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ABSTRACT

Tox21 and ToxCast are high-throughput in vitro screening programs coordinated by the U.S. National Toxicology Program
and the U.S. Environmental Protection Agency, respectively, with the goal of forecasting biological effects in vivo based on
bioactivity profiling. The present study investigated whether mechanistic insights in the biological targets of food-relevant
chemicals can be obtained from ToxCast results when the chemicals are grouped according to structural similarity. Starting
from the 556 direct additives that have been identified in the ToxCast database by Karmaus et al. [Karmaus, A. L., Trautman,
T. D., Krishan, M., Filer, D. L., and Fix, L. A. (2017). Curation of food-relevant chemicals in ToxCast. Food Chem. Toxicol. 103,
174–182.], the results showed that, despite the limited number of assays in which the chemical groups have been tested,
sufficient results are available within so-called “DNA binding” and “nuclear receptor” target families to profile the biological
activities of the defined chemical groups for these targets. The most obvious activity identified was the estrogen receptor-
mediated actions of the chemical group containing parabens and structurally related gallates, as well the chemical group
containing genistein and daidzein (the latter 2 being particularly active toward estrogen receptor b as a potential health
benefit). These group effects, as well as the biological activities of other chemical groups, were evaluated in a series of case
studies. Overall, the results of the present study suggest that high-throughput screening data could add to the evidence
considered for regulatory risk assessment of food chemicals and to the evaluation of desirable effects of nutrients and
phytonutrients. The data will be particularly useful for providing mechanistic information and to fill data gaps with read-
across.
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Automatic high-throughput screening (HTS) of chemicals across
a wide range of biological targets is an emerging practice in many
chemical sectors. High-throughput screening plays a crucial role
in the prioritization of chemicals based on toxicological mode of
action as well as finding lead actives based on intended biological
activity (Brunner et al., 2019; Hartman et al., 2018; Mayr and
Fuerst, 2008; Olker et al., 2019). Within next-generation (non-ani-
mal) risk assessment strategies, HTS will be one of the key tech-
nologies to characterize the ability of chemicals to perturb
biological pathways associated with an adverse outcome path-
way (Villeneuve et al., 2019). Much effort has been devoted to the
application of HTS to various sectors and regulatory environ-
ments and strategies to achieve a broader acceptance of HTS and
computational approaches in regulatory decision making have
recently been laid out by Thomas et al. (2019). However, little has
been done to relate these approaches to the assessment of foods
and food ingredients, which are often assumed to be harmless,
although a variety of toxicological or beneficial biological effects
can be elicited. The aim of the present study was to explore the
potential of ToxCast HTS data to be integrated into regulatory
safety assessment of food chemicals.

The Tox21 and ToxCast programs are high-throughput
in vitro screening programs coordinated by the U.S. National
Toxicology Program and the U.S. Environmental Protection
Agency, respectively, with the goal to forecast biological effects
in vivo, especially toxicity, based on bioactivity profiling
(Kavlock et al., 2012). Tox21/ToxCast results (together referred to
as ToxCast in this work) have been evaluated by several groups
in various publications using clustering algorithms and self-
organizing maps (Karmaus et al., 2016; Kleinstreuer et al., 2014),
hierarchical clustering techniques (Sipes et al., 2013), or through
links with chemical fingerprinting (Richard et al., 2016). Specific
to food-relevant chemicals, Karmaus et al. (2016, 2017) identified
and evaluated the activity patterns of 1211 food-use compounds
within ToxCast, comprising 556 direct food additives, 371 food
contact substances, and 543 pesticides.

A challenge with applying such nondirected, quantitative
approaches on food-relevant chemicals is that an observed
uneven coverage of chemical-endpoint combinations within this
class of compounds leads to a significant bias in the results
(ie, chemicals perceived to have a high biological activity are in
reality those that have a broader test coverage). A second chal-
lenge of hierarchical clustering and self-organizing heatmaps is
that they do not provide any direct mechanistic insights in the bi-
ological targets of a chemical relative to an adverse outcome
pathway. The acquisition of such qualitative mechanistic
insights is just as crucial to the consideration of ToxCast data in
risk assessments of food chemicals and can be an important re-
source to evaluate nutrients and phytonutrients and their corre-
sponding desirable effects.

The present study investigated whether insights in the biolog-
ical targets of food-relevant chemicals can be obtained from the
results of the ToxCast assays when the chemicals are grouped
according to structural similarity (eg, homologous series), explor-
ing those targets that are induced by multiple chemicals in the
group. The current study focused only on the 556 direct food
additives that have been identified by Karmaus et al. (2017)
(chemicals that are, eg, added to foods to preserve, color and sta-
bilize food as well as flavorings), and not on the 371 food contact
substances and 543 pesticides that were identified by Karmaus
et al. (2017). Both food contact substances and pesticides may
lead to indirect exposures via food ingredients, but these com-
pounds are not intended to be added to foods. The 556 direct food
additives were supplemented with 7 chemicals from the original

noncurated list of food-use chemicals published by Karmaus et al.
(2016) to also include natural food constituents (safrole, querce-
tin, resveratrol, genistein, daidzein, and coumarin) as well as hep-
tylparaben, a nonapproved food contact material that is
structurally related to the approved methyl and ethyl parabens
(EFSA, 2004), to give 563 reference compounds. The compounds
within the dataset are clustered based on their chemical struc-
tural characteristics (eg, alcohol, aldehydes and carboxylic acids,
and ketones) as well as their functional uses in food (eg, flavoring
agents, nutrients, additives, and regulatory restricted). Whereas
the clustering into structurally similar chemicals was used to ex-
plore the relationship between chemical homology and biological
activity, the clustering into functional use categories related bio-
logical activities to current food uses. A method was set up that
allows to scroll through the activities of the groups of structurally
related chemicals toward different targets. Relevant biological
targets of a chemical group are considered those toward which a
high percentage of chemicals within a group are active. Overall,
the results of the present study offer insights into the possible in-
tegration of HTS data in the safety and risk assessments of food
chemical.

MATERIALS AND METHODS

Grouping of Chemicals
Grouping of the chemicals according to functional use classes.
Chemical names and CAS numbers were obtained from the ap-
pendices of Karmaus et al. (2016, 2017). To obtain a link between
the 563 selected direct food additives and their use in foods, par-
ticularly within the EU, the compounds were subdivided into
different use categories. To this end, the CAS numbers were first
matched with the European Union list of flavorings (Annex I of
Regulation 1334/2008) using the R script provided https://git.
wur.nl/Punt001/ilsi_toxcast.git (last accessed January 30, 2020).
There were 449 compounds that matched and were categorized
as EU flavorings. The majority of the remaining 114 compounds
were manually categorized into “novel foods,” “nutrients,”
“polyphenols,” “E-numbers” (subdivided into “sweeteners,”
“antioxidants,” “preservatives,” “colors,” and “remaining E-
numbers”), and flavoring oils (which were merged with the EU
flavorings use class), based on an online search using particu-
larly the EU food additives database (EU) (DG SANTE, 2011),
EFSA’s OpenFoodTox database (Dorne et al., 2017; EFSA, 2017),
and PubMed. The final 17 compounds that could not be linked
to any known food use in the EU were categorized as “other.”

Grouping of the chemicals according to chemical structure. From the
list of 563 compounds, 552 were found to correspond to discrete
chemical entities with defined molecular structure. The simpli-
fied molecular-input line-entry specification (SMILES) strings of
these compounds were extracted from the ToxCast Data
Spreadsheets (U.S. EPA, 2018a). The remaining 11 entities corre-
spond to mixtures (eg, peppermint oil, clover leaf oil, and poly-
sorbate 80) and were either grouped together as structurally
undefined or, in case of the flavoring oils, were assigned to the
chemical group of the major constituent of oil. To this end,
cornmint oil and peppermint oil are grouped in the same chem-
ical group as menthol, whereas clove leaf oil is grouped with eu-
genol, anise oil with anethole, nutmeg oil with alpha-pinene,
petitgrain oil with limonene, and cananga oil with beta-
caryophyllene (Han et al., 2017; Jelen, 2012). Using ChemoTyper
software (Molecular Networks, Erlangen, Germany) and the
SMILES strings of the chemicals, the compounds were classified
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through application of chemical knowledge, focusing on shared
structural features and, where applicable, with their known phys-
iological roles (Mellor et al., 2019; Yang et al., 2015). During the
course of this undertaking, a three-tier system of grouping was
adopted, in which larger primary clusters (eg, alcohols) were fur-
ther subdivided as appropriate into secondary (eg, alcohol and al-
kyl) and tertiary (eg, alcohol, alkyl, primary, and straight chain)
groups. The final groupings can be found in Supplementary
Information 1, along with additional information on the log P,
log D, and the Henry’s law constants of the chemical (estimated
with ACD/Labs software). In addition, an estimate of the mean
similarity of the chemicals within each group was made using
the ChemmineR (Cao et al., 2008) and fmcsR (Wang et al., 2013)
packages in R, to calculate the maximum common substructures
between the chemicals within a group and the Tanimoto coeffi-
cients based on these maximum common substructures. The av-
erage of the calculated Tanimoto coefficients (excluding the
Tanimoto coefficient of the chemicals with themselves) is taken
as marker for group similarity. The R codes for these calculations
have been made available at https://git.wur.nl/Punt001/ilsi_tox
cast.git (last accessed January 30, 2020).

The grouping according to the functional use classes (the
Grouping of the Chemicals According to Functional Use Classes
section) and the chemical groups were combined in a so-called
circle pack plot using the igraph and ggraph libraries in R
(Csardi and Nepusz, 2006; Pedersen, 2017). The R code for the
circle pack graphic of the chemical groups has been made avail-
able at https://git.wur.nl/Punt001/ilsi_toxcast.git (last accessed
January 30, 2020).

