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A B S T R A C T   

The prolonged transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus in the 
human population has led to demographic divergence and the emergence of several location-specific clusters of 
viral strains. Although the effect of mutation(s) on severity and survival of the virus is still unclear, it is evident 
that certain sites in the viral proteome are more/less prone to mutations. In fact, millions of SARS-CoV-2 se-
quences collected all over the world have provided us a unique opportunity to understand viral protein mutations 
and develop novel computational approaches to predict mutational patterns. In this study, we have classified the 
mutation sites into low and high mutability classes based on viral isolates count containing mutations. The 
physicochemical features and structural analysis of the SARS-CoV-2 proteins showed that features including 
residue type, surface accessibility, residue bulkiness, stability and sequence conservation at the mutation site 
were able to classify the low and high mutability sites. We further developed machine learning models using 
above-mentioned features, to predict low and high mutability sites at different selection thresholds (ranging 
5–30% of topmost and bottommost mutated sites) and observed the improvement in performance as the selection 
threshold is reduced (prediction accuracy ranging from 65 to 77%). The analysis will be useful for early detection 
of variants of concern for the SARS-CoV-2, which can also be applied to other existing and emerging viruses for 
another pandemic prevention.   

1. Introduction 

The Coronavirus pandemic (COVID-19) caused by the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has emerged as 
a global pandemic affecting more than 494 million people worldwide 
and resulting in around 6.1 million deaths (https://covid19.who.int/; 
accessed on April 11, 2022). The SARS-COV-2 virus is around 30,000 
base pairs long single-stranded RNA virus that targets the human ACE2 
receptor for fusion with the human cell membrane [1,2]. The viral 
genome encodes four structural proteins namely, spike (S), membrane 
(M), envelope (E), and nucleocapsid (N) proteins that are considered of 
high therapeutic value [3]. In a short span of COVID-19 emergence, the 

scientific community has developed several potential anti-SARS-CoV-2 
therapeutics by targeting the viral protein(s) [4–11]. 

Almost two years into the pandemic, several variants of the SARS- 
CoV-2 virus have emerged all around the world. Viruses naturally 
have high mutation rates, which provide critical diversity for natural 
selection to screen variants with better transmission and survival ac-
cording to the environment [12,13]. One such example, “mutation 
D614G in spike protein,” is studied extensively. It enhances viral repli-
cation in human airway passage tissues and lung epithelial cells by 
increasing the infectivity and stability of virions [14]. Some of the new 
strains of SARS-CoV-2, for example, Alpha (B.1.1.7), Beta (B.1.351), 
Gamma (P.1), Delta (B.1.617.2) or Omicron (B.1.1.529) are more 
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transmissible than the original one [15,16]. Currently, Delta and Omi-
cron variants are dominant strains in circulation. The Delta variants had 
relatively fewer mutation sites in the Spike protein (T19, E156, L452, 
T478, D614, P681 and D950) compared to the Omicron variants, which 
had more than 30 mutation sites in the spike protein. Previously re-
ported Alpha, Beta and Gamma variants had few overlapping mutation 
sites (N501, K417 and D614) in the spike protein and these variants are 
no longer in circulation. 

As of April 2022, a significant part of the population is vaccinated in 
most of the countries. Although, there is a possibility of existing or 
emerging strains to be vaccine-resistant. It is an utmost priority for the 
scientific community to observe and understand these new strains to 
terminate the pandemic as early as possible. A deeper understanding of 
the mutation can lead to early prediction of the viral variants and sub-
sequently in silico protocols can be utilized to identify/design drugs and 
vaccines [17–19]. 

