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A facile and efficient synthetic protocol for the synthesis of a-amino amidines has been developed using a molecular iodine-

catalyzed three-component coupling reaction of isocyanides, amines, and aldehydes. The presented strategy offers the advantages of

mild reaction conditions, low environmental impact, clean and simple methodology, high atom economy, wide substrate scope and

high yields.

Introduction

Amidines are a class of organic compounds exhibiting a variety
of biological activity that makes them potential candidates for
drug development and discovery [1-5]. Simple amidines are
generally synthesized from their corresponding nitriles either by
the Pinner reaction [6] or by the thioimidate route [7]. Recently,
much attention was given to the development of new routes for
the synthesis of substituted amidines [8-11]. Even if these
methods provide amidines in acceptable yields, they suffer from
limitations such as limited structural diversity of the final prod-
ucts. Since multicomponent reactions (MCRs) are expected to

provide a rich structural diversity, much attention was paid on

the development of multicomponent-coupling strategies for the
synthesis of amidines.

The Ugi reaction is probably one of the best multicomponent
reactions to provide huge structural diversification of the prod-
ucts [12]. Thus, several modifications of the Ugi reaction were
explored recently. As depicted in Figure 1, diamides, a-amino
amides, and a-amino amidines can be obtained depending on
the nucleophile used. However, the reaction does not lead to
acceptable product yields of products without using proper cata-

lysts except when the nucleophile is carboxylate. For instance,
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activated imine
M = H or metal ion
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Nu = R3c00® R.

diamides

-amino amides
HN‘RZ o

Nu = RNH;

RH\//N\R
-amino amidines
HN~R2 o

Figure 1: Synthesis of diamides, a-amino amides [13,14] and a-amino amidines [15-19] through Ugi and related MCRs.

among various catalysts screened, only phosphinic acid and
boric acid were found suitable for conversion of substrates into
products when water was used as a nucleophile for amide
preparations [13,14]. In the direction of amidine synthesis
using isocyanide MCRs, a few catalysts such as p-toluene-
sulfinic acid [15], metal triflates [16], bromodimethylsulfonium
bromide [17], ZnO nanoparticles [18] and BF3-OEt, [19] were
reported with varying degrees of success. All these reported
methods for the preparation of a-amino amidines have their
own limitations such as long reaction times, high catalyst
loading and use of expensive and hazardous metal catalysts.
Therefore, the development of a mild, inexpensive and
efficient catalytic protocol for the amidine synthesis is highly

needed.

Iodine is expected to act as a Lewis acid or Brensted acid in
methanol [20]. Apart from oxidation, catalytic iodine provides
mild and efficient ways for the formation of C—C and C-N
bonds [20]. As a part of our ongoing interest towards the syn-
thesis of new molecular libraries [21-24], we were interested in
developing a one-pot MCR strategy for the synthesis of
amidines.

Results and Discussion

To check the feasibility of the iodine-catalyzed amidine syn-
thesis through the modified Ugi reaction, we carried out a
model reaction of fert-butyl isocyanide (1 mmol), benzalde-
hyde (1 mmol), and aniline (2 mmol) using 5 mol % of molec-
ular iodine in methanol (Table 1). The reaction worked well at

Table 1: Synthesis of a-amino amidine 4a through a three-component coupling of benzaldehyde, aniline, and tert-butyl isocyanide.?

o H NC PP oNH Ph
)I\ . N . /{\ catalyst _N
Ph H Ph™"H solvent Ph
rt, stirring HN\%
1a 2a 3a 4a
Entry Catalyst (l2) Solvent Time (h) Yield of 4a (%)P