ToxCast Data
The ToxCast activity data of the chemicals were derived from
the data spreadsheet “ac50_Matrix_180918.csv” (U.S. EPA, 2018a)
containing results from 1410 different assays. These crude
ToxCast data for the 563 individual chemicals provided several
positive hit-calls, ie, assays for which the concentration produc-
ing 50% of maximum activity (AC50), with a value < 1 000 000
(the value used to indicate negative results), could be derived.
Starting from this dataset, all assays were excluded that did not
directly relate to a specific biological activity. These included all
assays for which the “assay_function_type” was “background
control,” the “assay_design_type” was either “background
reporter” or “viability reporter,” the “intended_target_family”
was “background measurement,” and the
“biological_process_target” was “cell death,” “cell proliferation,”
or “cytotoxicity.” These results are already taken into account
during data analysis steps, eg, through the production of Z-
scores, and do not represent a specific activity of toxicological
interest. In addition, only assays relevant to humans were
extracted by setting “species” to “human.” The remaining assay
endpoints were annotated according to the targets (eg, ESR1
and ESR2, being the estrogen receptor (ER) alpha and beta, re-
spectively), target family (eg, nuclear assays, DNA binding, or
cytokines), and target subfamily (eg, nuclear assays-steroidal,
nuclear assays-nonsteroidal, nuclear assays-orphan) parame-
ters as provided in the “Assay_Summary_180918.csv” file (U.S.
EPA, 2018a). By filtering out the assays that did not relate to a
specific biological activity, 559 of the 1410 ToxCast assays were
excluded, leaving 851 assays in the dataset.

Z-scores are utilized within the ToxCast dataset to filter out
the AC50 results that were potentially affected by nonspecific
effects such as cytotoxicity. Z-scores represent the number of
standard deviations (on a standardized scale) that separate the po-
tency for the specified assay from the median potency of a range

of cytotoxicity assays (Houck et al., 2017; Judson et al., 2015). Assay
results with a large Z-score are more likely to reflect a target spe-
cific effect that is not caused by cell stress or cytotoxicity-related
processes (Kleinstreuer et al., 2014). For the present study, the
available Z-scores from the “zscore_Matrix_180918.csv” (U.S. EPA,
2018a) file were used. These Z-scores were derived for chemicals
with 2 or more positive responses in cytotoxicity assays. AC50
results with Z-scores < 3 were removed from the dataset as
potential activity data that were affected by nonspecific effects
like cytotoxicity (Judson et al., 2015). For 261 compounds out of the
563 food-relevant chemicals, this filtering based on Z-score< 3
resulted in a more than 75% reduction in positive hit-calls. For ex-
ample, retinol expressed activity in 101 out of the 851 evaluated
ToxCast assays, but 84 (83%) of these assay results had Z-score-
s< 3. The mean AC50 for retinol in the 84 assays with Z-scores< 3
was 576 41mM, whereas the mean AC50 was 6.56 4.3mM for the
17 assays with Z-score> 3. A similar result can be seen for querce-
tin that was active in 91 assays of which 84 assay results had
Z-scores< 3. The mean AC50 value in the assays with Z-scores< 3
was 316 33mM, whereas this was 2.86 2.0mM for the assays that
had Z-scores> 3. These results suggest that the specificity
increases after filtering for Z-scores. On average, for all chemicals,
the mean AC50 values were 10-fold lower for the results with
Z-scores> 3 compared with the result with Z-scores< 3.

Warning signs (“flags”) are used in ToxCast data files to pro-
vide an indication of any unwanted influence of the method of
data collection or automatic data processing on the obtained
AC50 values. Possible flags include (1) “only highest concentra-
tion above baseline, active,” (2) “only one concentration above
baseline, active,” (3) “multiple points above baseline, inactive,”
(4) “noisy data,” (5) “borderline active,” (6) “borderline inactive,”
(7) “gain AC50< lowest concentration & loss AC50<mean con-
centration,” (8) “hit-call potentially confounded by overfitting,”
and (9) “biochemical assay with < 50% efficacy.” Flagged results
were not filtered out from the ToxCast dataset in the present
study but were considered in the different case studies to inter-
pret the relevance of certain assays. The available flags were de-
rived from the “AllResults_flags_180918.csv” file (U.S. EPA,
2018a). For more information please, see the U.S. EPA documen-
tation on the data analysis steps (U.S. EPA, 2018b).

In Supplementary Information 2, the background informa-
tion on the different ToxCast assays is provided, including, per
assay, the number of food-relevant chemicals that were tested,
the fraction of the tested food-relevant chemicals that tested
positive (AC50 value < 1,000,000), and the fraction of the tested
food-relevant chemicals that contained flags (specified for each
of the different flags). In addition, the targets, target families,
and target subfamilies to which the assays belong are provided
in Supplementary Information 2.

Defining the Biological Activities of the Chemical Groups Toward
Different ToxCast Targets
Within the Assay_Summary_180918.csv file, the intended bio-
logical target of each assay is defined under
“technological_target_official_symbol.” For each of the tertiary
chemical groups as identified with ChemoTyper (see section
Grouping of Chemicals and Table 1 of the Results section), the
biological activities toward the different biological targets were
defined by calculating the percentage of chemicals (per tertiary
chemical group) that were active in that assay of that target. To
this end, the number of chemicals per tertiary chemical group
that were tested in the assays of a specific target and the num-
ber of chemicals for which AC50 values (ie, the chemical tested
positively) were defined, based on which the percentage activity
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could be calculated. For this evaluation, only those assays in
which at least 3 chemicals of a group had been tested were con-
sidered. As a result, all chemical groups with < 3 chemicals
were removed for further analysis. For larger groups, this means
that only chemical group-assay endpoint combinations with an
n> 3 were included in the dataset.

For the different target families within ToxCast (eg, DNA
binding and nuclear receptor targets) and the target subfamilies
of the nuclear receptor target family (being steroidal, nonsteroi-
dal, and orphan), the percent activities of each tertiary chemical
grouping per individual biological target were plotted as a heat-
map using the ggplot package in R. In addition, the percentage

of positive hits per target (sub)family was calculated and plotted
along with the circle pack of the chemical groups. The R codes
for the calculation of the biological activities per chemical group
and the resulting heatmaps, and circle pack have been made
available through https://git.wur.nl/Punt001/ilsi_toxcast.git (last
accessed January 30, 2020). In addition, the R workflow has been
made available as a web application using R Shiny (Rstudio,
https://cran.r-project.org/web/packages/shiny/index.html, last
accessed January 30, 2020). This web application is available
through https://ilsi.eu/exploitation-of-toxcast-data-on-food-
chemicals-for-safety-risk-assessment/ (last accessed January
30, 2020).

Table 1. Defined Chemical Groups

Primary Groupsa Secondary Groupsa Tertiary Groupsa (Including the Mean Tanimoto Coefficient)b

Alcohol Alkenyl; Alkyl;
Hydroxybenzene;
Phenylalkanol

1. Alkenyl, primary (0.44); 2. Alkenyl, secondary (0.42); 3. Alkenyl, tertiary (0.7); 4.
Alkyl, diol (0.42); 5. Alkyl, primary, branched chain (0.58); 6. Alkyl, primary, straight
chain (0.63); 7. Alkyl, secondary, cyclic (0.68); 8. Sugar alcohol (0.59); 9. Alkoxy phenol
ether, substituted (0.57); 10. Hydroxy benzyl ketones (0.71); 11. Phenol, aliphatic
substituted (0.67); 12. Phenolic aldehydes (0.73); 13. Salicyclic acid and derivatives
(0.68); 14. Phenalkyl/alkenyl (0.60)

Aldehyde Alkenyl; Alkyl; Aromatic 15. Alkenyl, acyclic (0.51); 16. Alkyl, branched chain (0.50); 17. Alkyl, straight chain (0.76);
18. Benzaldehyde derivatives (0.64); 19. Phenylalkenyl (0.67); 20. Phenylalkyl (0.66)

Carboxylic acid Alkenyl; Alkyl; Amino acids
and derivatives; Aryl;
Hydroxy acid; Keto acid;
Polycarboxylic acid

21. Alkenyl, branched chain (0.48); 22. Alkenyl, straight chain (0.37); 23. Alkyl,
branched chain (0.72); 24. Alkyl, straight chain (0.59); 25. Amino acids and deriva-
tives (0.26); 26. Benzoic acid (0.90); 27. Phenylaliphatic carboxylic acid (0.41); 28.
Lactic acids; 29. Keto acid (0.53); 30. Polycarboxylic acid, aliphatic (0.52)

Dyes Azo; Triarylmethane 31. Azo (0.38); 32. Triarylmethane (0.76)
Ester Aliphatic alcohol diester/

triester; Alkenyl alcohol;
Alkyl alcohol; Aromatic acid
ester; Aromatic alcohol;
Lactone

33. Aliphatic alcohol diester/triester (0.37); 34. (3Z)-Hex-3-en-1-yl alcohol; 35. Allyl al-
cohol; 36. Citronellol; 37. Geraniol; 38. Linalool; 39. Branched-chain alcohol, ali-
phatic (0.54); 40. Branched-chain alcohol, aryl (0.69); 41. Butanol (0.51); 42. Ethanol,
aliphatic (0.58); 43. Ethanol, aryl (0.55); 44. Hexanol (0.76); 45. Isobutanol (0.79); 46.
Methanol, aliphatic (0.43); 47. Methanol, aryl (0.79); 48. Pentanol (0.79); 49.
Propanol (0.67); 50. Straight chain (7þ) alcohol, aliphatic (0.80); 51. Straight chain
(7þ) alcohol, aryl (0.80); 52. 2-Aminobenzoate (0.62); 53. Benzoate (0.69); 54.
Cinnamate (0.57); 55. Paraben-gallate (0.72); 56. Phenylacetate (0.73); 57. Salicylate
(0.67); 58. 3-Phenylpropen-2-enyl alcohol (0.76); 59. Anisyl (0.90); 60. Benzyl alco-
hol, aliphatic (0.85); 61. Benzyl alcohol, aryl (0.83); 62. Phenylethyl alcohol, ali-
phatic (0.77); 63. Phenylethyl alcohol, aryl (0.77); 64. Ascorbic acid and derivatives
(0.41); 65. Lactone, five membered (0.66); 66. Lactone, six membered (0.64)

Ether Alkenyl; Alkyl; Aromatic 67. Alkenyl, acyclic (0.59); 68. Alkyl, cyclic (0.39); 69. Aryl methoxy (0.67); 70. Aryl
methoxy, aliphatic substituted(0.65)

Heterocycles and
polycycles

Hydrocarbon polycycles;
Nitrogen heterocycles;
Oxygen heterocycles; Sulfur-
nitrogen heterocycles

71. Bicycloheptanes and derivatives (0.67); 72. Biphenyl derivatives (0.90); 73.
Naphthalene derivatives (0.50); 74. Pyrazine derivatives (0.57); 75. Pyridine deriva-
tives (0.48); 76. Quinoline derivatives (0.56); 77. Benzodiazole (0.48); 78. Furan
derivatives (0.49); 79. Pyranone (0.45); 80. Thiazole and thiazoline (0.28)