In the recent advancement in the mutational study of the SARS-CoV- 
2, Garvin et al. [20] used an artificial intelligence approach to find the 
mutational hotspots in SARS-CoV-2 genome to provide insights into 
drug development and surveillance strategies to combat the current and 
future pandemics. Other studies have compared the binding interface 
[21,22] and mutational pattern in the SARS-CoV-2 with other similar 
coronaviruses [23]. Several studies have looked into the evolving 
geographic diversity of the SARS-CoV-2 [24–28]. Sen et al. [29] have 
analyzed the structural malleability of viral proteins that may lead to 
comorbidities. Researchers have also studied the effect of mutation on 
binding affinity of the known SARS-CoV-2 specific antibodies [30]. The 
analysis of protein site conservation/mutability was mainly limited to 
HIV viruses before pandemic to identify immunogens for vaccine [31, 
32] due to the unavailability of relatively large-scale datasets. Similarly, 
there have been few studies exploring the conservation of SARS-CoV-2 
proteome using multiple sequence alignment to identify the vaccine 
targets [33,34]. However, these studies depend on prior knowledge of 
viral variants and may not be effective for the prediction in new viruses. 
A recent study used unsupervised probabilistic models using direct 
coupling analysis (DCA) to predict SARS-CoV-2 mutable and constrained 
positions, which incorporate pairwise epistatic terms and all known 
coronavirus genomes to allow selective pressure for coronaviruses [35]. 

The ongoing pandemic is changing the mutation dynamics of the 
SARS-CoV-2 proteome on a daily basis. However, not all protein sites 
observe an equal mutation rate in the population. The observed muta-
bility of protein sites can be potentially attributed to the combined effect 
of intrinsic physicochemical parameters [36] and effect on the trans-
mission/survival of the virus [13]. The intrinsic physicochemical pa-
rameters (such as residue composition, surface accessibility, local 
stability, residue contacts, hydrophobicity, etc.) predicted from the viral 
sequence-structure information, are well characterized in several studies 
such as aggregation [37,38], stability [39,40], function [41–43], bind-
ing [44], etc. These are the inherent properties of the sequence and 
therefore expected to be applicable to protein site mutability of all 
multicellular organisms including virus species, over a large time frame 
[45]. On the other hand, protein-protein interaction and potential res-
idue modifications affecting biological processes are important for 
preservation of mutation. However, these phenomena cannot be 
generalized and are specific to organisms [46,47]. 

In this work, we have analyzed the mutation information from “2019 
Novel Coronavirus Resource (2019nCoVR, https://bigd.big.ac.cn/ 
ncov)” to understand the intrinsic sequence-structure factors that 
affect the mutability of proteins with respect to reference SARS-CoV-2 
proteome from Wuhan. The initial analysis to understand the physico-
chemical parameters affecting mutability of protein sites in the whole 
proteome and each protein is done at 30% selection threshold (top 30% 
high and low mutation sites based on mutant isolate count). We 
observed that physicochemical features such as residue type, surface 
accessibility, residue bulkiness, stability and conservation can distin-
guish the sites with high and low mutation frequency. Further, we 
developed machine learning (ML) models using these features to classify 
the high and low mutation sites at different selection thresholds ranging 
from 5 to 30% and obtained model accuracy in the range of 65–76.7%. It 
was observed that increasing the confidence level of low and high 
mutability sites (i.e. lowering the selection threshold) improves the 
prediction performance of the ML models. We further observed that the 
physicochemical features of the mutation sites in variant of concern 
(VOC) and interest (VOI) are potential causes of their higher mutation 
rate (VOC and VOI information collected in June 2021). The study 
provides significant insights into the viral mutability, which can be 

Fig. 1. Workflow illustrating the steps followed in the current study.  
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helpful in early detection of potentially harmful viral variants for SARS- 
CoV-2 and other infectious viruses. 

2. Methods 

2.1. Dataset preparation 

We have downloaded the variance annotation dataset from the 2019 
Novel Coronavirus Resource (https://bigd.big.ac.cn/ncov/variation/a 
nnotation) [48] in June 2021. The non-synonymous single nucleotide 
polymorphism (SNP) entries were considered in the analysis. The 
structures of the SARS-CoV-2 proteins were obtained from (https://zh 
anglab.ccmb.med.umich.edu/COVID-19/) [49]. The physicochemical 
features of the mutation sites were analyzed by classifying the mutation 
sites at 30% selection threshold, where top 30% mutation sites with high 
isolate count were considered “high mutability sites” and bottom 30% of 
the mutation sites with low isolate count were considered “low muta-
bility sites”. The remaining 40% in the middle were considered ambig-
uous to be classified in any category. The number of mutation sites and 
cutoff of isolate count for 30% selection threshold are given in Table S1. 
A separate dataset at 10% selection threshold was also prepared to verify 
the observations of 30% selection threshold. 

