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Human γδT-cell subsets and their involvement in tumor
immunity

Dang Wu1,2,6, Pin Wu2,3,6, Fuming Qiu2,4, Qichun Wei1,2 and Jian Huang2,5

γδT cells are a conserved population of innate lymphocytes with diverse structural and functional heterogeneity that
participate in various immune responses during tumor progression. γδT cells perform potent immunosurveillance by
exerting direct cytotoxicity, strong cytokine production and indirect antitumor immune responses. However,
certain γδT-cell subsets also contribute to tumor progression by facilitating cancer-related inflammation and
immunosuppression. Here, we review recent observations regarding the antitumor and protumor roles of major
structural and functional subsets of human γδT cells, describing how these subsets are activated and polarized,
and how these events relate to subsequent function in tumor immunity. These studies provide insights into the
manipulation of γδT-cell function to facilitate more targeted approaches for tumor therapy.
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INTRODUCTION

γδT cells, which are innate-like T lymphocytes characterized by
T-cell receptors (TCRs) composed of γ and δ chains, are widely
distributed in the peripheral blood (PB) and mucosal tissues.1

γδT cells rapidly recognize exogenous pathogens and endo-
genous stress-induced ligands in a major histocompatibility
complex (MHC)-unrestricted manner and initiate adaptive
immunity, acting as a first line of immune defense.2 Activated
γδT cells exhibit multiple effector functions, including cyto-
toxicity against infected or tumor cells, cytokine and chemo-
kine production, antigen-presenting functions and regulatory
abilities,3 thus allowing them to participate in an array of
diseases, including infection, allergy, autoimmunity and
cancer.4–6

Human γδT cells contribute to the immune response against
a subset of tumors of hematological and epithelial origin, and
many clinical trials have been conducted to test the use of

γδT cells in adoptive cell therapy.7 However, human γδT cells
have diverse physiological roles in tumor immunity, owing to
their wide-ranging structural subsets, which are defined
by their TCR repertoire and functional heterogeneity driven
by differential environmental stimulation.8,9 Recent reports
have described the diverse responses of human γδT cells to
tumors.10 For example, γδT cells exert cytotoxicity toward
tumor cells via the NKG2D pathway;11 however, they also
develop a regulatory profile by expressing interleukin-10
(IL-10) and tumor growth factor (TGF)-β, thereby exerting
suppressive effects on antitumor responses.12 Moreover, our
previous studies have indicated that human PB Vδ1 T cells
demonstrate favorable cytotoxicity against colon cancer,13

whereas γδT17 cells with Vδ1 TCR usage in colon cancer
tissue promote tumor progression.14

Therefore, understanding γδT-cell subset-specific responses
during tumor immunity is vital to rationally exploit the
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antitumor activity of γδT cells while avoiding their tumor-
promoting effects during tumor therapy. In this review, we
summarize research progress regarding the major structural
and functional subsets of human γδT cells and their effects on
tumor immunity, and we describe the clinical implications for
tumor therapy involving the manipulation of γδT-cell function.

STRUCTURAL SUBSETS AND γδT-CELL ACTIVATION

Generally, human γδT cells are divided into two major
structural subsets according to their TCR δ chain usage: Vδ1
and Vδ2 T cells.15 In terms of TCR γ chain usage, Vδ1 T cells
are predominantly associated with the VγI gene family (Vγ2/3/
4/5/8), whereas the majority of Vδ2 T cells coexpress VγII
(Vγ9).16 γδT subsets exhibit distinct developmental properties,
tissue localization and activation modes.1,17,18

Vγ9Vδ2 γδT CELLS

γδT-cell development primarily occurs in the fetal thymus, and
subsets arise through rearrangements at distinct phases of
thymic ontogeny.19 Vδ2 subsets are generated in the thymi at
8.5–15 weeks in human embryos, with gene rearrangements of
Vδ2 to Dδ3 and of Vγ1.8 or Vγ9 to Jγ1.19 Human Vδ2 T cells,
which are almost exclusively paired with the Vγ9 chain (also
termed Vγ9Vδ2 γδT cells), are predominant in the PB
(470%),15 and are uniquely activated by phosphoantigens
produced by microbes and transformed cells. Exposure to (E)-
4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), an
intermediate metabolite of microbial isoprenoid biosynthesis20

and Isopentenyl pyrophosphate (IPP), which is generated by
transformed mammalian cells via the the mevalonate pathway,
leads to TCR-dependent activation of Vγ9Vδ2 T cells,21 thus
enabling them to rapidly respond to exogenous infection or
endogenous transformed cells. Moreover, aminobisphospho-
nates such as zoledronic acid combined with low-dose IL-2
selectively activate and expand Vγ9Vδ2 T cells in vitro.22