Hydrocarbon Terpene 81. Terpene (0.57)
Inorganic Inorganic 82. Inorganic (0.08)
Ketone Alkenyl; Alkyl; Aryl; Jasmone

derivatives
83. Alkenyl, acyclic (0.55); 84. Cyclohexenyl (0.58); 85. Ionone/irone (0.62); 86. Alkyl,

acyclic (0.61); 87. Alkyl, cyclic (0.61); 88. Benzyl (0.71); 89. Jasmone derivatives (0.42)
Metallic salts (organic) Metallic salts (organic) 90. Metallic salts (organic) (0.21)
Organosulfur Alkyl thioether; Disulfide; Thiol 91. Aliphatic thioether (0.44); 92. Disulfide (0.37); 93. Thiol (0.33)
Structure undefined Structure undefined 94. Structure undefined (NA)
Sugars and derivatives Sugars and derivatives 95. Sugars and derivatives (0.49)
Terpene and terpenoid

derivatives
Carvone derivatives; Citronellol

derivatives; Farnesene deriv-
atives; Geraniol derivatives;
Linalool derivatives; Retinol
derivatives

96. Carvone derivatives (0.67); 97. Citronellol derivatives (0.70); 98. Farnesene deriva-
tives (0.62); 99. Geraniol derivatives (0.75); 100. Linalool derivatives (0.75); 101.
Retinol derivatives (0.69)

Vitamins and
derivatives

Vitamins and derivatives 102. Vitamins and derivatives (0.25)

aOnly those chemicals chemical groups that contain at least 3 chemicals are displayed. The full list of chemicals and their grouping is provided in Supplementary

Information 1.
bMean Tanimoto coefficient, calculated based on the Maximum Common Substructures of the chemicals within a group (see Materials and Methods).
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RESULTS
Grouping of the ToxCast Chemicals Based on Functional
Use and Chemical Structure

The 563 food-relevant chemicals were clustered according to
their chemical structure as well as their functional use classes.
The obtained groups are displayed in Figure 1 as a so-called cir-
cle pack, which displays the hierarchical architecture of the de-
fined functional and chemical groups. Note that a given
chemical group may be split across more than 1 functional
group and vice versa. The first layer within Figure 1 displays the
functional use classes of which the largest group consists of
food flavorings (obtained after matching the CAS numbers with
the EU food flavorings regulation). A total of 455 chemicals fell
into the flavoring’s category. Other relevant functional use clas-
ses included the group of European E-numbers (43 chemicals,
food additives that perform a certain technological function in
food, subdivided into sweeteners, antioxidants, preservatives,
colors, and remaining E-numbers), nutrients (31 chemicals), and
regulatory restricted chemicals (19 chemicals). Chemicals that
fell into multiple categories are counted multiple times, once
for each category. For example, ascorbic acid is included as both
an E-number (as a preservative) and nutrient (being also a

vitamin). Chemicals for which no clear food use could be de-
fined are grouped as “Other.”

The clusters that were obtained based on the chemical struc-
ture are shown alongside the functional use classes in Figure 1.
The legend provides information on the primary chemical clus-
ters to which the chemical groups belong. Details on how the
large primary clusters (eg, alcohols) are further subdivided as
appropriate into secondary (eg, alcohol and alkyl) and tertiary
(eg, alcohol, alkyl, primary, and straight chain) groups can be
found in Table 1. Chemicals that fell into multiple chemical
groups are counted multiple times, once for each group. For ex-
ample, ascorbic acid falls into the “Ester, Lactone, Ascorbic acid
and derivatives” group as well as the “Vitamins and derivatives”
chemical group. Overall, 102 tertiary groups were defined for
which the biological activity was explored. These tertiary
groups consist of at least 3 closely related chemicals, with the
largest chemical group consisting of 17 (group 12, phenolic alde-
hydes) chemicals. The majority of the defined chemical groups
has a mean Tanimoto coefficient that is higher than 0.6. Some
of the chemical groups are more structurally diverse and are
atypical of the wider set, holding as they do compounds which
exhibit unique characteristics. For example, the “amino acids
and derivatives” grouping consists of a series of complex, often
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Figure 1. Circle pack plot of the defined functional groups and chemical groups. The larger a circle, the more chemicals fall into the group and closely related chemicals

are packed more closely together. Tertiary groups (closest related chemicals) are labeled. The legend provides information on the primary chemical groups to which

they belong. Details about the composition of the groups can be found in Table 1.
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natural products, whereas “metallic salts organic” is founded
solely upon the possession of an inorganic counter ion. Azo
dyes furthermore represent a collection of compounds which
may exhibit variation in wider structure despite unification by a
distinctive functional group.

Global Evaluation of the Biological Activity of the
Tertiary Homologous Chemical Groups

ToxCast Biological Activities Plotted as a Heatmap
Figure 2 displays different heatmaps demonstrating the activity
of the 102 defined tertiary structural groupings toward different
biological targets of the different target families and Figure 3 of
the “DNA binding” and “nuclear receptor target families” in de-
tail. White spots in the heatmaps represent chemical group-
biological target combinations for which insufficient data are
available (n< 3 in all assays that cover that biological target).
Gray means that all the chemicals within the group were inac-
tive in the assays for that target, whereas the colors ranging
from orange to red represent an increasing percentage of chem-
icals within the chemical group that responded in the assays of
that target.

It is clear from the number of white areas in the heatmaps of
Figure 2 that there are significant data gaps in ToxCast for the
food-relevant chemicals, indicating that the ToxCast dataset is
not yet comprehensive for some of these types of food

chemicals. Therefore, it is important to note that a lack of ob-

served activity in the summarized findings should not be con-

strued as indicative of inactive food-relevant chemicals, but

that this is often the consequence of insufficient data. This ob-

servation may not be unique to food-relevant chemicals; other

test substances within the wider ToxCast dataset beyond the

scope of this inquiry may be as yet insufficiently tested for any

broad conclusions to be made regarding their biological activi-

ties. Among the different target families, most of the food-

relevant chemicals were tested in assays that are linked to the

“DNA binding” and “nuclear receptor” target families (ie, most

gray/color). The food-relevant chemicals have also been tested

in assays that are linked to “cell cycle,” “growth factor,”

“hydrolase,” and “steroidal hormone.” However, these latter tar-

get families consist of only 1–3 targets each (few y-axis tick

marks), whereas the “DNA binding” and “nuclear receptor” tar-

get families consist of 36 and 40 targets, respectively. Further

evaluations therefore focus on the activities within these latter

2 target families.
The activities within the “DNA binding” and “nuclear

receptor” target families are further highlighted in Figure 3, in
which the “nuclear receptor” target family is also subdivided
into its 3 distinctive subfamilies (“steroidal,” “nonsteroidal,”
and “orphan”). Figure 3 reveals that most tertiary chemical
groups are not active toward most of biological targets (ie, 0% of

Figure 2. Heatmaps showing coverage of biological activity for the 102 tertiary chemical groups within the different ToxCast target families. The targets are displayed

on the y-axes with ticks, 1 per target. The gradient corresponds to an increasing percentage of chemicals within the chemical group that was active in the different

assays of that target. White spots mean that < 3 chemicals were tested in all assays of that target. Gray spots mean that none of the chemicals in the chemical group

was active in the assays of that target.
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the chemicals in the tertiary group showed activity in the
assays of the target) within the “DNA binding” and “nuclear
receptor” target families. One notable exception is chemical
group 55 (containing parabens and gallates) that stands out in
Figure 3 for its high activity toward ESR1jESR2 (corresponding to
ERa and ERb), ESR1 (ERa), and ESR2 (ERb). Other relevant chemi-
cal groups in Figure 3 are group 93 (containing thiols), which
has a relatively high group activity at a variety of DNA binding
targets, group 79 (containing genistein and daidzein), which has
a high activity toward ESR1, ESR/ESR2, and ESR2, and group 101
(retinoids), which has a relatively high group activity toward
RXRA, RAXRB, NR1I2, and NRF2.

Within the “DNA binding” and “nuclear receptor” target fam-
ilies, there are a few targets for which almost all the chemical
groups appear to be active. Examples are the NFE2L2, RXRA,
RXRB, NR1I2, and ESR1 targets (horizontal orange stripes in
Figure 3). Particularly, the frequent responses toward NFE2L2,
RXRA, RXRB, and NR1I2 are likely because these are relatively
general endpoints that are involved in increasing metabolic ca-
pacity or oxidative stress response (Louisse et al., 2018; Mazaira
et al., 2019). However, to some extent, this frequent activity also
appears to be due to a proportionately high number of chemi-
cals that are active in certain individual assays that fall under
these targets (Ryan, 2017). For example, among the different
assays that measure effects on ESR1, 10% of the food-relevant
chemicals were active in the ATG_ERE_CIS_up assay and 7% in
the TOX21_ERa_LUC_BG1_Agonist assay, whereas only 0.4%–3%
of the chemicals were active in other assays that measure ESR1
(see Supplementary Information 2), suggesting that the high
positive rate in some assays might be an artifact. In addition,

12% of the food-relevant chemicals were active in the
ATG_NRF2_ARE_CIS_up assay (NFE2L2 target), 25% in the
ATG_PXRE_CIS_up assay (NR1I2 target),
TOX21_RXR_BLA_Agonist_ratio assay (RXRA target), and 7% in
the ATG_RXRb_TRANS_up (RXRB target), with much lower rates
in other assays for these targets. This suggests that care should
be taken in the interpretation of the ToxCast results when activ-
ity toward a biological target is due to activity in one of these
specific assays that generate a high number of positive results.
Supplementary Information 2 provides a list of the ToxCast
assays, the percentage of the food-relevant chemicals that were
active in each assay, and the percentage of the results that con-
tained flags. Based on these data, the specificity of the different
assays can be assessed, which is highly relevant for the inter-
pretation of the test results for the individual chemical groups.