2.2. Collection of sequence and structural-based features 

Collection of biologically-relevant features is an important step in 
machine learning model development and statistical analysis of complex 
biological problems [50–53]. We collected several sequence and struc-
ture features for the viral proteins from various sources and custom 
scripts. Briefly, features include relative accessible surface area (rASA) 
[54], all atom residue depth [55], surrounding hydrophobicity (within 
heavy atoms contact distance of 5 Å) (https://www.iitm.ac.in/bioinfo/ 
pdbparam/index.html), sequence based physicochemical and energetic 
features [56], residue type (polar, non-polar and charged) and con-
tacting residues information (within the heavy atom contact distance of 
5 Å). The sequence-based features were average values of tripeptides 
occurring at the mutation site along with one residue on each side. The 
position specific scoring matrix (PSSM) profiles were generated for each 
viral protein position using “blastpgp” on the “UniRef90” database [57]. 
Further, above-mentioned features were filtered based on inter-property 
correlation (r ≤ 0.8) and statistical difference in mean value of low and 
high mutability sites (p-value≤ 10–11, at 30% selection threshold). The 
final dataset contained 21 sequence and structure-based features 
(Table S2). 

2.3. Feature selection and development of machine learning (ML) models 

We used a forward feature selection approach to select the optimal 
number of features in the baseline model. Firstly, we selected the best 
performing feature in the ML model based on Area under the ROC curve 
(AUC). Further, features were added one by one until the best perfor-
mance (AUC) of the model was reached (Fig. 1). We restricted to a 
maximum of six features to avoid overfitting and the final model con-
tains four features with a balance between the number of features and 
performance. The baseline ML model was developed at 30% selection 
threshold using “support vector machine (SVM)” and linear kernel in 
Weka 3.8.6 [58]. The SVM based parameter “BuildLogisticModels” was 
kept “True” and “optimal complexity parameter (c)" was optimized to 
2.0 to obtain the best performance. The rest of the parameters were kept 
default. The final selected model was also trained on selection thresholds 
ranging from 5% to 25% to observe change in performance upon 
undersampling. 

2.4. Performance evaluation 

The performance of the model at 30% selection threshold was 

evaluated primarily using area under the ROC (receiver operating 
characteristic) curve. We have also included following performance 
measures for the final ML model: 

Accuracy =
TP + TN

TP + TN + FP + FN
(1)  

Sensitivity =
TP

TP + FN
(2)  

Specificity =
TN

TN + FP
(3)  

where TP, TN, FP and FN are the number of true positives, true nega-
tives, false positives and false negatives, respectively. In our study, low 
mutability sites are considered positive and high mutability sites are 
considered negative class. The robustness of the model was evaluated 
using 10-fold and leave-one-out cross-validation (LOOCV). The 10-fold 
cross-validation was performed 100 times while randomizing the data-
set each time. In leave-one-out cross-validation, the regression model 
was trained on n-1 data points and tested on the remaining one data 
point, recursively. 

2.5. Analysis of variants of concern (VOCs) and variant of interest 
(VOIs) 

The list containing mutations in VOCs and VOIs of SARS-CoV-2 virus 
(designated by WHO as of June 2021) were obtained from https://outbr 
eak.info/. In addition, we have also collected the list of mutations of 
interest and mutation of concern. The radar plot for these mutation(s) 
was plotted using Matplotlib library [59] in python. 