1 5 mol % methanol 2 90
2 2 mol % methanol 2 91
3 1 mol % methanol 2 90
4 0.5 mol % methanol 2 78
5 0.5 mol % methanol 6 88
6 10 mol % methanol 2 85
7 20 mol % methanol 2 70
8 1 mol % ethanol 2 85
9 1 mol % acetonitrile 2 78
10 1 mol % THF 2 72
11 none methanol 24 0

aComposition of reaction mixture: Benzaldehyde (1 mmol), aniline (2 mmol), tert-butyl isocyanide (1 mmol), solvent (5 mL), o, rt, stirring. Plsolated

yields which are not optimized.
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ambient temperature and led to good yields of 4a. Among
various solvents screened, methanol was found to be the best
choice as solvent for the reaction. Furthermore, we observed
that the catalyst loading could be reduced to 1 mol % without
affecting the product yield. Further decreasing the amount of
catalyst (0.5 mol %) still lead to a good yield of 4a, albeit with a
longer reaction time (Table 1, entry 5). It was interesting to
notice a significant decrease in the product yield when the cata-
lyst was overloaded (Table 1, entries 6 and 7). When the
reaction was carried out without catalyst (iodine), no
product was observed (Table 1, entry 11). This observation
confirmed that catalytic iodine is necessary for the success of
the reaction.
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Next we studied the substrate compatibility of the reaction to
generalize the scope of the a-amino amidine synthesis
(Table 2). Aliphatic, aromatic and heteroaromatic aldehydes
were used with similar success leading to high yields of
amidines. It is worth to note here that aldehydes containing an
alkyne moiety yielded the corresponding amidines with similar
success (Table 2, entries 17 and 18). With aromatic amines, the
reaction was good; with aliphatic amines (for instance benzyl-
amine) the reaction was sluggish and the desired amidine was
not obtained. The reaction worked well with a variety of
isocyanides such as tert-butyl isocyanide, cyclohexyl
isocyanide, and more importantly with functional groups
bearing isocyanides such as ethyl isocyanoacetate and

Table 2: Scope of the a-amino amidine synthesis through three-component coupling of aldehyde, amine, and isocyanide.?

1
O H 9 R\NH 31
o+ NG+ RENC o R)\?N
R™ "H R" ™H methanol HN
rt, stirring, 2 h R2
1 2 3 4
Entry R R? R2 Product Yield of product (%)P
1 C6H5 06H5 (CH3)3C 4a 90
2 CgHs CgHs c-CgH1q 4b 93
3 2-Br-CgHgy CgHs (CH3)3C 4c 85
4 C-CGH11 CGH5 C-C6H11 4d 86
5 n-CgH17 C6H5 C-CGH11 de 88
6 4-C|—C6H4 06H5 C-CBH11 af 88
7 2-Furyl CeHs (CH3)sC 4qg 90
8 c-CeHi1 CeHs (CH3)3C 4h 90
9 n-CgH17 CGH5 (CH3)3C 4i 87
10 4-F-CgHa CeHs (CH3)3C 4j 88
11 4-Cl-CgHy CeHs (CH3)sC 4k 85
12 4-Cl-CgHy 4-CH30-CgHy (CH3)sC al 90
13 CgHs 4-CHs3-CgHy (CH3)3C 4m 86
14 4-F-CgHg 4-CH3-CgHy (CH3)3C 4n 92
15 n-C3H7 4-CH3-CGH4 (CH3)3C 40 91
16 C-C6H11 4-CH3-CgHgy (CH3)3C 4p 83
17 ©\ 06H5 (CH3)3C 4q 85
Ph
18 <N> -p;, CeHs (CH3)sC 4r 77
19 3,4,5-(MeO)3-CgHa CeHs EtOOCCH, 4s 75
20 3,4,5-(Me0)3-CeH CeHs p-TolSO,CH, 4t 79

aAldehyde (1 mmol), amine (2 mmol), isocyanide (1 mmol), iodine 1 mol %, methanol (5 mL), t, stirring, 2 h. Plsolated yield which is not optimized.
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p-toluenesulfonylmethyl isocyanide (p-TosMIC) (Table 2,
entries 19 and 20). Thus, the diversification of the a-amino
amidine was achieved by varying the aldehyde, aromatic amine
and isocyanide components of the reaction. The iodine-
catalyzed protocol gave better yields (75-93%) of amidines
than a recently reported p-toluenesulfinic acid [15] catalyzed
protocol (52-71%). In contrary to the p-toluenesulfinic acid-
catalyzed protocol, the formation of byproducts (a-amino
amides) was suppressed in our iodine-catalyzed protocol which
gave rise to better yields and cleaner products. When compared
with other related reports [16-19], our iodine-catalyzed protocol
gave similar yields of a-amino amidines. However, it should be
emphasized that our protocol with low catalyst loading
(1 mol %) makes it a cleaner and lower environmental impact

methodology to access a-amino amidines.