Biological Activities of the Chemical Groups in the Context of Their
Functional Uses
Figure 4 combines the ToxCast activity data with the circle pack
of Figure 1, providing an indication of the biological activities of
the groups of food-relevant chemicals in the context of their
functional uses. To this end, for each chemical group, the per-
cent activities in the assays that belong to a specific target fam-
ily were calculated. For example, the distinct activities of group
55 (parabens-gallates), group 79 (containing genistein and daid-
zein), group 101 (retinoids), and group 93 (thiols) as were ob-
served in Figure 3, result in an overall high activity of these
groups in the “steroidal nuclear receptor” (groups 55 and 79),
“nonsteroidal” (group 101), and “DNA binding” target (sub)fami-
lies (group 93) in Figure 4. Figure 4 also reveals that many

Figure 3. Heatmaps of the biological activity of the 102 tertiary chemical groups within “DNA binding” and “nuclear receptor” target families. Each target (displayed on

the y-axes with labels) is covered by 1–11 assays. The gradient corresponds to an increasing percentage of chemicals within the chemical group that showed activity in

the different assays of that target. White spots mean that < 3 chemicals were tested in all assays of that target. Gray spots mean that none of the chemicals in the

chemical group was active in the assays of that target. The results for all target families can be interactively viewed through www.https://ilsi.eu/exploitation-of-tox

cast-data-on-food-chemicals-for-safety-risk-assessment/ (last accessed January 30, 2020).
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chemical groups are slightly active within the steroidal and
nonsteroidal nuclear receptor target families. These activities
generally relate to activities in the assays with a disproportion-
ately high number of positive hits and/or assays that capture
general response mechanism to chemical exposure, as dis-
cussed above.

Some of the tertiary structural groups in Figure 4 consist of
chemicals that fall into different functional use classes. In those
cases, the activity that is displayed in Figure 4 corresponds to
percent activity of the chemicals that fall into the same use
class and not the activity of the whole group. For example,
Figure 4 reveals that the group of parabens (group 55) contains

both restricted compounds and compounds that are used as
antioxidants and preservatives. Particularly, the restricted para-
bens and parabens used as preservative appear to have activity
in the steroidal nuclear receptor target family of assays. In com-
parison, group 79 consists of polyphenols (genistein, daidzein,
and quercetin) and of different flavorings (eg, coumarin).
Figure 4 reveals that the high steroidal nuclear receptor activity
of group 79 comes only from the polyphenols of group 79 and
not from the flavorings.

The results from the heat map (Figure 3) and circle pack
(Figure 4) reveal that some of the key biological targets of the
food-relevant chemicals can be defined by focusing on ToxCast

Figure 4. Biological activity of the tertiary chemical groups within the “nuclear receptor” (A–C) and “DNA binding” (D) target families. For each tertiary chemical group,

the percent of chemicals that were active in the assays for different target families were calculated and displayed in the colors indicated. The results for all target fami-

lies can be interactively viewed through www.https://ilsi.eu/exploitation-of-toxcast-data-on-food-chemicals-for-safety-risk-assessment/ (last accessed January 30,

2020).
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activities of predefined homologous chemical groups. The circle
pack plot (Figure 4) provides insight into the overall biological
activities of the tertiary chemical groups within the “DNA bind-
ing” and “(steroidal, nonsteroidal, and orphan) nuclear receptor”
target (sub)families and places the results in the context of the
functional uses. The heatmap of Figure 3 provides insights into
the specific targets within these target (sub)families that are af-
fected. Based on these results, several case studies were defined
to explore how the ToxCast data can be used in food safety risk
evaluations and for the evaluation of desirable effects of
nutrients and phytonutrients. The case studies are used to
check whether the mechanistic information that is obtained
from ToxCast matches with what is expected from the chemical
group. To this purpose, case studies were selected around
chemical groups that express a high biological activity toward a
specific target (parabens), chemicals that are restricted for food
use due to a specific activity (some parabens and genotoxic and
carcinogenic compounds like estragole, methyleugenol, and
safrole), and chemical groups are related to specific health ben-
efits (eg, flavonoids and fatty acid). For the selected case studies,
sufficient literature data are available on the mechanisms of ac-
tion of the compounds. The comparison of the observed tar-
get(s) with expected target(s) is considered a crucial step to find
potential caveats in the HTS data that need to be considered for
future use of the data on chemicals for which little animal ex-
perimental or in vitro reference data are available.

Case Study on Regulatory Restricted Chemicals
The group of regulatory restricted chemicals provides an inter-
esting group of food-relevant chemicals for the evaluation of
ToxCast activities. Several compounds that are restricted for
food use in regulations can be found within the ToxCast dataset
of food-relevant compounds. Most of these compounds have an
E-number (EU codes for substances that are permitted as food
additive) yet have been discontinued for food use in the EU. The
exact reasons for the discontinuation are not always clear but
do not necessarily relate to the demonstrable toxicity of the
chemical. For example, ethoxyquin (E324) was suspended from
its authorization as a feed additive in EU (2017) because of a lack
of data on some aspects of its safety, but it is currently being re-
evaluated by EFSA again for this use (EFSA, 2019). However, for 2
chemical groups within the regulatory restricted group, demon-
strable toxicological findings have played an important role in
their restriction for food use. These are group 55 (containing
parabens and gallates, which have estrogenic activities) and
groups 70 and 77 (containing estragole, methyleugenol, and saf-
role, which are genotoxic and carcinogenic) (Phillips et al., 1984).
It is of interest to observe whether for these groups a perturba-
tion of the underlying biological target responsible for the
restrictions can be detected with the goal of determining the po-
tential contribution of ToxCast data in such evaluations of food
safety risk.

Restricted and nonrestricted parabens and gallates. The ToxCast
evaluation of the biological activities of structural groups
detected a relative high activity of the paraben-gallate (group
55) toward ERa and ERb activation (ESR1, ESR2, and ESR1jESR2 in
Figure 3). This structural group consists of the approved E-num-
bers methylparaben (preservative), dodecyl gallate, octyl gallate,
and propyl gallate (used as antioxidants); 2 parabens that are
not used in foods within the EU; butyl- and heptyl-paraben; and
the restricted propylparaben (EFSA, 2004). Figure 4 reveals that
the biological activity within the paraben-gallate mainly comes
from the restricted and nonrestricted parabens (preservatives)

rather than the gallates that are used as antioxidants.
Particularly, the percentage of positive assays toward the steroi-
dal nuclear receptors (Figure 4A) was higher for parabens than
gallates. Positives were largely for estrogenic assays. The differ-
ences within the group of parabens-gallates are also reflected in
the relative estrogenic potencies of these 2 groups; the mean
AC50 of the positive ERa assay results for the restricted/nonap-
proved parabens (with Z-scores> 3) is 10.9 6 4.7 mM for propyl-
paraben, 5.2 6 1.4 mM for butylparaben, and 3.7 6 0.6 for
heptylparaben, whereas the nonrestricted methylparaben has a
lower potency with a mean AC50 of 53 6 18 mM. Dodecyl and
propyl gallate were not active in the ER receptor assays in the fi-
nal dataset, and octyl gallate is active in only 1 out of the 8 ER
receptor assays. It should, however, be noted that many of the
positive ER hit-calls of the gallates appeared to have been fil-
tered out as a result of their low Z-scores. This suggests a poten-
tial influence of, eg, cytotoxicity, on the ER results of the
different gallates.

Altogether, the results obtained for group 55 reveal an inter-
esting potency difference between the parabens and gallates
within this group. These results provide relevant information
that can be considered within the regulatory risk assessments
of these compounds, particularly to perform a read-across. The
estrogenic hazard potential of the parabens has long been in-
cluded in their risk assessment (EFSA, 2004; EMA, 2015; SCCS,
2013). In case of gallates, the potential these compounds to in-
terfere with the human ER in vitro has recently be mentioned by
EFSA in re-evaluations of dodecyl, octyl, and propyl gallate but
has not been included in their final risk evaluation as confirma-
tory in vivo data are lacking (EFSA, 2014, 2015a,b). Based on the
results of the present study, the association between gallates
and the ER was considered low, but follow-up in vitro studies
may be needed to better understand the origin of the low Z-
scores for the gallates in the ER-related assays that had to be
dismissed on the basis of these low Z-scores.

Regulatory restricted genotoxic carcinogens. Evaluation of the
ToxCast activities of chemical groups 70 and 77 that contain the
known genotoxic and carcinogenic compounds estragole (group
70), methyleugenol (group 70), and safrole (group 77) (SCF,
2001a,b) shows that the hazard of these type of compounds can-
not be adequately identified in ToxCast. In Figure 4, groups 70
and 77 can be found to have a slight activity within the nonste-
roidal nuclear receptor target family. However, based on
Figure 4, it can be concluded that this activity relates to activa-
tion of RXRB and NR1I2 (also called PXR), targets that induce xe-
nobiotic metabolism enzyme synthesis and for which many
noncarcinogenic chemical groups are active. Hence, this slight
activity toward RXRB and NR1I2 is not considered diagnostic for
the genotoxic hazard of these compounds nor for any other po-
tential specific mechanisms of actions. Given the genotoxic
mechanisms of estragole, methyleugenol, and safrole, activity
in assays that include p53 tumor suppressor gene activity might
be expected (Paini et al., 2011). Such activity forms part of the
“DNA binding” target family. However, no such activity was
found, nor was there any other indication of genotoxicity for
these chemicals within the ToxCast dataset.

Because estragole, methyleugenol, and safrole require bioac-
tivation for their genotoxic and carcinogenic effects (Punt et al.,
2007), this lack of detectable activity could be due to the lack of
metabolic capacity within the ToxCast assays (DeGroot et al.,
2018). Moreover, genotoxicity can be difficult to detect without
very tight concentration spacing, as the high-throughput assays
often quantify the upregulation of DNA-repair pathways (Iyer
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et al., 2019). Although these assays quantify the cellular mecha-
nisms evolved to fix low-level DNA damage, when the damage-
levels are great, cells instead die without attempting repair,
resulting in false-negative tests. Therefore, it is also possible that
the lack of detectable genotoxic activity could be due to the large
concentration spacing used for ToxCast testing and the subse-
quent misclassification of genotoxicity as cytotoxicity. Taken to-
gether, these findings suggest that currently genotoxicants and/
or carcinogens cannot always be adequately detected within the
ToxCast activity data, which is supported by other literature find-
ings (Becker et al., 2017).

Use of ToxCast Data in Assessment of Beneficial Effects
The flavonoids, genistein, daidzein, and quercetin; as well as
unsaturated fatty acids like linolenic, linoleic, and oleic acid; are
all examples of compounds with health beneficial effects that
can be found within the set of food-relevant chemicals used in
the present study. For these substances, the relationship be-
tween beneficial and adverse biological effects is of particular
interest. Therefore, the ToxCast data from these 2 substance-
groups were examined to characterize the biological targets of
each group of health beneficial chemicals and evaluate how the
ToxCast information might be used to inform a risk-benefit as-
sessment of the compounds.