3. Result and discussion 

3.1. Analysis of the dataset 

We analyzed 8673 protein sites in SARS-CoV-2 proteome containing 
at least one mutation among 1079273 isolates (Fig. 1). Firstly, we 
plotted a histogram for the number of mutation sites in the whole SARS- 
CoV-2 proteome with respect to their isolate counts (Fig. 2). The histo-
gram represented approximately 90% of the protein sites with less than 
1000 isolate count and showed an exponential decay curve, where more 
than 950 protein sites had less than 10 mutant isolates and only 14 
protein sites had mutant isolate count of more than 100,000. The higher 
isolate count generally denotes mutation in the protein site at an early 

Fig. 2. A histogram plotted for the number of isolates observed with respect to 
number of mutation sites. Approximately 90% of the mutation sites have less 
than 1000 isolates containing mutation, although the highest isolate count 
is 1,079,273. 
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stage of the pandemic and incorporation of the mutation in all major 
viral variants. 

3.2. Role of sequence and structure-based features on site mutability 

We have analyzed several sequence and structure-based features to 
classify the low and high mutability of the protein sites. We first filtered 
the features based on the “statistical significance” and “low inter- 
property correlation” selection criteria (as described in Collection of 
sequence and structural-based features in Methods section). The 
features, capable of distinguishing the low and high mutability of pro-
tein sites, are further classified into five general categories and discussed 
in detail. It is also important to note that size of viral proteins (corre-
sponding to number of mutation sites) vary greatly (ranging from 30 to 
1757 residues), which can lead to less to no statistical significance in 
some protein-wise results (Table S1). 

3.3. Residue type 

We observed that residue-type is the most capable feature to classify 
the high and low mutability of protein sites in the SARS-CoV-2 proteome 
(Fig. 3). The proportion of bulky aromatic residues (F, Y, W) is signifi-
cantly higher in the low mutability sites. The positively charged residues 
(R, K) occur frequently at low mutability sites whereas negatively 
charged residues (D, E) are present more in high mutability sites. Gly 
(G), a smaller amino acid with similar physicochemical features as Ala 
(A) has surprisingly higher frequency in the low mutability. Overall, Ala 
(A), Cys (C), Asp (D), Phe (F), Trp(W) amino acids have more than 2-fold 
difference in the frequency in the low and high mutability sites. The 
probable reason for low mutation frequency observed for bulky and 
small amino acids is likely to be due to the loss of interactions and steric 
hindrance, respectively. The mutability of the charge residues is mainly 
dependent on the environment. However, intravirion environment 
(RNA) and overall viral surface is negatively charged leading to higher 
mutation rate in negatively charged residues for better stability [60]. 
Mutations in R, G, C and W residues have been linked to higher proba-
bility of disease-causing mutations in humans [61]. A similar observa-
tion in SARS-CoV-2 virus indicates that mutations in these residues may 
also lead to decrease in fitness of the virus. 

3.4. Surface accessibility 

The Relative accessible surface area (rASA) feature calculated from 
Dictionary of Secondary Structure of Proteins (DSSP) [54] is an impor-
tant feature to identify mutation sites with high and low mutation rates 
(Figs. 4a and S1a). In the SARS-CoV-2 proteins, it was observed that high 
mutability sites also have higher relative accessible surface area and vice 

versa, for most of the large proteins. The observation is reasonable as 
most residues in small proteins are surface accessible due to small size. 
The proteins including E, M, nsp4, nsp6, nsp7, nsp8 and ORF6 showed 
an opposite or no trend for surface accessibility. The features related to 
buriedness (such as number of contacts at 5 Å distance and residue 
depth) also supports the observation of relative accessible surface area 
(data not shown). Surface accessibility is also important for the inter-
action with the environment including self/host proteins [62]. There-
fore, mutability of these sites can significantly affect the survival or 
transmission of the virus. It is also important to note that surface 
accessibility alone is not sufficient to predict the mutability of protein 
sites as only a small percentage of the surface accessible sites interact 
with other molecules. 