Phosphoantigens interact with specific proteins rather than
being directly recognized by the TCR.23 F1-ATPase expressed
on tumor cells has been defined as an antigen-recognition
molecule for phosphoantigen-mediated stimulation of human
Vγ9Vδ2 T cells.24 Butyrophilin3A1 is another essential phos-
phorylated antigen-presenting modality of Vγ9Vδ2 T-cell
activation.25–27 In addition to phosphoantigens, human MutS
homolog 2, a DNA repair-related protein ectopically expressed
on tumor cells, is recognized by Vγ9Vδ2 T cells via the TCR.28

Toll-like receptors (TLRs) and natural killer receptors
(NKRs) have been reported to co-stimulate human Vγ9Vδ2
T cells in combination with TCR stimulation.29,30 Pathogen-
associated molecular patterns derived from microbes trigger
Vγ9Vδ2 T-cell activation via TLRs and promote cytokine and
chemokine production.29 Moreover, human Vγ9Vδ2 T cells
also recognize stress-induced MHC class I chain-related anti-
gens A and B (MICA/B) as well as MIC-A-related UL16-
binding proteins (ULBPs) upregulated by transformed or
infected cells via NKG2D.11 Another NKR involved in Vγ9Vδ2
T-cell activation, DNAM-1, binds to its ligand, nectin-like-5,
which is expressed on tumor cells, and consequently exerts

cytotoxic effects.31 Vγ9Vδ2 T cells also respond to super-
antigens such as staphylococcal enterotoxins (SEs) and toxic
shock syndrome toxin (TSST)-1.32,33 The above evidence has
demonstrated that Vγ9Vδ2 T cells respond to a variety of
ligands, although these represent only a few defined antigens;
these responses suggest implications for the clinical manage-
ment of these cells.

Vδ1 γδT CELLS

Vδ1 TCR gene rearrangement occurs 4–6 months after birth
and involves the joining of Vδ1 to Dδ1 or Dδ2 and the joining
of upstream Vγ gene segments, including Vγ2, 3, 5 and 8, to
Jγ2.19 Unlike Vγ9Vδ2 T cells, human Vδ1 T cells primarily
reside in the gut epithelia, dermis, spleen and liver, and are
involved in maintaining epithelial tissue integrity.1 Vδ1 T cells
constitute less than 30% of γδT cells in PB and contain diverse
paired Vγ chains.15,16 During HIV infection, Vδ1 T-cell
numbers are increased, and the normal ratio of Vδ2/Vδ1
T cells is inverted, thus suggesting the potential involvement of
Vδ1 T cells in antiviral immunity.34 Ligand recognition by Vδ1
T cells remains largely uncharacterized, although CD1 family
proteins are recognized by Vδ1 T cells. Both PB and tissue Vδ1
T cells recognize CD1c35–37 and the lipid-presenting MHC-like
molecule CD1d via the TCR.38 Two recent studies have
explored the structural basis of the recognition of lipid antigens
by the Vδ1 TCR via CD1d-presenting molecules.39,40 In
addition to the CD1 family, human intestinal epithelial Vδ1
T cells respond to stress-induced MICA/B through the
synergistic actions of TCR and NKG2D.41,42 Specifically, in a
manner analogous to Vγ9Vδ2 T cells, Vδ1 T cells respond to
tumor cells by overexpressing MICA/B and ULBPs via
NKG2D.43,44 Moreover, Vδ1 T cells are activated by the
superantigen SE but respond exclusively to SEB rather than
SEA.45 A unique feature of Vδ1 T-cell activation is the
recognition of B7-H6, a B7 family member exclusively
expressed on tumor cells, by NKp30, thereby exerting anti-
tumor effects.46,47