Flavonoids. Flavonoids have been extensively studied for their
biological effects against cancer, cardiovascular diseases, obe-
sity and diabetes, as well as neurodegenerative disorders
(Williamson et al., 2018). Within the set of food-relevant chemi-
cals of the present study, 3 flavonoids are included: quercetin
and the isoflavones daidzein and genistein. All are part of the
“heterocycles and polycycles-oxygen heterocycles-pyranone”
chemical group (group 79). Other chemicals that are part of this
group are maltol, 2-ethyl-3-hydroxy-4-pyrone, maltol isobuty-
rate, coumarin, and 6-methyl coumarin. The molecular targets
that have been suggested to play a predominant role in the
health beneficial effects of flavonoids are displayed in Table 2.

In contrast to what was expected, no activity of group 79 was
found for most of the targets described in Table 2, except for ac-
tivity in ER-related assays and NRF2. Similarly, when examining
the data for each individual flavonoid in the group it is clear
that this group is made up of diverse substances; each has rela-
tively few identifiable activities with little overlap with those of
other members of the structural group.

Interestingly, the apparent biological activities of flavonoids
are significantly affected by the filtering out of results with Z-
scores < 3. Without this filtering, quercetin, genistein, and

daidzein are active in 19.4%, 31.3%, and 23.6% of the assays, re-
spectively, that are part of the target (sub)families of Figure 2,
whereas they are active in only 1%, 11%, and 10% of these
assays after filtering. Judson et al. (2016) also identified querce-
tin as a highly active chemical within ToxCast, with low specif-
icity (low Z-scores). Many of the effects of the chemicals in
group 79 are thus filtered out as being nonspecific. Though
results with a Z-score < 3 may reflect an indirect influence of
cytotoxicity or other nonspecific mechanisms of action, the low
Z-scores may also point to a nonspecific interference with the
assays. For example, flavonoids are capable of stabilization of
luciferase, frequently used in reporter gene assays (Prinsloo
et al., 2017). The high number of assay results with low Z-scores
indicates that challenges exist in using HTS to explore the bio-
logical activities of certain compound such as flavonoids.

Although the ToxCast activities of flavonoids seem uncertain
due to possible nonspecific effects, group 79 does show a distinct
activity within the “nuclear receptor-steroidal” target (sub)family
toward the ERa and ERb. This result is predominantly due to ac-
tivity of the isoflavones genistein and daidzein (see Figure 4). The
interaction of genistein and daidzein with the ER receptor has
been linked to both beneficial health effects (eg, lowering meno-
pausal symptoms, lowering cancer risks and risk for cardiovascu-
lar diseases) and adverse effects (endocrine disruption, increased
hormone cancer risk) (Rietjens et al., 2017). A key hypothesis be-
hind the benefits and risks of isoflavonoids is the differences be-
tween the activation of ERa and ERb. ERa activation enhances cell
proliferation, whereas ERb counteracts the ERa-mediated stimu-
lation of cell proliferation (Rietjens et al., 2017). Though many es-
trogenic compounds within ToxCast interact with both ERa and
ERb (including the parabens as described above), the AC50 values
for genistein and daidzein were 20- and 11-fold lower for ERb

compared with ERa (based on the OT_ER_ERaERa_0480/1440 and
OT_ER_ERbERb_0480/1440 assays), respectively, suggesting a pre-
dominantly ERb-mediated effect at low concentrations (this is
not the case for the parabens which have comparable AC50 val-
ues toward ERa and ERb, eg). This selective ER modulation sug-
gests that the risk-benefit profile of genistein and daidzein is
probably dose dependent but must be extrapolated to in vivo
dose-response or potency information to identify whether the ef-
fective concentrations in vitro are capable of being attained in vivo.
For genistein, this has, eg, been done by Boonpawa et al. (2017),
revealing that both Asian dietary intake levels and the use of
genistein-containing supplements are sufficient for ERb activa-
tion, but not for ERa modulation. Thus, the in vitro potency infor-
mation over a range of ToxCast targets can be used to prioritize

Table 2. Expected Important Biological Targets of Different Flavonoids and the Percentage Active in the Chemical Group Containing Flavonoids
(Group 79) Toward These Targets

Biological Targeta ToxCast Targets (% Active in Group 79) Function ToxCast Target Family ToxCast Target Subfamily

NRF2 NFE2L2 (15) Antioxidant DNA binding Basic leucine zipper
NF-jb NFKB1 (0) Free-radical scavenging DNA binding NF-kappa B
VEGF KDR (0), FLT1 (0), FLT4 (0) Regulation of vascular cell

development
Kinase Receptor tyrosine kinase

PPAR PPARA (0), PPARD (0), PPARG (0),
PPARAjPPARDjPPARG (0),
PPARGjSRC (0)

Lipid metabolism and glucose
homeostasis

Nuclear receptor Nonsteroidal

VCAM-1 VCMA1 (0) Vascular cell adhesion Cell adhesion molecules Immunoglobulin CAM
ER ESR1 (14), ESR2 (29), ESR1jESR2 (40) Estrogen-dependent prolifera-

tion and differentiation
Nuclear receptor Steroidal

aBeekmann et al. (2012), Williamson et al. (2018), and Rietjens et al. (2017).
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measurement and evaluation of in vivo biological effects within
the context of risk-benefit assessments.

Fatty acids. Fatty acids, particularly unsaturated fatty acids, play
a key role in reducing cardiovascular risks and anti-
inflammatory effects (Williams, 2000). The set of food-relevant
chemicals of the present study contains a series of both unsatu-
rated (group 22) and saturated (group 24) fatty acids. Group 22
consists of 2-butenoic-, sorbic-, 10-undecenoic-, oleic-, linole-
nic-, and linoleic-acid. Group 24 consists of acetic acid, buta-
noic-, pentanoic-, hexanoic-, heptanoic-, octanoic-, decanoic-,
dodecanoic-, tetradecanoic-, hexadecanoic (palmitic)-, and octa-
decanoic (stearic)-acid.

An important mode of action of fatty acids is the regulation
of lipid metabolism (Varga et al., 2011). For example, Popeijus
et al. (2014) have shown that fatty acid chain length and satura-
tion influence PPARa transcriptional activation and repression
in HepG2 cells, and specifically the saturated fatty acids pal-
mitic acid (C16:0) and stearic acid (C18:0) both repress PPARa ac-
tivation, whereas their unsaturated metabolites palmitoleic
acid (C16:1(n-7)) and oleic acid (C18:1(n-9)) activate PPAR tran-
scription. Other potentially relevant targets of fatty acids within
lipid homeostasis are SREBPs, LXR, and HNF4 (Müller and
Kersten, 2003). Table 3 provides an overview of the ToxCast ac-
tivity of the chemical groups containing fatty acids toward
these different targets.

The ToxCast activity of both groups 22 and 24 toward the
expected targets of Table 3 appears to be very limited. For exam-
ple, within group 22, only 10-undecenoic acid is active in 2
PPARa-related assays, and within group, 24 the PPARa activity
mainly comes from decanoic acid. The low responses seem to be

partly due to the filtering based on Z-scores < 3. Without filtering,
all the long chain fatty acids of the unsaturated fatty acid group
(oleic acid, 10-undecenoic acid, linoleic acid, and linolenic acid)
are active in the ATG_PPARa_TRANS_up assay, which is in line
with what is expected (Popeijus et al., 2014). This raises questions
as to whether AC50s with low Z-scores should indeed be consid-
ered to be the result of nonspecific activities and as to what
causes these low Z-scores. The low observed biological activity of
the saturated fatty acids group toward PPARa (either up- or
down-regulation) was not affected by the Z-score filtering.

The activity toward the other potential molecular targets of
saturated and unsaturated fatty acids is also limited but does not
seem to be caused by the filtering based on Z-scores. In the case
of SREBPs, the limited activity might be the result of the fact that
unsaturated fatty acids are downregulators (Hannah et al., 2001),
whereas ToxCast only contains the ATG_SREBP_CIS_up assay.
The LXR receptor, which is involved in the regulation of choles-
terol and fatty acid homeostasis, was not active as a ToxCast as-
say target for groups 22 and 25, which may be a reflection of it
being responsive to HNF4A intracellular cholesterol alterations
(Lund et al., 2006). Overall, the results indicate that the ToxCast
dataset is at present not yet adequate to obtain insights into the
biological activities of fatty acids or, eg, for the extrapolation of
the potential effects over different chain lengths of fatty acids.

Remaining Relevant Groups

Table 4 provides a list of remaining relevant chemical groups
that display a relatively high activity as displayed in Figures 3
and 4, but which were not assessed further as case studies. The
observed activities of these groups generally relate to endpoints

Table 3. Expected Important Biological Targets of Different Fatty Acids Within Lipid Homeostasis and the Percentage of Actives in the
Chemical Group Containing Unsaturated Fatty Acids (Groups 22) and Saturated Fatty Acids (Group 24) Toward These Targets

Biological
Targeta

ToxCast Target (% Active in Groups 22 and 24) Function ToxCast Target Family ToxCast Target
Subfamily

PPARs PPARA (11)(10), PPARD (0)(0), PPARG (8)(4),
PPARAjPPARDjPPARG (13)(5), PPARGjSRC
(13)(0)

Lipid metabolism and homeo-
stasis, glucose utilization

Nuclear receptor Nonsteroidal

SREBPs SREBF1 (0)(6) Lipid metabolism and
homeostasis

DNA binding Basic helix-loop-helix
leucine zipper

LXR NR1H2 (0)(0), NR1H3 (0)(0), NR1H2jNR1H3
(0)(0), SRCjNR1H4)(10)

Lipid metabolism and
homeostasis

Nuclear receptor Nonsteroidal

HNF4 HNF4A (0)(0) Lipid metabolism and
homeostasis

Nuclear receptor Orphan

aMüller and Kersten (2003).

