
ⓒ 2019 The Korean Society for Transplantation

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly 
cited.

Macrophages in xenotransplantation
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Xenotransplantation refers to organ transplantation across species. Immune rejection of xenografts is stronger and faster 

than that of allografts because of significant molecular differences between species. Recent studies have revealed the involve-

ment of macrophages in xenograft and allograft rejections. Macrophages have been shown to play a critical role in inflammation, 

coagulation, and phagocytosis in xenograft rejection. This review presents a recent understanding of the role of macrophages 

in xenograft rejection and possible strategies to control macrophage-mediated xenograft rejection.
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INTRODUCTION

Xenotransplantation is the transplantation of organs, tis-

sues, or cells across species. Pigs are considered to be 

an ideal organ source for xenotransplantation due to their 

physiological similarity to humans and the feasibility of 

pig breeding. However, immune rejection of xenografts 

is believed to be stronger and faster than that of 

allografts. This can be attributed to the significant mo-

lecular differences between species. Xenograft rejection 

can be temporally divided into four interlinked immune 

rejection types: hyperacute rejection (HAR), acute vas-

cular and cellular rejections, and chronic rejection [1]. 

HAR is mediated by human antibodies against carbohy-

drate moieties, such as galactose α1,3-galactose (α-gal) 

and N-glycolylneuraminic acid, present on the surfaces 

of pig endothelial cells [2]. Binding of pre-existing anti-

bodies to these antigens and subsequent complement ac-

tivation destroy pig endothelial cells, resulting in xeno-

graft rejection within a few minutes [3]. During the last 

two decades, outcomes of pig-to-non-human primate 

organ transplantation have been markedly improved ow-

ing to development of genetically-engineered pigs; 

transplants from such pigs help avoid HAR [4]. 

However, many aspects of immune responses to xeno-

grafts still pose a critical problem for successful 

transplantation. 

Macrophages are phagocytic innate immune cells that 

play a crucial role in host defense. Recent studies have 

revealed the involvement of macrophages in immune re-

jection of organ transplants. In animal allotransplant 

models, macrophages recognize allogeneic antigens, in-

duce immune responses, and thus contribute to graft re-

jection [5,6]. In addition, they are able to kill allogeneic 

cells by phagocytosis [7]. Clinical studies exhibit a pos-

itive correlation between macrophage infiltration and 

graft rejection [8-11]. The recently arising role of mac-

rophages in allograft rejection must be one of the inter-

esting topics in the field of transplant immunology. 

Therefore, the purpose of this paper is to review the re-

cent understanding of the role of macrophages in xeno-

graft rejection and possible strategies to control macro-

phage-mediated xenograft rejection.
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HIGHLIGHTS

∙ Damage-associated molecular pattern (DAMP) re-

lease during ischemia reperfusion injury is one of the 

main causes of activation of macrophages, which play 

a critical role in inflammation and coagulation in xeno-

graft rejection.

∙ Cross-talk between macrophages, hepatocytes, and 

vascular endothelial cells by producing immune medi-

ators, such as monocyte chemoattractant protein 1 

(MCP-1), interleukin (IL)-6, and creactive protein 

(CRP) may play a critical role in inflammatory re-

sponses and coagulation in pig-to-baboon organ 

transplantation.

∙ Early generation of MCP-1, IL-6, and CRP as well 

as DAMPs needs to be controlled to avoid inflammation 

and coagulation.

ROLE OF MACROPHAGES IN 
XENOGRAFT REJECTION

Inflammation and Coagulation

Inflammation, triggered by innate immune cells as a de-

fense mechanism against infectious agents or tissue dam-

age, is a major problem in organ transplantation. 

Damaged host cells release or secrete various dam-

age-associated molecular patterns (DAMPs) [12]. In or-

gan transplantation, DAMP release from injured tissues 

is inevitable during ischemia reperfusion injury (IRI) and 

levels of the released DAMPs increase following IRI. 

DAMPs are recognized by cellular receptors of various 

cell types including, the Toll-like receptors (TLRs) of 

macrophages, and the inflammasomes, which trigger in-

tracellular signaling that leads to inflammatory responses 

and subsequent initiation of rejection of the transplanted 

organ [5,6]. As shown in Table 1, IRI-induced release 

of various DAMPs, such as high-mobility group box 1 

(HMGB1) [13-16], nuclear DNAs or mitochondrial DNAs 

[17-19], heat shock proteins (HSPs) [20-23], and his-

tones [24], was detected in different types of solid or-

gans after transplantation.