3.5. Residue bulkiness 

The residue type analysis showed that bulky residues such as aro-
matic residues are highly preferred in the low mutability sites in the 
SARS-CoV-2 proteome. The extended analysis using residue volume 
feature (AAindex id: BIGC670101) supported the observation for all 
amino acids (Fig. 4b). Similar trend was also observed in each protein 
(Fig. S1b). However, the p-values from the t-test showed relatively less 
statistically significant outcomes among other major features discussed. 
Other related features such as molecular weight also showed that low 
mutability sites have higher molecular weight and vice versa (data not 
shown). The bulky amino acids most likely show low mutational fre-
quency due to higher contact order and biosynthesis cost [63–65]. This 
also explains the observation that bulky aromatic groups such as Tyr are 
preferred at protein interaction sites and are less likely to mutate [21,66, 
67]. 

3.6. Stability of the mutation site 

Understandably, we observed that locally stable protein sites are less 
likely to mutate to avoid destabilization of the protein structure [68]. 
We calculated the local average stability of the mutation site and one 
flanking residue on each side using unfolding enthalpy of the chain 
(ΔHc). The feature showed that low mutability sites are more stable 
compared to high mutability sites (Fig. 4c). The protein-wise analysis 
also showed similar results except for E, nsp10 and ORF6 proteins 
(Fig. S1c). 

3.7. Conservation of the mutation site 

Residue conservation is directly linked to the mutability of the amino 
acids. A residue is likely to be conserved in observed protein if it is 
conserved in the closest homologous proteins. Therefore, we used 
several sequence conservation related features derived from the 
position-specific scoring matrix (PSSM). The average value of the 20 
amino acids in the position weight matrix (PWM) was able to classify the 
high and low mutation sites (Fig. 4d) and it is more negative for specific 
dominant mutations. The higher chances of random mutations shift the 
average value of the PWM matrix towards the positive scale. We 
observed that high mutability sites also have higher values of average 
PWM, which is consistent in all SARS-CoV-2 proteins except N, nsp1 and 
nsp7 (Fig. S1d). Therefore, these high mutability sites are more prone to 
be replaced by any other amino acids. On the other hand, low mutability 
sites prefer only self (or specific) mutations and are considered relatively 
more conserved. We have also analyzed the information content (IC) 
parameter in the PSSM file, which measures the probability of a given 
PWM to be different from the uniform distribution. Expectedly, we 
observed a weak negative correlation (− 0.14) between isolate count and 
information content (Fig. S2a). The high mutability sites are expected to 
have more uniform distribution of possible mutations leading to 
decrease in information content [69]. However, it is not sufficient to 
differentiate high and low mutability sites alone (Fig. S2b). 

Fig. 3. Amino acid frequency in low and high mutation sites class.  
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3.8. Analysis for high and low mutability sites using 10% selection 
threshold 

The above-discussed major features are also calculated for an 
undersampled dataset to observe consistency of the results. The isolate 
count cutoffs and number of mutation data are reevaluated at 10% 

selection threshold (881 protein sites in low mutability class and 867 
protein sites in high mutability class), which in turn also reduced the 
dataset size for each protein and restricted statistically significant ob-
servations. However, the observations with the undersampled dataset at 
10% selection threshold were the same as the observation at 30% se-
lection threshold. In summary, the residue type at the mutation site 

Fig. 4. Major features under the category of surface accessibility, residue bulkiness, stability of mutation site and conservation of the mutation site (p-value<10− 11).  
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showed higher presence of Gly, positively charged and aromatic resi-
dues in the low mutability sites (Fig. S3). High mutability sites also 
observed lower values for residue bulkiness and stability features and 
higher values for surface accessibility and conservation features 
(Fig. S4). 