Table 4. List of Chemical Groups That Displayed a Relatively High Activity in Figures 3 and 4 and the Targets That Are Affected

Chemical Group Target Family and Key Targetsa

Ester-aliphatic alcohol diester/triester (group 33, n ¼ 11 of which 1
chemical is part of the regulatory restricted group)

Nonsteroidal nuclear receptor: NR1I2 (33), PPARG (22), NR1H4 (20)

Metallic salts organic (group 90, n ¼ 7 of which 1 chemical is part of
the regulatory restricted group)

Nonsteroidal nuclear receptor: NR1I2 (36), RXRA (33), PPARG (30)

Retinol derivatives (101, n ¼ 3) Nonsteroidal nuclear receptor: NR1I2 (45), RXRA (40), RXRB (30), VDR
(25), NR1H2jNR1H3 (20)

Organosulfur. thiol (group 93, n ¼ 6) DNA binding: TCF7jTCF7L2jLEF1jTCF7L1 (60), IRF1 (40), FOSjJUN, (33),
SMAD1 (33), USF1 (33), NFKB1 (33), NFE2L2 (33), POU2F1 (33), TP53
(33), AHR (28), SREBF1 (20), HSF1 (20), XBP1ng (20)

aOnly the targets with more than 20% activity are displayed.
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such as increased metabolic capacity or oxidative stress re-
sponse. However, the targets that are affected by the thiol group
(group 93) within the “DNA binding” target family may point at
a specific activity of this chemical group that is potentially rele-
vant for the safety evaluation of this chemical group.

DISCUSSION

This investigation aimed to (1) explore how HTS can be lever-
aged to obtain chemical-specific insights into the biological tar-
gets that may be affected by different food-relevant chemicals
and (2) assess the utility of the data for the safety assessment of
food chemicals as well as the evaluation of health beneficial
effects of chemicals in a few case studies. A method was set up
to group the chemicals according to functional use and struc-
tural similarity. For each of the tertiary chemical groups of ho-
mologous chemicals, the percent of chemicals that were active
in the assays for different targets and target families were cal-
culated. The targets that were elicited, the directionality
thereof, (ie, activation vs downregulation), and the inactivity to-
ward certain targets can provide key information in characteriz-
ing biological patterns.

A general challenge in the use of HTS data in chemical safety
evaluations is the uncertainty around the individual assay
results. The diverse assay space and challenges with automatic
processing contribute to this uncertainty (Cox et al., 2014; Ryan,
2017; Watt and Judson, 2018). The approach of the present
study, in which the focus is not on the individual chemical
results but on the activity of homologs within chemical groups
may contribute to reducing the uncertainty and improving the
specificity when defining biological targets of chemicals based
on HTS data. Taking the example of genistein, this compound is
active in 114 assays within the crude ToxCast dataset, with 49%
of these results containing flags. Removing all data with Z-
scores < 3 as a cutoff value for nonspecific effects, the number
of positive hit-calls is reduced to 16, of which 30% contain flags.
Combining the results with the other flavonoids within the list
of food-relevant chemicals, including daidzein, points toward
the expected ER activation as the most predominant biological
effect. Both genistein and daidzein tested positive in 11 different
ESR1 and/or ESR2 assays with 1 flagged result for genistein.

Though these results indicate that the specificity increases
by filtering the ToxCast data for Z-scores and focusing on tar-
gets that are induced by homologous chemical groups, such fil-
tering may also result in a potential loss of information. In the
different case studies, filtering of Z-scores < 3 sometimes
appeared to eliminate valuable information. It is therefore also
important to go back to the crude data to evaluate the filtering
process prior to the use of ToxCast results for risk evaluations.

The (tertiary) chemical groups for which the ToxCast activi-
ties were assessed were obtained with ChemoTyper software
(Mellor et al., 2019; Yang et al., 2015). Other methods for chemical
grouping exist as well, including, eg, AMBIT (http://cefic-lri.org/
toolbox/ambit/, last accessed January 30, 2020), the OECD QSAR
toolbox (Dimitrov et al., 2016), and ToxMatch (https://ec.europa.
eu/jrc/en/scientific-tool/toxmatch, last accessed January 30,
2020). Key to the chemical grouping is that groups should be-
come neither too large nor too small. The highest number of
chemicals within one group that was obtained using
ChemoTyper contained 17 analogs. Most of the groups consist
of 3–5 chemicals. Sixty-six of the originally 168 defined groups
could not be used in the present study as these contained only 1
or 2 chemicals.

The fact that the number of chemicals within a group varies
may pose some bias in the evaluation of the biological activity
group targets. If 2 compounds in a group of 3 chemicals are ac-
tive toward a specific target, this corresponds to 66% activity,
whereas an activity of 2 compounds in a group of 6 would corre-
spond to 33% activity. A similar bias in the results occurs due to
the varying number of assays per target in the ToxCast dataset.
Many of the biological targets as displayed in Figure 4 are cov-
ered by only 1 or 2 assays, whereas for the ESR1 target, there are
16 assays of which 11 measure ER agonism. A high percentage
activity of a chemical group in the case of ESR1 will therefore oc-
cur only when the chemicals of that group are active across a
wide range of assays for ESR1. Even though these results indi-
cate that for larger chemical groups and for targets that are cov-
ered by multiple assays, it will be more difficult to pick up group
activities, the results are expected to become more specific. For
example, the activity of the compounds of the paraben-gallate
(group 55) and combined activity of genistein and daidzein
within the pyrole group (group 79) in multiple ESR1, ESR2, and
ESR1j2-related assays give confidence that ER activation is an
important target for these groups of chemicals. This effect of
enrichment was less apparent within fatty acid and genotoxic
carcinogen-case studies, due to the overall limited activity of
the individual chemicals in the expected assays.

Whereas the ToxCast data may add to the evidence consid-
ered in food chemical safety evaluations, the results should
serve primarily as a screening tool to set priorities for further
evaluations relative to hypothesized biological targets. In addi-
tion, some care should be taken to avoid overinterpretation of
the data. Not all available chemicals within ToxCast have been
tested in all available assays and not all toxicity endpoints are
covered by the available assays. In addition, better understand-
ing of relevance of data with low Z-scores may minimize loss of
potentially relevant information. For individual cases where
low Z-scores are found, follow-up analyses may be needed to
identify what causes these low Z-scores. These facts are critical
aspects of the dataset which we found crucial for proper data
interpretation during the present study.

A more general aspect that needs to be kept in mind is the
fact that metabolic activation of chemicals is not accounted for
in the ToxCast assays. This probably contributed to the ob-
served poor prediction of genotoxicity in the case studies.
Research that focuses on enhancing the metabolic capacity in
HTS assays is therefore important (DeGroot et al., 2018).

Finally, it should be noted that in vitro activity data do not di-
rectly reflect in vivo biological potencies (in vivo effects will, eg,
also depend on the availability of a chemical in the body).
Extrapolation of the concentration-response curves to in vivo
potency information is an important next step. There are an in-
creasing number of publications that focus on establishing such
an extrapolation (Becker et al., 2014; Boonpawa et al., 2017; Dent
et al., 2019; Fabian et al., 2019; Punt et al., 2019; Wetmore et al.,
2015). One approach is to use kinetic modeling or human bio-
monitoring data to compare the AC50 values with internal
plasma concentrations reached during daily exposures in so-
called exposure: activity ratios (EARs). EARs of different com-
pounds can subsequently be compared in a so-called “dietary
comparator ratio” approach to prioritize exposure-activity data
relative a known reference compound (Becker et al., 2014; Dent
et al., 2019).

To increase regulatory use of HTS, it will be important to
tackle the different challenges related to HTS and quantitative
in vitro to in vivo extrapolations. Recently, Thomas et al. (2019)
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published a blueprint to systematically address these key chal-
lenges, which can be expected to move the field forward.

Overall, the results of the present study suggest that HTS
data could add to the evidence considered for regulatory risk as-
sessment of food chemicals and to the evaluation of desirable
effects of nutrients and phytonutrients. The data will be partic-
ularly useful for providing mechanistic information and to fill
data gaps with read-across. Whereas the current study mainly
focused on setting up a method to find key biological targets of
chemical groups and the qualitative interpretation thereof, the
key next step for use in risk evaluations or follow-up research is
to also focus on the quantitative aspects of the results. This
includes, eg, the evaluation of the (differences in) potencies of
the chemicals toward targets of interest and placing the poten-
cies in the context of human in vivo–relevant exposure.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences
online.

DECLARATION OF CONFLICTING INTERESTS

The authors declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this
article.

FUNDING

ILSI Europe New Approaches to Chemical Risk Assessment
for Food and Food Ingredients Task Force.

ACKNOWLEDGMENTS

This work was conducted by an expert group of the
European branch of the International Life Sciences Institute
(ILSI Europe). We appreciate the contribution of Dr Agnes
Karmaus who gave us insights in the preexisting work done
on food-relevant chemicals in the ToxCast dataset. We also
appreciate the contribution of Sylvain Etter (Firmenich) and
Heinz Traussnig (Mayr-Melnhof Karton) to the discussions
on the work of the expert group. Industry members of this
task force are listed on the ILSI Europe website at www.ilsi.
eu. For further information about ILSI Europe, please email
info@ilsieurope.be or call þ 32 2771 00 14.

REFERENCES
Becker, R. A., Dreier, D. A., Manibusan, M. K., Cox, L. A., Simon, T.

W., and Bus, J. S. (2017). How well can carcinogenicity be pre-
dicted by high throughput “characteristics of carcinogens”
mechanistic data? Regul. Toxicol. Pharmacol. 90, 185–196.

Becker, R. A., Hays, S. M., Kirman, C. R., Aylward, L. L., and Wise,
K. (2014). Interpreting estrogen screening assays in the con-
text of potency and human exposure relative to natural
exposures to phytoestrogens. Birth Defects Res. Part B Dev.
Reprod. Toxicol. 101, 114–124.

Beekmann, K., Actis-Goretta, L., van Bladeren, P. J., Dionisi, F.,
Destaillats, F., and Rietjens, I. M. C. M. (2012). A state-of--
the-art overview of the effect of metabolic conjugation on
the biological activity of flavonoids. Food Funct. 3, 1008–1018.

Blackburn, K. L., Ellison, C. A., Stuard, S. B., and Wu, S. (2019).
Dosimetry considerations for in vivo and in vitro test data

and a novel surrogate iTTC approach for read-across based
on metabolites. Comput. Toxicol. 10, 145–157.

Boonpawa, R., Spenkelink, A., Punt, A., and Rietjens, I. M. C. M.
(2017). In vitro-in silico-based analysis of the
dose-dependent in vivo oestrogenicity of the soy phytoestro-
gen genistein in humans. Br. J. Pharmacol. 174, 2739–2757.

Brunner, A. M., Dingemans, M. M. L., Baken, K. A., and van Wezel,
A. P. (2019). Prioritizing anthropogenic chemicals in drinking
water and sources through combined use of mass spectrom-
etry and ToxCast toxicity data. J. Hazard. Mater. 364, 332–338.