NON-Vδ1 AND NON-Vγ9Vδ2 γδT CELLS

Human Vδ3 T cells compose the majority of non-Vδ1 and
non-Vγ9Vδ2 γδT cells and are found in healthy PB, the liver48

and in patients with cytomegalovirus (CMV) infection,49 HIV
infection50 and B-cell leukemia.51 Vδ3 T cells, paired with
Vγ2 or Vγ3,50 respond to CD1d and express the degranulation
marker CD107a.52 A Vγ4Vδ5+ T-cell clone has been reported
to recognize stressed human cells via TCR binding to endothe-
lial protein C receptor.53 Furthermore, Vδ4, Vδ6, Vδ7 and
Vδ8 T cells have been detected in the PB of lymphoma
patients;54 however, further studies are required to evaluate γ
chain pairings and how these subsets are activated. Studies
examining the activation of γδT-cell subsets are highlighted in
Table 1.

FUNCTIONAL SUBSETS AND γδT-CELL POLARIZATION

γδT cells share pleiotropic functions with conventional αβ
T cells.55 Each functional subset is induced through the
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stimulation of resting γδT cells by different polarization factors
in vitro.56

IFN-γ-PRODUCING γδT CELLS

Human circulating γδT cells are driven to produce interferon
(IFN)-γ in the presence of IPP by IL-12 and anti-IL-4
antibodies, whereas these cells are polarized and become
IL-4-producing cells when exposed to IPP plus IL-4 and anti-
IL-12 antibodies,57 which mediate anti-infection responses.
Moreover, activation of an IFN-γ-producing response in the
absence of IL-4 detection is promoted by nonpeptide antigens
plus IL-21.58 Similarly, IL-2 and IL-21 drive γδT cells toward an
IFN-γ-producing phenotype characterized by increased CD56
expression and enhanced cytolytic responses.59,60 IL-2 and
IL-15 signals drive human γδT-cell differentiation toward
cytotoxic IFN-γ-producing subsets in the absence of TCR
activation.61

ANTIGEN-PRESENTING γδ T CELLS

γδT cells also display functional plasticity in terms of indirect
anti-infection or antitumor responses.62,63 Bovine γδT cells
present antigens to CD4+ αβT cells.64 Microbial infections
induce professional antigen-presenting cell (APC) functions of
human tonsillar γδT cells characterized by the expression of
co-stimulatory molecules such as MHC-II, CD80, CD86 and
CD40, thereby initiating adaptive immune responses by CD4+
and CD8+ αβT cells.65 Furthermore, γδT-APCs process soluble
protein for cross-presentation on MHC-I and induce CD8+
αβT-effector cell responses more efficiently than monocyte-
derived dendritic cells (DCs).66

FOLLICULAR B HELPER γδT CELLS

Follicular T helper (TFH) cells have critical roles in adaptive
immunity via interactions with B cells.67 Vermijlen D et al.56

have reported IL-21-induced expression of the follicular B-cell-
attracting chemokine CXCL13/BCA-1 on γδT cells, thus
resulting in a TFH-associated phenotype. The transcriptional
suppressor Bcl-6 is an indispensable regulator of TFH lineage
commitment.67 γδTFH cells polarized by HMB-PP and IL-21
exhibit TFH-like activity accompanied by the expression of the
transcriptional repressors Bcl-6, ICOS, CD40L, CXCR5, IL-
-21 R, CD244, CXCL10 and CXCL13, which, in maturing B
cells, facilitate the production of high-affinity antibodies against
foreign antigens.68,69