Unlike other DAMPs, adenosine triphosphate (ATP) is 

a relatively small molecule and is recognized by specific 

cell surface receptors, such as P2X and P2Y. Binding of 

extracellular ATP to these receptors induces in-

flammatory responses of macrophages [25]. A study us-

ing a murine liver allotransplantation model has suggested 

extracellular ATP involvement in increased graft dys-

function and the involvement of the reduction of regu-

latory T cell frequency in overall graft survival [26]. 

The role of the coagulation pathway in IRI and its 

crosstalk with the inflammatory pathway have been re-

cently proposed [27]. Tissue factor (TF), which is the 

primary initiator of coagulation and is expressed on both, 

monocytes/macrophages and endothelial cells, is a central 

player in providing a bridge between these pathways 

[28]. Macrophages play a critical role in coagulation as 

well as inflammation in xenograft rejection (Fig. 1). 

During IRI, DAMPs activate monocytes/macrophages, 

which then, produce proinflammatory cytokines. In re-

sponse to DAMPs and the pro-inflammatory cytokines, 

TF is rapidly induced by these cells in the graft recipi-

ents, and becomes exposed to blood [29,30]. Cell surface 

TF can complex with factor VIIa, and thereby trigger co-

agulation by activating factor X and subsequent coagulat-

ing factors. TF can also induce protease-activated re-

ceptor-mediated signaling, which leads to the production 

of more inflammatory cytokines, upregulation of adhesion 

molecules, and suppression of thrombomodulin (Fig. 1A) 

[31]. 

One of the reasons for the stronger immune rejection 

of xenografts than that of allografts is associated with 

vascular endothelial cells. In the early phase of organ 

xenotransplantation, xenoantigen-specific innate anti-

bodies can bind to and activate the endothelial cells, 

causing the release of proinflammatory immune media-

tors, as well as the activation of the complement medi-

ated destruction of the endothelial layer. Monokines, 

such as interleukin (IL)-1β, IL-6, and tumor necrosis 

factor-α, secreted by monocytes/macrophages, can also 

activate vascular endothelial cells across pig and human 

species [32]. Activated endothelial cells release CD62, 

von Willebrand Factor, platelet factor 4, and CD40 ligand 

(Fig. 1A) in addition to proinflammatory cytokines. All 

these mediators eventually lead to the recruitment of 

more inflammatory cells and activation of coagulation 

[31]. The interplay between the inflammatory responses 
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Table 1. DAMPs identified in inflammatory diseases and upon clinical organ transplantation [39,40] 

Origin DAMP Receptor Organa)

Extracellular matrix Biglycan

Decorin

Heparan sulfate

Hyaluronan

Fibrinogen

Fibronectin 

Tenascin C

Versican

TLR2, 4, NLRP3

TLR2, 4

TLR4

TLR2, 4, NLRP3

TLR4

TLR4

TLR4

TLR2, 6, CD14

K

H, Lu

H, K

H, K, Lu

Intracellular compartment

  cytosol ATP

β-amyloid 

Cyclophilin A

F-actin

HSP

S100 proteins

Uric acid

P2X7, P2Y2

TLR2, NLRP1, 3, CD36, RAGE CD147

DNGR-1

TLR2, 4, CD91, LOX-1

TLR2, 4, RAGE

NLRP3, P2X7

H, Li

H, K, Li, Lu

  Nuclei DNA

Histones

HMGB1

HMGN1

IL-1α
IL-33

RNA 

SAP130

TLR9, AIM2

TLR2, 4

TLR2, 4, RAGE

TLR4

IL-1R

ST2

TLR3, 7, 8, RIG-I, MDA5, Mincle

H, K, Li, Lu

H, K, Li, Lu

  Mitochondria Formyl peptide

mtDNA

mtROS 

mtTFA

FPR1

TLR9

NLRP3

RAGE

H, Li, Lu

  Granule Cathelicidin

Defensins

EDN

Granulysin

P2X7, FPR2

TLR4

TLR2

TLR4

  Plasma membrane Glypicans 

Syndecans

TLR4

TLR4

  Endoplasmic reticulum Calreticulin CD91

DAMP, damage-associated molecular pattern; K, kidney; H, heart; Lu, lung; ATP, adenosine triphosphate; Li, liver; HSP, heat shock protein;

IL, interleukin; mtDNA, mitochondrial DNA; mtROS, mitochondrial reactive oxygen species; mtTFA, mitochondrial transcription factor 

A; EDN, eosinophil-derived neurotoxin.
a)Designated organs where indicated DAMPs have been identified and studied in clinical solid organ transplantation.

and the coagulation system plays a significant role in 

xenograft rejection [33-36].