Cao, Y., Charisi, A., Cheng, L.-C., Jiang, T., and Girke, T. (2008).
ChemmineR: A compound mining framework for R.
Bioinformatics 24, 1733–1734.

Cox, L. A. (Tony), Popken, D., Marty, M. S., Rowlands, J. C.,
Patlewicz, G., Goyak, K. O., and Becker, R. A. (2014).
Developing scientific confidence in HTS-derived prediction
models: Lessons learned from an endocrine case study.
Regul. Toxicol. Pharmacol. 69, 443–450.

Csardi, G., and Nepusz, T. (2006). The igraph software package
for complex network research. InterJ. Complex Syst. 1695, 1–9.

DeGroot, D. E., Swank, A., Thomas, R. S., Strynar, M., Lee, M.-Y.,
Carmichael, P. L., and Simmons, S. O. (2018). mRNA transfec-
tion retrofits cell-based assays with xenobiotic metabolism.
J. Pharmacol. Toxicol. Methods 92, 77–94.

Dent, M. P., Li, H., Carmichael, P. L., and Martin, F. L. (2019).
Employing dietary comparators to perform risk assessments
for anti-androgens without using animal data. Toxicol. Sci.
167, 375–384.

DG SANTE. (2011) EU Database on Food Additives. Available at:
https://webgate.ec.europa.eu/foods_system/main/?
sector¼FAD&auth¼SANCAS. Accessed January 30, 2020.

Dimitrov, S. D., Diderich, R., Sobanski, T., Pavlov, T. S., Chankov,
G. V., Chapkanov, A. S., Karakolev, Y. H., Temelkov, S. G.,
Vasilev, R. A., Gerova, K. D., et al. (2016). QSAR
Toolbox—Workflow and major functionalities. SAR QSAR
Environ. Res. 27, 203–219.

Dorne, J. L., Richardson, J., Kass, G., Georgiadis, N., Monguidi, M.,
Pasinato, L., Cappe, S., Verhagen, H., and Robinson, T. (2017).
Editorial: OpenFoodTox: EFSA’s open source toxicological
database on chemical hazards in food and feed. EFSA J. 15,
e15011.

EFSA. (2004). Opinion of the Scientific Panel on food additives,
flavourings, processing aids and materials in contact with
food (AFC) related to para hydroxybenzoates (E 214-219).
EFSA J. 2, 83.

EFSA. (2014). Scientific Opinion on the re-evaluation of propyl
gallate (E 310) as a food additive. EFSA J. 12, 46.

EFSA. (2015a). Scientific Opinion on on the re-evaluation of
dodecyl gallate (E 312) as a food additive. EFSA J. 13, 39.

EFSA. (2015b). Scientific Opinion on the re-evaluation of octyl
gallate (E 311) as a food additive. EFSA J. 13, 39.

EFSA. (2017) OpenFoodTox Database. Available at: https://www.
efsa.europa.eu/en/microstrategy/openfoodtox. Accessed
January 30, 2020.

EFSA. (2019). Scientific Panel on additives and products or sub-
stances used in animal feed. Minutes of the 106th Meeting of the
Working Group on Technological Additives. Available at: https://
www.efsa.europa.eu/sites/default/files/wgs/animal-feed/
wg-technological-additives-2018-2021.

EMA. (2015). Reflection Paper on the Use of Methyl- and Propylparaben
as Excipients in Human Medicinal Products for Oral Use. Available
at: https://www.ema.europa.eu/en/documents/scientific-
guideline/reflection-paper-use-methyl-propylparaben-exci

338 | POTENTIAL OF TOXCAST DATA

https://academic.oup.com/toxsci/article-lookup/doi/10.1093/toxsci/kfaa008#supplementary-data
http://www.ilsi.eu
http://www.ilsi.eu
https://webgate.ec.europa.eu/foods_system/main/? sector=FAD&hx0026;auth=SANCAS
https://webgate.ec.europa.eu/foods_system/main/? sector=FAD&hx0026;auth=SANCAS
https://webgate.ec.europa.eu/foods_system/main/? sector=FAD&hx0026;auth=SANCAS
https://webgate.ec.europa.eu/foods_system/main/? sector=FAD&hx0026;auth=SANCAS
https://webgate.ec.europa.eu/foods_system/main/? sector=FAD&hx0026;auth=SANCAS
https://www.efsa.europa.eu/en/microstrategy/openfoodtox
https://www.efsa.europa.eu/en/microstrategy/openfoodtox
https://www.efsa.europa.eu/sites/default/files/wgs/animal-feed/wg-technological-additives-2018-2021
https://www.efsa.europa.eu/sites/default/files/wgs/animal-feed/wg-technological-additives-2018-2021
https://www.efsa.europa.eu/sites/default/files/wgs/animal-feed/wg-technological-additives-2018-2021
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-methyl-propylparaben-excipients-human-medicinal-products-oral
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-methyl-propylparaben-excipients-human-medicinal-products-oral


pients-human-medicinal-products-oral-use_en.pdf.
Accessed January 30, 2020.

EU. (2017). Commission Implementing Regulation (EU) 2017/962
of 7 June 2017 suspending the authorisation of ethoxyquin as
a feed additive for all animal species and categories. Off. J.
Eur. Comm. L 145, 13–17.

Fabian, E., Gomes, C., Birk, B., Williford, T., Hernandez, T. R.,
Haase, C., Zbranek, R., van Ravenzwaay, B., and Landsiedel,
R. (2019). In vitro-to-in vivo extrapolation (IVIVE) by PBTK
modeling for animal-free risk assessment approaches of po-
tential endocrine-disrupting compounds. Arch. Toxicol. 93,
401–416.

Han, X., Beaumont, C., and Stevens, N. (2017). Chemical compo-
sition analysis and in vitro biological activities of ten essen-
tial oils in human skin cells. Biochim. Open 5, 1–7.

Hannah, V. C., Ou, J., Luong, A., Goldstein, J. L., and Brown, M. S.
(2001). Unsaturated fatty acids down-regulate SREBP iso-
forms 1a and 1c by two mechanisms in HEK-293 cells. J. Biol.
Chem. 276, 4365–4372.

Hartman, J. K., Beames, T., Parks, B., Doheny, D., Song, G.,
Efremenko, A., Yoon, M., Foley, B., Deisenroth, C., McMullen,
P. D., et al. (2018). An in vitro approach for prioritization and
evaluation of chemical effects on glucocorticoid receptor me-
diated adipogenesis. Toxicol. Appl. Pharmacol. 355, 112–126.

Houck, K. A., Judson, R. S., Knudsen, T. B., Martin, M. T., Richard,
A. M., Crofton, K. M., Simeonov, A., Paules, R. S., Bucher, J. R.,
and Thomas, R. S. (2017). Comment on “On the utility of
ToxCastTM and ToxPi as methods for identifying new obeso-
gens.” Environ. Health Perspect. 7425, A8–A11.

Iyer, S., Pham, N., Marty, M., Sandy, M., Solomon, G., and Zeise, L.
(2019). An integrated approach using publicly available
resources for identifying and characterizing chemicals of po-
tential toxicity concern: Proof-of-concept with chemicals
that affect cancer pathways. Toxicol. Sci. 169, 14–24.

Jelen, H. (2012). Food Flavors: Chemical, Sensory and Technological
Properties. CRC Press/Taylor & Francis, Boca Raton, FL.

Judson, R., Houck, K., Martin, M., Richard, A. M., Knudsen, T. B.,
Shah, I., Little, S., Wambaugh, J., Setzer, R. W., Kothiya, P.,
et al. (2016). Analysis of the effects of cell stress and cytotox-
icity on in vitro assay activity across a diverse chemical and
assay space. Toxicol. Sci. 153, 409–409.

Judson, R. S., Magpantay, F. M., Chickarmane, V., Haskell, C.,
Tania, N., Taylor, J., Xia, M., Huang, R., Rotroff, D. M., Filer, D.
L., et al. (2015). Integrated model of chemical perturbations of
a biological pathway using 18 in vitro high-throughput
screening assays for the estrogen receptor. Toxicol. Sci. 148,
137–154.

Karmaus, A. L., Filer, D. L., Martin, M. T., and Houck, K. A. (2016).
Evaluation of food-relevant chemicals in the ToxCast
high-throughput screening program. Food Chem. Toxicol. 92,
188–196.

Karmaus, A. L., Trautman, T. D., Krishan, M., Filer, D. L., and Fix,
L. A. (2017). Curation of food-relevant chemicals in ToxCast.
Food Chem. Toxicol. 103, 174–182.

Kavlock, R., Chandler, K., Houck, K., Hunter, S., Judson, R.,
Kleinstreuer, N., Knudsen, T., Martin, M., Padilla, S., Reif, D.,
et al. (2012). Update on EPA’s ToxCast program: Providing
high throughput decision support tools for chemical risk
management. Chem. Res. Toxicol. 25, 1287–1302.

Kleinstreuer, N. C., Yang, J., Berg, E. L., Knudsen, T. B., Richard, A.
M., Martin, M. T., Reif, D. M., Judson, R. S., Polokoff, M., Dix, D.
J., et al. (2014). Phenotypic screening of the ToxCast chemical
library to classify toxic and therapeutic mechanisms. Nat.
Biotechnol. 32, 583–591.

Lizarraga, L. E., Dean, J. L., Kaiser, J. P., Wesselkamper, S. C.,
Lambert, J. C., and Zhao, Q. J. (2019). A case study on the ap-
plication of an expert-driven read-across approach in sup-
port of quantitative risk assessment of
p,p0-dichlorodiphenyldichloroethane. Regul. Toxicol.
Pharmacol. 103, 301–313.

Louisse, J., Dingemans, M. M. L., Baken, K. A., van Wezel, A. P.,
and Schriks, M. (2018). Exploration of ToxCast/Tox21 bioas-
says as candidate bioanalytical tools for measuring groups of
chemicals in water. Chemosphere 209, 373–380.

Lund, E. G., Peterson, L. B., Adams, A. D., Lam, M.-H. N., Burton, C.
A., Chin, J., Guo, Q., Huang, S., Latham, M., Lopez, J. C., et al.
(2006). Different roles of liver X receptor a and b in lipid me-
tabolism: Effects of an a-selective and a dual agonist in mice
deficient in each subtype. Biochem. Pharmacol. 71, 453–463.