REGULATORY γδT CELLS

γδT cells also exert immunosuppressive and regulatory activ-
ities during immune responses. Casetti et al.70 have reported
the induction of Foxp3+ regulatory γδT (γδTreg) cells by TGF-
β1 and IL-15, accompanied by antigen stimulation, which
inhibits the proliferation of anti-CD3 and anti-CD28 antibody-
stimulated PBMCs. Indeed, in vitro-expanded Vδ1 T cells
stimulated by an anti-human TCR Vδ1 antibody with TGF-β1
predominantly express Foxp3, CD25, glucocorticoid-induced
TNFR family-related protein and CTLA4, all of which suppress
CD4+ T cell proliferation.71 Tumor-infiltrating γδTreg cells are
induced by IP-10 secreted by breast cancer cells, thereby
suppressing T-cell responses and DC maturation.72 These
regulatory γδT cells lack the expression of Foxp3, GIRT and
CD25, and their suppressive activity does not occur via TGF-β
or IL-10.73 Recently, we have identified a novel γδTreg subset
exhibiting CD39 expression that accounts for 60% of γδT17
cells and is polarized by TGF-β, thus resulting in stronger
immunosuppression than CD4+ Treg cells in the context of
human colorectal cancer (unpublished data). These CD39+
γδTreg cells suppress the activity of human CD3+ T cells in an
adenosine-dependent manner (unpublished data).

IL-17-PRODUCING γδT CELLS

γδT17 cells broadly participate in inflammatory responses,
having pathogenic roles during infection and autoimmune
diseases.74 Differentiation into γδ17 T cells requires high levels
of RAR-related orphan receptor C (RORC) and aryl hydro-
carbon receptor (AHR) expression but low levels of T-bet
expression, which is efficiently induced by coordinated stimu-
lation by phosphoantigens and cytokines, including IL-1β,
TGF-β, IL-6 and IL-23.75 Fresh human cord blood γδT cells
cultured with IL-7 plus TCR agonists for 1 week and stimulated
by PMA and ionomycin for 6 h were polarized into IL-17
producers.76 IL-6, IL-1β and TGF-β are required to generate
γδT17 cells in neonates.77 In addition, IL-23 is highly
important for γδT17 cell maturation and growth.78 In a
previous study, we have identified that γδT17 cells polarized
in human colorectal cancer tissue under stimulation by IL-23
derived from inflammatory DCs.14 Table 2 summarizes studies
investigating the polarization of γδT-cell subsets with distinct
functions.

Table 1 Structural subsets of human γδT cells

Structural subset Paired Vγ gene usage Distribution Activation stimulus and/or γδTCR ligands References

Vδ1 Vγ2/3/4/5/8/9 PB, skin, gut, spleen, liver MICA/B; ULBPs; B7-H6; CD1c; CD1d; SEB 35,39,44–46

Vδ2 Vγ9 PB Phosphoantigens; F1-ATPase; BTN3A1; hMSH2;
MICA/B; ULBPs; SEs; TSST-1; Nectin-like-5;

20,24,27–28,31–33

Vδ3 Vγ2/3 PB, liver CD1d 50,52

Vδ5 Vγ4 PB EPCR 53

Abbreviations: BTN3A1, butyrophilin3A1; EPCR, endothelial protein C receptor; hMSH2, human MutS homolog 2; MHC, major histocompatibility complex; MICA/B,
MHC class I chain-related antigens A and B; PB, peripheral blood; ULBP, UL16-binding protein; SE, staphylococcal superantigens; TSST-1, toxic shock syndrome
toxin-1.
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THE ROLE OF γδT-CELL SUBSETS IN TUMOR IMMUNITY

Differentially polarized γδT-cell subsets exhibit functionally
diverse responses to tumors, thus potentially leading to
antitumor or protumor responses (Figure 1).

ANTITUMOR EFFECTS

The first report of tumor surveillance by γδT cells described a
potential association between the increased frequency of
γδT cells and improved disease-free survival of leukemia
patients who received αβT-cell-depleted bone marrow
transplants.79 Recently, intratumoral γδT cells have been
demonstrated to be the most significant predictors of favorable
survival across various cancer types.80 γδT cells display
cytotoxicity against hematopoietic and solid tumors in an
MHC-independent manner.8 Although their activation
mechanisms differ, both Vδ2 and Vδ1 subsets exert potent
antitumor effects.8 One common γδT-cell-mediated killing
pattern involves tumor cell recognition via receptor–ligand
interactions. TCR is strongly implicated in controlling Vγ9Vδ2
T-cell cytotoxicity via the recognition of phosphoantigens that
are overexpressed in tumor cells and mediate tumor cell lysis.81

