2, development time to build the full reconfigurable
system using the automated toolchain went down from a week to a few hours), and it disappears
(reaching a gain of up to 33% with four accelerators) due to performance scalability when using the
ARTICo3 runtime library to adapt the level of parallelism. While it is true that a custom-made system
could also use up to four accelerators in parallel, it would require efficient DPR and DMA-enhanced
parallel execution management (already available and transparent to the user in ARTICo3) to avoid
resource underutilization.

Table 6. Performance evaluation for AES-256 CTR: custom design (theoretical bound) vs. ARTICo3

(evaluation based on processing 512 KiB @ 100 MHz).

Implementation Processing (ms) Data Transfer (ms) Total Time (ms) Overhead

Monolithic + Ideal DMA 33.75 2.62 36.37 –
ARTICo3 (1 Accelerator) 33.75 15.73 49.48 +36%
ARTICo3 (2 Accelerators) 16.88 15.73 32.6 −10%
ARTICo3 (4 Accelerators) 8.44 15.73 24.17 −33%

Hence, abstracting the analysis from the algorithms, it can be seen that ARTICo3 introduces
only a small performance overhead for heavily computing-bounded kernels, where DMA transfers
are almost negligible when compared with the accelerator processing time. Taking the standalone
one-accelerator setup as the reference baseline, it is clear that scalable ARTICo3-based computing can
improve performance significantly, while at the same time increasing energy efficiency and offering
optional fault tolerance.

4.2. Energy-Efficient Edge Computing Scenario

For this scenario, a matrix multiplication example has been selected to illustrate the benefits of
using ARTICo3 as a platform for edge computing in CPSs, since matrix multiplication is a recurrent
operation that appears in a wide variety of algorithms used in that context (e.g., neural inference for
embedded machine learning in smart sensors).

The reference application multiplies two 512 × 512 32-bit floating point matrices using a
hierarchical block-based approach, offloading the computation to one or more ARTICo3 accelerators
(each accelerator can in turn multiply two 64 × 64 32-bit floating point matrices), and compares the
obtained results against a software-based implementation of the naive matrix multiplication algorithm
running in one of the ARM Cortex-A9 available in the Processing System of the Zynq device.

The custom Zynq board has support for measuring power consumption using an external
ADC connected to two power rails: Zynq core supply and external RAM supply, and hence,
the results presented in this section have been measured using the infrastructure available in the
board. Table 7 shows the performance metrics (self-measured using the embedded PMCs) when
executing the application scenario in software and in ARTICo3, changing the number of accelerators
used for processing. Even if the time spent reconfiguring the FPGA to load the accelerators is taken into
account, the hardware-based implementations are always better than the software-based counterpart.
Figure 15, on the other hand, shows the power consumption traces during application execution,
also when using software- and hardware-based processing with a variable number of ARTICo3

accelerators. For the hardware solutions, the measured profile has an initial stage where the FPGA is
fully reconfigured to load the bitstream with the static part (i.e., full reconfiguration), a second stage
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where DPR is used to load as many accelerators as required (i.e., partial reconfiguration, where only
the slots are reconfigured), and a third one in which the matrix multiplication is done using ARTICo3.
Again, note that, even if reconfiguration times are taken into account, the hardware-based solution is
still better than the software-based one.

Table 7. Matrix multiplication: performance metrics.

Implementation Accelerators Reconfiguration Time (ms) Processing Time (s) Speedup

Software - - 11.51 1

ARTICo3

1 59.61 1.76 6.54
2 74.47 1.12 9.74
3 106.72 0.97 11.88
4 142.21 0.89 13.05
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Due to the large difference in elapsed times between hardware and software, it is hard to
appreciate the reconfiguration stages in detail. Notice that this is the desired scenario, with negligible
reconfiguration times when compared with processing times. Nevertheless, Figure 16 shows a close
up of both reconfiguration processes, where it is possible to see not only the time spent in these
processes but also the energy consumed. Since reconfiguration is performed using the PCAP (Processor
Configuration Access Port) available in Zynq devices, which is a DMA-powered reconfiguration engine,
loading large bitstreams is less time consuming than loading smaller, partial bitstreams into the FPGA
(one reconfiguration command and its associated DMA transaction are issued per partial bitstream).
This can be seen in the scenario where four accelerators are loaded (bottom right), spending also more
energy during the process than the energy spent during full FPGA reconfiguration.

Figure 15. Power consumption profile in the Zynq-based board. Measured power rails are FPGA core
and external RAM memory.

Due to the large difference in elapsed times between hardware and software, it is hard to
appreciate the reconfiguration stages in detail. Notice that this is the desired scenario, with negligible
reconfiguration times when compared with processing times. Nevertheless, Figure 16 shows a
close up of both reconfiguration processes, where it is possible to see not only the time spent
in these processes but also the energy consumed. Since reconfiguration is performed using the
PCAP (Processor Configuration Access Port) available in Zynq devices, which is a DMA-powered
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reconfiguration engine, loading large bitstreams is less time consuming than loading smaller,
partial bitstreams into the FPGA (one reconfiguration command and its associated DMA transaction
are issued per partial bitstream). This can be seen in the scenario where four accelerators are loaded
(bottom right), spending also more energy during the process than the energy spent during full
FPGA reconfiguration.
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when changing the number of accelerators.