3.9. Machine-learning model development 

We further developed a machine-learning model to assess the ability 
of the intrinsic physicochemical features to predict low and high 
mutability sites in SARS-CoV-2 proteome. The baseline model is devel-
oped at 30% selection threshold (top and bottom 30% of the mutation 
sites selected based on mutant isolate count) as discussed below: 

3.10. Development of baseline model 

We used a forward feature selection approach to select the optimal 
number of features in the baseline model (Fig. S5). We observed the best 
model performance (area under the ROC curve: 0.71) with four features 
and SMO (Sequential Minimal Optimization) algorithm, a SVM (Support 
Vector Machine) based method for the classification (see Methods 
section for more detail). SVM based models have been extensively used 
in the biological problem due to better interpretability, learnability and 
generalization [70–72]. The selected feature in the SVM model includes 
residue at the mutation site (residue type; Res), residues flanking the 
mutation site (Resflank), relative accessible surface area (rASA) and 
average value of position weight matrix (PWMavg). Further optimization 
of the model parameters revealed the accuracy of 65% with sensitivity of 
62.4% and specificity of 67.7% with ROC value of 0.711 for the training 
dataset (Table 1). The performance of the model was further rigorously 
tested using different performance measures including 10-fold 
cross-validation with randomization (average ROC of 0.646 ± 0.002 
after 100 iteration) and n-fold cross-validation (ROC = 0.648). The 
analysis showed that the developed model is robust (Table 1). 

We further analyzed the importance of each feature in the ML model. 
The features “Res” and “Resflank” significantly reduce the performance of 
the model upon elimination (ROC 0.652 and 0.649, respectively). On the 
other hand, “Res” feature showed the best performance (ROC = 0.621) 
when only one feature was used in the model. Therefore, we concluded 
that “Residue type (Res)” feature is the most important feature for the 
classification of the low and high mutability of protein sites (Table S3). 

3.11. Performance of the machine learning model at different selection 
threshold 

The baseline model developed at 30% selection threshold was 
further tested on other thresholds ranging from 5 to 25%. We observed 
that the performance of the model increases as the selection threshold 
decreases (Table 2). The correlation between area under the ROC curve 
and selection threshold was also high (r2 = 0.95; Fig. S6). This is mainly 
due to the fact that decreasing the selection threshold proportionally 
setup more stringent conditions for mutations to be assigned to either 
low or high mutation sites, thus improving the confidence level. 

3.12. Case study: analysis of variants/mutation of concern/interest 

The physicochemical features including surface accessibility, residue 
bulkiness, stability and conservation were analyzed for the mutation/ 
variants of concern and interest with respect to average value of all 
protein sites (Table 3). There was a total of nine protein sites in spike 
protein containing at least one mutation of interest (L18, K417, N439, 
L452, S477, S494, N501, P681) or concern (E484). These mutation sites 
were considered as high mutability sites, where they are expected to 
have higher than average values for surface accessibility and conser-
vation features and lower than the average values for residue bulkiness 
and stability features. Among the nine mutations of interest and concern 
in the spike protein, six mutations (E484, K417, N439, S477, N501, 
P681) satisfied the criteria for all four features. The remaining three 
mutation sites L18, S494 and L452 satisfy the criteria for 3, 2 and 1 
features, respectively. 

A further extended analysis was carried out for all mutation sites in 
the proteome of SARS-CoV-2 variants of concern (VOC) and interest 

Table 1 
Performance of the baseline model at 30% selection threshold.  

Performance Measure Accuracy Sensitivity Specificity ROC 

Training dataset 65 62.4 67.7 0.711 
Leave-one-out cross- 

validation 
60.03 57.9 62.2 .648 

10-fold cross- 
validationa 

60.2 ±
0.34 

57.6 ±
0.51 

62.7 ±
0.46 

0.646 ±
0.002  

a The average values are listed along with standard deviation from 100 iter-
ations after randomizing data each time. 

Table 2 
Performance of the baseline model at different selection threshold range.  

Selection threshold Dataset Performance measures 

Total mutation sites Low mutability sites High mutability sites Accuracy Sensitivity Specificity ROC 

5 864 430 434 76.7 76.5 77 0.84 
10 1748 881 867 72.8 73 72.5 0.795 
15 2589 1288 1301 69.9 68.3 71.5 0.761 
20 3453 1718 1735 68.4 66.5 70.3 0.747 
25 4357 2187 2170 66.8 66.1 67.5 0.73 
30 5204 2600 2604 65 62.4 67.7 0.711  

Table 3 
The features related to mutation probability analyzed for the mutation of 
concern and mutation of interest.  