NKG2D binds to MICA/B and ULBPs and induces Vγ9Vδ2
T-cell cytotoxicity against hemopoietic and epithelial
tumors.11,30,82–84 Vγ9Vδ2 T cells are induced to produce
IFN-γ and kill hepatocellular carcinoma cells via the interaction
of DNAM-1 and nectin-like-5.31 γδT cells also exhibit strong
cytotoxicity against myeloma cells via NKp44.85 Furthermore,

CD56+ γδT cells are capable of killing squamous cell carci-
noma of the head and neck, a process that is likely to be
mediated by the enhanced expression of granzyme B and
upregulated degranulation.86

Similarly to NK cells, γδT cells induce antibody-dependent
cell-mediated cytotoxicity (ADCC) effects, thus resulting in the
lysis of tumor cells. According to Tokuyama H et al.,87 CD16+
Vγ9Vδ2 T cells recognize monoclonal antibody-coated lym-
phoma, chronic lymphocytic leukemia (CLL) and breast cancer
cells via CD16 and exert ADCC-dependent cytotoxicity.
γδT cells mediate ADCC against B-lineage acute lymphoblastic
leukemia via CD19 antibodies.88 In several other studies,
γδT cells have also been shown to mediate ADCC effects
against tumor cells via CD16 in the presence of therapeutic
antitumor monoclonal antibodies.89–91

Moreover, γδT cells have antitumor roles by modulating
other effector cells. For instance, Vγ9Vδ2 T cells process
endogenous antigens along the MHC-I peptide presentation
pathway, which may promote antitumor adaptive immunity
via the cross-presentation of tumor antigens.65 Vγ9Vδ2 T cells
activated by HMB-PP promote Th1 responses by inducing DC
maturation and IL-12 secretion, which may facilitate antitumor
immunity.92 IPP-expanded Vγ9Vδ2 T cells induce NK cells to
recognize and kill tumors that are usually resistant to NK
cytolysis by increasing NKG2D expression on their surface
through CD137L co-stimulation.93 Phosphoantigen-activated
APC-like Vγ9Vδ2 T cells present glycolipid antigens to

Table 2 Functional subsets of human γδT cells

Functional subsets Polarization References

IFN-γ-producing γδT IPP+IL-12+IL-4 antibody; IL-2+IL-21; nonpeptide antigens+IL-21; IL-2+IL-15 57–61

IL-4-producing γδT IPP+IL-4+IL-12 antibody 57

γδT-APC Microbial product 6

γδTFH IL-21; HMB-PP+IL-21 56,68

γδTreg TGF-β+IL-15; Vδ1 TCR antibody+ TGF-β1; IP-10 70–73

γδT17 IL-7+TCR agonists; IL-23; phosphoantigens+IL-1β+TGF-β+IL-6+IL-23; IL-6+IL-1β+TGF-β 14,75–77

Abbreviations: APC, antigen-presenting cell; γδTreg, regulatory γδT; HMB-PP, (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate; IFN, interferon; IL, interleukin; IPP,
Isopentenyl pyrophosphate; TCR, T-cell receptor; TGF, tumor growth factor.

Figure 1 Polarization and responses of human γδT-cell subsets to tumors.
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invariant NKT cells in a CD1d-restricted and α-GalCer-
dependent manner, and subsequently initiate antitumor
responses.94 Together, these results suggest that Vγ9Vδ2
T cells exert antitumor effects primarily through direct killing,
ADCC-dependent cytolysis and by regulating the functions of
other innate and adaptive immune cells.

The dramatic expansion of Vδ1 T cells, which usually
compose a minor proportion of PB γδT cells, has been
observed in solid organ transplant recipients who had devel-
oped CMV infection,95,96 and the long-term expansion of
effector Vδ1 T cells is a specific blood signature of CMV
infection.97 Anti-CMV-reactive Vδ1 T cells recognize intestinal
tumor epithelial cells. After recognition, Vδ1 T cells release
IFN-γ and tumor necrosis factor-α (TNF-α) and exert FasL-,
TNF-α-independent and perforin-dependent cytotoxicity
against target cells.98 CMV-induced Vδ1 T cells demonstrate
better antitumor potential and are associated with reduced
cancer risk in kidney transplant recipients.99 Expanded Vδ1
T cells expressing CD8αα after CMV reactivation after allo-
geneic stem cell transplantation recognize both CMV-infected
cells and primary leukemic blasts.100 In contrast, ex vivo-
expanded Vδ1 T cells mediate the killing of glioblastoma cells
in a CMV-independent manner.101 Furthermore, CMV infec-
tion also decreases tumor immunogenicity by downregulating
the expression of NKG2D ligands and ULBPs.102,103 Together,
these results indicate that CMV infection is closely associated
with the antitumor immunity of Vδ1 T cells, although the
mechanism underlying the recognition of CMV-infected cells
and tumor cells by Vδ1 T cells requires further study.