However, having higher power consumption values is not bad per se, since it can then lead to faster
processing times and, therefore, less energy consumption during the hardware-based processing stages
(provided that the algorithm or application is highly intensive in terms of computing requirements).
This scenario can be seen in Figure 17, where the energy spent by the example application is measured
in four different scenarios (only software, and ARTICo3 with 1, 2 or 4 accelerators). Notice that
the measured values for hardware-based computing also include the energy spent during full and
partial reconfiguration, proving that sometimes it is beneficial to use more accelerators than originally
intended, provided that the working point has been set close to the computing-bounded region of the
solution space. Under these circumstances, it is possible to achieve a reduction of 9.5 times in terms of
energy, achieving also a speed up of 13.05 times in terms of execution performance.

Figure 16. Energy consumption in the Zynq-based board during reconfiguration (either full or partial)
when changing the number of accelerators.

However, having higher power consumption values is not bad per se, since it can then lead to faster
processing times and, therefore, less energy consumption during the hardware-based processing stages
(provided that the algorithm or application is highly intensive in terms of computing requirements).
This scenario can be seen in Figure 17, where the energy spent by the example application is measured
in four different scenarios (only software, and ARTICo3 with one, two or four accelerators). Notice
that the measured values for hardware-based computing also include the energy spent during full and
partial reconfiguration, proving that sometimes it is beneficial to use more accelerators than originally
intended, provided that the working point has been set close to the computing-bounded region of the
solution space. Under these circumstances, it is possible to achieve a reduction of 9.5 times in terms of
energy, achieving also a speed up of 13.05 times in terms of execution performance.
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5. Conclusions and Future Work

In this paper, a framework to develop high-performance embedded systems for edge computing in
CPSs has been presented. The proposed approach provides a hardware-based processing architecture
called ARTICo3 and the required tools, at both design and run time, to ease the development of user
defined applications. This is achieved by hiding from the end user low-level technology dependencies
(and limitations) such as hardware design and DPR (usually considered out of reach for many system
developers), making FPGAs more accessible to the general public.

The architecture provides support for establishing tradeoffs between computing performance,
energy consumption and fault tolerance at run time, enabling designers to dynamically explore the
solution space for any given application. This analysis of all possible working points (even those
corresponding to configurations that are not feasible) is possible thanks to self-awareness techniques
(via embedded monitors and estimation models), as it has been demonstrated through experimental
results.

Moreover, the benefits of using the framework to generate edge computing systems have
been evaluated using a computational-intensive algorithm as the reference application scenario,
rendering significantly better results in terms of both computing performance and energy consumption
when compared with equivalent software-based platforms (13x more computing performance,
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5. Conclusions and Future Work

In this paper, a framework to develop high-performance embedded systems for edge computing in
CPSs has been presented. The proposed approach provides a hardware-based processing architecture
called ARTICo3 and the required tools, at both design and run time, to ease the development of user
defined applications. This is achieved by hiding from the end user low-level technology dependencies
(and limitations) such as hardware design and DPR (usually considered out of reach for many system
developers), making FPGAs more accessible to the general public.

The architecture provides support for establishing tradeoffs between computing performance,
energy consumption and fault tolerance at run time, enabling designers to dynamically explore
the solution space for any given application. This analysis of all possible working points (even
those corresponding to configurations that are not feasible) is possible thanks to self-awareness
techniques (via embedded monitors and estimation models), as it has been demonstrated through
experimental results.

Moreover, the benefits of using the framework to generate edge computing systems have
been evaluated using a computational-intensive algorithm as the reference application scenario,
rendering significantly better results in terms of both computing performance and energy consumption
when compared with equivalent software-based platforms (13× more computing performance,
9.5× less energy consumption). These are key aspects when moving computation close to where
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information is generated and, thus, ARTICo3 appears as a solid and feasible alternative to mainstream
high-performance embedded computing platforms for data-parallel algorithm acceleration.

The use of Linux has enabled a proof-of-concept implementation and validation, mainly due to
simplicity in the integration process. Nevertheless, the excessive and non-uniform overhead generated
by the OS itself affects basic features of the framework such as solution space exploration. In this
regard, the use of a Real-Time Operating System (RTOS) is envisioned as a future line of work, since it
will remove the unpredictable behavior and will ensure determinism during run time.

Processing performance, energy consumption, and fault tolerance are key aspects in CPS end
devices, and experimental results show that ARTICo3-based Edge Computing can be very suitable
for them. Extending this idea by using small-sized ARTICo3-based computing clusters to not only
perform Edge but also Energy-Aware and Fault-Tolerant Fog Computing is also envisioned as another
future line of work. This approach is expected to significantly increase the set of applications that can
benefit from the ARTICo3 framework, while still keeping processing close to data sources.
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