Then, we tried the three-component reaction using heteroaro-
matic amines such as 2-aminopyridine, 3-aminopyridine and
4-aminopyridine. The desired products (amidines) were not
obtained with 3-aminopyridine and 4-aminopyridine. However,
we found that iodine can efficiently catalyze the three-compo-
nent coupling reaction of 2-aminopyridine, aldehyde and
isocyanide (Groebke—Blackburn—Bienaymé reaction) (Figure 2)
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[25-27]. Recently, catalytic iodine (10 mol %) was found to
give good yields of imidazolopyridine in a three-component
reaction of 2-amino-5-chloropyridine, isocyanide, and alde-
hydes under reflux conditions [28]. However, we found that the
similar reaction using 2-amonopyridine could be performed at
ambient temperature using 1 mol % of iodine as catalyst to
achieve a satisfactory yield of product (82—-85%).

A probable mechanistic pathway for the formation of a-amino
amidines is outlined in Figure 3 which is analogous to the estab-
lished mechanism reported in the literature [28,29]. lodine can
serve as a catalyst for the activation of imine. The attack of
nucleophilic isocyanide on the activated imine leads to the for-
mation of intermediate 8 or 8°. Subsequently, another molecule
of amine attacks the intermediate 8 or 8 to give a-amino
amidine 9 which undergoes further [1,3]-hydrogen shift to
provide the a-amino amidines 4 [17].

Conclusion

In conclusion, we have developed a simple and clean method-
ology for the synthesis of substituted a-amino amidines using a
three-component coupling of isocyanide, aldehyde, and
aromatic amines with molecular iodine as a catalyst. The

o o I, (1 mol %) AN
P Il | 7a | 82%| R = 3-MeO-CgH,4
thanol
RH . @F t Qﬁrinagncq 2h NS N 7b | 85%| R =3,5-(MeO),-CeHs
1 /}\ \ N):< 7c | 83%]| R = 3,4,5-(MeO)3-CoHp
N 3a H R 7d | 85%| R=4-CN-C¢Hs
l z 7Ta—d
N~ “NH,

6a

Figure 2: Synthesis of imidazolopyridines 7a—d through a three-component coupling reaction of substituted benzaldehydes, 2-aminopyridine, and

tert-butyl isocyanide using 1 mol % iodine as catalyst.

|©
o ®
0O —H20 R\N I R\S)/l R\N,'IZ :CEN—RZ
RNH2 + m J — ” or U
R! (dehydration) R (activation of R R
imine)
I R.
RN o RN~ RNH , L NH
J\l or J\(I RNH, N isomerisation R1J\(N‘R2
R N0 R, -1, R ™7 "R? (R?=aryl) |N
“R2 N~R2 RfNH R”
8 8 9

Figure 3: A plausible reaction mechanism for the iodine-catalyzed a-amino amidine synthesis.
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current strategy provides elegant access to a-amino amidine and
imidazolopyridines in high yield with significantly low catalyst
loading.

Experimental

A 25 mL round bottom flask was filled with aldehyde (1 mmol),
amine (2 mmol)/2-aminopyridine (1 mmol), isocyanide
(1 mmol) and MeOH (5 mL). Then, I, (1 mol %) was added and
the reaction mixture was stirred until the reaction was
completed (TLC). The reaction mixture was evaporated to
dryness using a rotary evaporator and the residue was purified
by silica-gel column chromatography using a mixture of ethyl
acetate/hexane as eluent in increasing polarity.

Supporting Information

General information, general experimental procedure,
characterization data of the synthesized compounds, and
copies of 'H and 13C NMR spectra are given in Supporting
Information File 1.

Supporting Information File 1
Experimental data.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-10-214-S1.pdf]
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