Phagocytosis

The mechanism by which macrophages distinguish be-

tween self and allogeneic non-self organs, tissues, cells, 

or antigens and promote organ rejection has been re-

cently clarified [37]. Mice that lack T, B, and natural 

killer cells could distinguish allogeneic antigens from 

those of self-tissues and induce an innate response. This 

innate allo-activation is triggered by mismatch between 

donor and recipient signal regulatory protein α (SIRPα), 

which is a cell surface molecule interacting with CD47. 

Similarly, macrophages are able to recognize and destroy 

xenografts through their cell surface interactions between 

CD47 and SIRP 1α (Fig. 1B). Due to their molecular in-

compatibility, an impaired interaction between pig CD47 

and human SIRP 1α can result in the phagocytic killing 

of pig endothelial cells by human macrophages [38]. 

However, pig hematopoietic cells expressing human 
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Fig. 1. (A-C) Central role of activ-

ated macrophages in inflammation, 

coagulation, phagocytosis, and ant-

igen presentation [31]. TNF, tumor 

necros; IL, interleukin; MCP-1, mo-

nocyte chemoattractant protein 1; 

DAMP, damage-associated molecular

pattern; TLR, Toll-like receptor; TF,

tissue factor; PLT, platelet; VWF, 

von Willebrand factor; PF4, platelet 

factor 4; TM, thrombomodulin; PAR,

protease-activated receptor; ICA-

M-1, intercellular adhesion mole-

cule-1; VCAM-1, vascular cell adhe-

sion molecule-1; SIRPα, signal regul-
atory protein α.

Fig. 2. Possible cross-talk between macrophages, hepatocytes, and 

vascular endothelial cells through the production of interleukin 

(IL)-6, monocyte chemoattractant protein 1 (MCP-1), and C- 

reactive protein (CRP) in inflammatory responses and coagulation

in pig-to-baboon organ transplantation. TF, tissue factor.

CD47 could be protected from phagocytic killing by hu-

man macrophages in hematopoietic cell engraftment ex-

periments [41]. 

Chemotaxis and Acute Phase Responses

Macrophages are the major cells infiltrating into an allog-

raft during severe rejection [42]. Similarly, macrophage 

infiltration occurs just after IRI of a xenograft and per-

sists until graft rejection [43,44]. The infiltration level 

of macrophages was significantly higher in α-gal knock-

out xenogeneic islets than in allogeneic islets [45]. The 

mechanism of monocyte accumulation within a xenograft 

is thought to be associated with the production of chemo-

kines, such as monocyte chemoattractant protein 1 

(MCP-1), in the graft [35,46]. 

In pig-to-baboon heart and kidney transplantation, it 

was observed that early elevated serum levels of MCP-1, 

IL-6, and C-reactive protein (CRP), which is an acute 

phase protein synthesized by hepatocytes in response to 

proinflammatory cytokines [47], precede consumptive 

coagulopathy [35]. In addition, increased numbers of 

monocytes were associated with enhanced expression of 

TF [35]. These results, taken together with those of 

previous reports indicate that IL-6 provokes liver cells 

to produce CRP [48], which stimulates endothelial cells 

to produce MCP-1 [49], and both IL-6 [50] and CRP 

[51] promote TF expression, suggesting the occurrence 

of cross-talk between macrophages, hepatocytes, and 

vascular endothelial cells through the production of these 

mediators. MCP-1, produced by the activated vascular 

endothelial cells, recruit monocytes/macrophages, which 

are eventually activated to produce IL-6, which stim-

ulates liver cells to release CRP, which in turn activates 

vascular endothelial cells. This positive feedback loop 

may play a critical role in inflammatory responses and 

coagulation in pig-to-baboon organ transplantation (Fig. 

2). Therefore, early upregulation of CRP, IL-6, and 

MCP-1 levels needs to be suppressed to avoid in-

flammation-induced coagulopathy.
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STRATEGIES TO CONTROL 
MACROPHAGE-MEDIATED 
XENOGRAFT REJECTION

A recent study has suggested that there is increasing 

evidence for sustained inflammatory response in 

pig-to-baboon xenograft recipients, and this systemic 

inflammation is a critical hurdle for successful xeno-

transplantation [52]. Therefore, therapeutic prevention 

of inflammation is necessary to achieve successful pig or-

gan xenotransplantation. 