Mutation sites 
of concern/ 
interest 

Surface 
accessibility 

Residue 
bulkiness 

Stability of 
the mutation 
site 

Conservation of 
the mutation site 

S:E484 1.05 68.7 3.46 − 0.4 
S:L18 0.07 82.97 3.92 − 0.65 
S:K417 0.64 81.13 2.94 − 0.25 
S:N439 0.39 68.77 4.36 − 0.45 
S:L452 0.29 111.47 10.84 − 0.25 
S:S477 0.96 54.13 3.82 − 0.35 
S:S494 0.63 86.93 8.23 − 0.55 
S:N501 0.41 61.07 3.1 − 0.3 
S:P681 0.61 79.2 4.6 − 0.85 
Average 0.3 82.98 5.16 − 0.94 

Note: The average values are calculated from the mutation sites considered in 
the current study of SARS-CoV-2 proteome. These mutations of concern/interest 
are expected to be present at the high mutability sites. The features that do not 
follow the observed trend in the study are highlighted. 
The list of mutations obtained from https://outbreak.info/. 
Mutation of concern (MOC): S:E484K. 
Mutation of interest (MOI): S:L18F; S:K417N; S:K417T; S:N439K; S:L452R; S: 
S477N; S:S494P; S:N501Y; S:P681H; S:P681R. 
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(VOI), and the results are presented in Figs. S7 and S8, respectively. The 
analysis of the four physicochemical features showed higher mutability 
in most protein sites of the four VOCs: Delta (B.1.617.2), Alpha 
(B.1.1.7), Beta (B.1.351), Gamma (P.1) and two VOIs: Lambda (C.37), 
Mu (B.1.621). The VOCs (average: ~76.4%) had a relatively higher 
number of mutation sites satisfying 3 or more features compared to VOIs 
(average: ~64%) (Table 4). Therefore, higher chances of mutation in 
these protein sites lead to emergence of new variants that improved the 
fitness of the virus in terms of better survivability and more 
transmissibility. 

3.13. Potential applications 

The study will improve our understanding of intrinsic physico-
chemical parameters affecting mutability of the viral proteome, which in 
combination with the virus-specific biological features (such as impor-
tant binding/cleavage sites) can be used to predict the potential future 
mutations leading to improvement in survivability, infectivity or 
lethality of the virus. The intrinsic parameters discussed here can be 
used as a starting point for in silico prediction of future variants of any 
pathogen. Moreover, exposed protein sites with less probability of mu-
tation can be used as immunogens for vaccine development or potential 
epitopes for antibody-based therapeutics. 

4. Conclusion 

In this study, we have provided insights into the mutability of SARS- 
CoV-2 proteome from the perspective of intrinsic sequence-structure- 
based features. The study highlights the role of surface accessibility, 
residue bulkiness, stability and evolutionary conservation in deter-
mining the mutational probability of a protein site. The major advantage 
of the study is that it does not require any priori information other than 
the sequence and structure information of the virus of concern. The 
study leverages the large-scale mutational data (1079273 viral isolates 
of SARS-CoV-2) to predict the protein sites that are less or more prone to 
mutations. The study also focuses on the robustness of the inference by 
utilizing different selection thresholds, as the reference dataset is 
changing daily. Although, it is also important to note that the study has 
some limitations such as mutations are considered mutually indepen-
dent, deletions/insertions are excluded and biological/functional as-
pects are not considered. Moreover, mutations are considered only with 
respect to reference Wuhan strain due to lack of real-time mutation data, 
which may lead to biases towards the early mutations in the SARS-CoV-2 
genome. A more sophisticated time series analysis based on real-time 
viral mutation, effect of concurrent mutations and role of the biologi-
cally relevant protein sites can be explored further for greater under-
standing of viral protein mutability. The dataset/features used in the 
study can be obtained from the GitHub repository (https://github.com/ 
puneetrawat/COVID_Mutation_Site). 
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