Mayr, L. M., and Fuerst, P. (2008). The future of high-throughput
screening. J. Biomol. Screen. 13, 443–448.

Mazaira, G. I., Zgajnar, N. R., Lotufo, C. M., Daneri-Becerra, C.,
Sivils, J. C., Soto, O. B., Cox, M. B., and Galigniana, M. D. (2019)
Nuclear Receptors: A Historical Perspective, pp. 1–5. Humana,
New York, NY.

Mellor, C. L., Marchese Robinson, R. L., Benigni, R., Ebbrell, D.,
Enoch, S. J., Firman, J. W., Madden, J. C., Pawar, G., Yang, C.,
and Cronin, M. T. D. (2019). Molecular fingerprint-derived
similarity measures for toxicological read-across:
Recommendations for optimal use. Regul. Toxicol. Pharmacol.
101, 121–134.

Müller, M., and Kersten, S. (2003). Nutrigenomics: Goals and
strategies. Nat. Rev. Genet. 4, 315–322.

Olker, J. H., Korte, J. J., Denny, J. S., Hartig, P. C., Cardon, M. C.,
Knutsen, C. N., Kent, P. M., Christensen, J. P., Degitz, S. J., and
Hornung, M. W. (2019). Screening the ToxCast phase 1, phase
2, and e1k chemical libraries for inhibitors of iodothyronine
deiodinases. Toxicol. Sci. 168, 430–442.

Paini, A., Guignard, G., Bezencon, C., Latado, H., Schilter, B., van
Bladeren, P. J., Rietjens, I. M. C. M., and Marin-Kuan, M. (2011).
DNA damage response induced by 10-hydroxyestragole in rat
primary hepatocytes. In Generation of In Vitro Data to Model
Dose Dependent In Vivo DNA Binding of Genotoxic Carcinogens
and Its Consequences: The Case of Estragole. Available at; http://
edepot.wur.nl/200999. Accessed January 30, 2020.

Pedersen, T. L. (2017). ggraph: An Implementation of Grammar of
Graphics for Graphs and Networks. Available at: https://cran.r-
project.org/package¼ggraph. Accessed January 30, 2020.

Phillips, D. H., Reddy, M. V., and Randerath, K. (1984).
32P-post-labelling analysis of DNA adducts formed in the liv-
ers of animals treated with safrole, estragole and other
naturally-occurring alkenylbenzenes. II. Newborn male
B6C3F1 mice. Carcinogenesis 5, 1623–1628.

Popeijus, H. E., van Otterdijk, S. D., van der Krieken, S. E.,
Konings, M., Serbonij, K., Plat, J., and Mensink, R. P. (2014).
Fatty acid chain length and saturation influences PPARa

transcriptional activation and repression in HepG2 cells. Mol.
Nutr. Food Res. 58, 2342–2349.

Prinsloo, G., Papadi, G., Hiben, M. G., de Haan, L., Louisse, J.,
Beekmann, K., Vervoort, J., and Rietjens, I. M. C. M. (2017). In
vitro bioassays to evaluate beneficial and adverse health
effects of botanicals: Promises and pitfalls. Drug Discov. Today
22, 1187–1200.

Punt, A., Delatour, T., Scholz, G., Schilter, B., van Bladeren, P. J.,
and Rietjens, I. M. C. M. (2007). Tandem Mass Spectrometry
Analysis of N2-( trans-Isoestragol-3‘-yl)-2‘-deoxyguanosine
as a Strategy to Study Species Differences in Sulfotransferase

PUNT ET AL. | 339

https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-methyl-propylparaben-excipients-human-medicinal-products-oral
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-methyl-propylparaben-excipients-human-medicinal-products-oral
http://edepot.wur.nl/200999
http://edepot.wur.nl/200999
https://cran.r-project.org/package=ggraph
https://cran.r-project.org/package=ggraph
https://cran.r-project.org/package=ggraph


Conversion of the Proximate Carcinogen
1‘-Hydroxyestragole. Chem. Res. Toxicol. 20, 991–998.

Punt, A., Aartse, A., Bovee, T. F. H., Gerssen, A., van Leeuwen, S.
P. J., Hoogenboom, R. L. A. P., and Peijnenburg, A. A. C. M.
(2019). Quantitative in vitro-to-in vivo extrapolation (QIVIVE)
of estrogenic and anti-androgenic potencies of BPA and
BADGE analogues. Arch. Toxicol. 93, 1941–1953.

Richard, A. M., Judson, R. S., Houck, K. A., Grulke, C. M., Volarath,
P., Thillainadarajah, I., Yang, C., Rathman, J., Martin, M. T.,
Wambaugh, J. F., et al. (2016). ToxCast chemical landscape:
Paving the road to 21st century toxicology. Chem. Res. Toxicol.
29, 1225–1251.

Rietjens, I. M. C. M., Louisse, J., and Beekmann, K. (2017). The po-
tential health effects of dietary phytoestrogens. Br. J.
Pharmacol. 174, 1263–1280.

Ryan, N. (2017). A User’s Guide for Accessing and Interpreting
ToxCast Data. Available at: https://lri.americanchemistry.
com/Users-Guide-for-Accessing-and-Interpreting-ToxCast-
Data.pdf. Accessed January 20, 2020.

SCCS. (2013). Scientific Committee on Consumer Safety (CSSC) Opinion
on Parabens. Updated Request for a Scientific Opinion on Propyl-
and Butylparaben. Available at: https://ec.europa.eu/health/
scientific_committees/consumer_safety/docs/sccs_o_132.
pdf. Accessed September 12, 2019.

SCF. (2001a). Opinion of the Scientific Committee on Food on
Estragole (1-Allyl-4-methoxybenzene). SCF/CS/FLAV/
FLAVOUR/6 ADD2 FINAL 26 September 2001. Available at:
https://ec.europa.eu/food/sites/food/files/safety/docs/sci-
com_scf_out104_en.pdf. Accessed January 30, 2020.

SCF. (2001b). Opinion of the Scientific Committee on Food on
Methyleugenol (4-Allyl-1,2-dimethoxybenzene) (adopted on
26 September 2001). Available at: https://ec.europa.eu/food/
sites/food/files/safety/docs/sci-com_scf_out102_en.pdf.
Accessed January 30, 2020.

Sipes, N. S., Martin, M. T., Kothiya, P., Reif, D. M., Judson, R. S.,
Richard, A. M., Houck, K. A., Dix, D. J., Kavlock, R. J., and
Knudsen, T. B. (2013). Profiling 976 ToxCast chemicals across
331 enzymatic and receptor signaling assays. Chem. Res.
Toxicol. 26, 878–895.

Thomas, R. S., Bahadori, T., Buckley, T. J., Cowden, J., Deisenroth,
C., Dionisio, K. L., Frithsen, J. B., Grulke, C. M., Gwinn, M. R.,

Harrill, J. A., et al. (2019). The next generation blueprint of
computational toxicology at the U.S. Environmental
Protection Agency. Toxicol. Sci. 169, 317–332.

U.S. EPA. (2018a). ToxCast and Tox21 Summary Files. figshare.
Dataset. Available at: 10.23645/epacomptox.6062479.v2.
Accessed January 20, 2020.

U.S. EPA. (2018b). ToxCast Owner’s Manual—Guidance for Exploring Data.
Available at: https://www.epa.gov/sites/production/files/2018-04/
documents/toxcastownermanual4252018.pdf. Accessed January
20, 2020.

Varga, T., Czimmerer, Z., and Nagy, L. (2011). PPARs are a unique
set of fatty acid regulated transcription factors controlling
both lipid metabolism and inflammation. Biochim. Biophys.
Acta Mol. Basis Dis. 1812, 1007–1022.

Villeneuve, D. L., Coady, K., Escher, B. I., Mihaich, E., Murphy, C. A.,
Schlekat, T., and Garcia-Reyero, N. (2019). High-throughput
screening and environmental risk assessment: State of the sci-
ence and emerging applications. Environ. Toxicol. Chem. 38, 12–26.

Wang, Y., Backman, T. W. H., Horan, K., and Girke, T. (2013).
fmcsR: Mismatch tolerant maximum common substructure
searching in R. Bioinformatics 29, 2792–2794.

Watt, E. D., and Judson, R. S. (2018). Uncertainty quantification in
ToxCast high throughput screening. PLoS One 13, 1–23.

Wetmore, B. A., Wambaugh, J. F., Allen, B., Ferguson, S. S.,
Sochaski, M. A., Setzer, R. W., Houck, K. A., Strope, C. L.,
Cantwell, K., Judson, R. S., et al. (2015). Incorporating
high-throughput exposure predictions with
dosimetry-adjusted in vitro bioactivity to inform chemical
toxicity testing. Toxicol. Sci. 148, 121–136.

Williams, C. M. (2000). Dietary fatty acids and human health.
Ann. Zootech. 49, 165–180.

Williamson, G., Kay, C. D., and Crozier, A. (2018). The bioavail-
ability, transport, and bioactivity of dietary flavonoids: A re-
view from a historical perspective. Compr. Rev. Food Sci. Food
Saf. 17, 1054–1112.

Yang, C., Tarkhov, A., Marusczyk, J., Bienfait, B., Gasteiger, J.,
Kleinoeder, T., Magdziarz, T., Sacher, O., Schwab, C. H.,
Schwoebel, J., et al. (2015). New publicly available chemical
query language, CSRML, to support chemotype representa-
tions for application to data mining and modeling. J. Chem.
Inf. Model. 55, 510–528.

340 | POTENTIAL OF TOXCAST DATA

https://lri.americanchemistry.com/Users-Guide-for-Accessing-and-Interpreting-ToxCast-Data.pdf
https://lri.americanchemistry.com/Users-Guide-for-Accessing-and-Interpreting-ToxCast-Data.pdf
https://lri.americanchemistry.com/Users-Guide-for-Accessing-and-Interpreting-ToxCast-Data.pdf
https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_132.pdf
https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_132.pdf
https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_132.pdf
https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scf_out104_en.pdf
https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scf_out104_en.pdf
https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scf_out102_en.pdf
https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scf_out102_en.pdf
https://www.epa.gov/sites/production/files/2018-04/documents/toxcastownermanual4252018.pdf
https://www.epa.gov/sites/production/files/2018-04/documents/toxcastownermanual4252018.pdf

	kfaa008-TF1
	kfaa008-TF2
	kfaa008-TF3
	kfaa008-TF4
	kfaa008-TF5