Anti-inflammatory Drugs

A commonly used immunosuppressive regimen in recent 

studies of pig-to-non-human primate xenotrans-

plantation includes antithymocyte globulin, cobra venom 

factor (CVF), corticosteroids, and an immunophilin in-

hibitor, such as cyclosporine A, tacrolimus, or rap-

amycin. In addition to this regimen, several other se-

lective biological drugs aimed at suppressing immune re-

sponses after xenotransplantation have been tested in 

separate studies, such as anti-CD154 monoclonal anti-

body (mAb), CTLA-4 fusion proteins, anti-CD40 mAb, 

anti-CD20 mAb, anti-CD25 mAb, anti-IL-6 receptor 

mAb, and anti-LFA1 mAb [45,53]. Among them, mAbs 

for blocking the interaction between CD40 and CD154, 

and CTLA-4 fusion protein appear to be essential for 

achieving long term xenograft survival. CD40–CD154 in-

teractions stimulate the inflammatory response. CD40 

expression is induced in activated monocytes/macro-

phages while CD154 is also expressed on monocytes/ 

macrophages during inflammation [54]. Blockade of the 

IL-6 receptor with the anti-IL-6 receptor mAb, tocili-

zumab, resulted in a reduction in the levels of CRP [36] 

and serum histones [55] upon pig-to-non-human pri-

mate xenotransplantation. 

Other inflammatory drugs were also tested. Nuclear 

factor kappa B inhibitor, parthenolide, significantly sup-

pressed histone-induced pig endothelial cell death in in 

vitro study [55]. CVF, which had been originally used 

to deplete complements causing HAR following xeno-

transplantation, was found to reverse the increased IL-6 

and MCP-1 levels in pig-to-baboon heart and artery 

patch transplantation [56]. 

Since the effective treatment of an established in-

flammatory response to DAMPs is relatively difficult, se-

lective and rapid blocking or scavenging of released 

DAMPs would be a more promising therapeutic strategy. 

Indeed, anti-histone therapy was found to prevent his-

tone-induced inflammation in xenotransplantation [55]. 

Mice treated with HMGB1 antibody were protected 

against pulmonary dysfunction and had improved lung al-

lograft outcomes [16]. Blockade of HMGB1 secretion by 

small molecule inhibitor was found to be beneficial to pre-

vent the loss of islet grafts and to reverse diabetes in 

murine syngeneic islet transplantation [57]. Administr-

ation of ATP antagonist to a recipient mouse for 2 weeks 

led to prolonged survival of the transplanted allogeneic 

heart [58].

Laboratory studies have suggested possible manipu-

lation of the inflammatory response by using a DAMP an-

tigen rather than using an antibody or antagonist. 

Ischemic preconditioning with HMGB1 protected grafts 

from IRI through TLR4 signaling in renal and hepatic al-

lotransplantation [59,60]. In addition, genetic over-

expression of HSP27 could reduce IRI-induced apoptosis 

of graft cells and delay the onset of acute rejection in 

murine heart allotransplantation [61]. 

Targeting Macrophages

Deletion or inhibition of macrophages can attenuate graft 

injury and prolong graft survival [62]. In recent animal 

and clinical studies, some macrophage subsets have been 

reported to act as regulatory cells, and the adoptive 

transfer of these macrophages significantly prolonged 

graft survival. A subset of macrophages was found to 

suppress allogeneic T cell proliferation and inhibit den-

dritic cell maturation [63,64]. Furthermore, adoptive 

transfer of these macrophages promotes graft survival 

and minimizes immunosuppression [64,65].

Although immunological memory has long been thought 

to be driven exclusively by adaptive immunity, new evi-

dence suggests that various tissue-derived factors can 

induce epigenetic changes, leading to the formation of in-

nate memory of macrophages [66]. Further under-

standing of the mechanisms of innate memory could allow 
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us to dampen the response to DAMPs induced during the 

xenograft rejection. 

CONCLUSIONS

Although T cells are major players of organ transplant 

rejection, early inflammation after transplantation is 

critical for T-cell mediated immune rejection. Thus, 

prevention of inflammation following transplantation 

might help avoid acute graft rejection. Monocytes/mac-

rophages are critical immune mediators of inflammation, 

and thus are important targets for immune modulation. 

Owing to phenotypical and functional heterogeneity of 

macrophages, the identification and/or isolation of dis-

tinct subsets of macrophages involved in graft rejection 

or tolerance is essential to develop macrophage-based 

therapeutic strategies. Compared to allotransplantation, 

xenotransplantation has some advantages, including fea-

sibility of genetic modification and preconditioning for 

transplantation. Thus, understanding precise mecha-

nisms of macrophage-mediated immune responses in or-

gan xenotransplantation will enable establishment of 

strategies to modulate macrophage function, which can 

improve the outcomes of xenotransplantation in future 

clinical practice. 
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