In addition to CMV-associated antitumor activity, both
circulating and tumor-infiltrating Vδ1 T cells respond to
malignancies of hematological and epithelial origin. Circulating
Vδ1 T cells contribute to the antitumor response against low-
grade non-Hodgkin lymphoma (NHL) by recognizing ULBPs
on lymphoma cells.44 Moreover, Vδ1 T cells, but not Vγ9Vδ2
T cells, have been detected in ULBP-positive lymph nodes in
NHL patients.44 In our previous study, we have found that
ex vivo-expanded human PB Vδ1 T cells demonstrate more
potent killing of colon cancer cells than Vγ9Vδ2 T cells via
cytolytic receptor–ligand interactions.13 Moreover, human Vδ1
T cells have been reported to inhibit tumor metastases
independently of primary tumor control in a xenograft model
of colon cancer.104 Tumor-infiltrating Vδ1 T cells isolated from
colorectal cancer exert cytotoxicity against autologous and
allogeneic cancer cells via the recognition of cell surface
antigens shared by epithelial tumors.105 With proper induction,
In vitro-re-activated tumor-infiltrating Vδ1 T cells isolated
from melanoma produce TNF-α and IFN-γ, and act in a
cytolytic manner against tumor cells.106,107 Ex vivo-expanded
Vδ1 T cells isolated from various solid tumors demonstrate
stronger cytotoxicity against tumor cell lines and/or freshly
isolated tumor cells compared with Vγ9Vδ2 T cells.105,108–112

Notably, in a previous study, the majority of Vδ1 T-cell lines
exerted robust cytotoxic responses against the melanoma cell
line A375, whereas only two of eight Vδ2 T-cell lines
demonstrated clear cytotoxic activity against A375, which was

enhanced by pretreating target cells with zoledronate.107 Thus,
although both structural subsets of γδT cells exert antitumor
effects, Vδ1 T cells are potentially better killers than Vγ9Vδ2
T cells, at least in the context of certain tumors.

PROTUMOR EFFECTS

Although γδT cells demonstrate potent antitumor capacity,
paradoxically they also exert protumor effects by promoting
noncytotoxic inflammation and regulatory functions that
subvert cytotoxic antitumor immunity. Intratumoral γδT cell
numbers are positively associated with advanced tumor stages
and are inversely correlated with breast cancer prognosis.113

γδT cells are essential producers of IL-17, both in mice and
humans.75,114 Furthermore, IL-17 mediates inflammatory
responses in tumor immunity. In our previous review,
we have described how IL-17 promotes colorectal cancer
progression.115 According to recent studies, γδT17 cells
exert tumor-promoting effects in mice by facilitating
angiogenesis.114,116 γδT17 cells also promote breast cancer
metastasis because mice treated with γδT-cell-depleting agents
or anti-γδTCR antibodies are profoundly protected against
pulmonary and lymph node metastases.117 However, there
have been few studies investigating the role of human γδT17
cells in tumor immunity. In our previous study, we have found
that tumor-infiltrating γδT17 cells induced by tumor-elicited
inflammation promote tumor progression via the secretion of
IL-17, IL-8, tumor necrosis factor-α (TNF-α) and granulocyte-
macrophage colony-stimulating factor (GM-CSF), thereby
forming an immunosuppressive microenvironment in human
colorectal cancer.14 Furthermore, γδT17 cells are the predo-
minant producers of IL-17 in lung cancer (unpublished data),
thus indicating their crucial role in IL-17-related inflammatory
responses in tumor immunity. In a murine ovarian cancer
model, γδT17 cells have been found to accumulate during later
stages of tumor progression.118 We have also demonstrated a
positive correlation between γδT17 cell numbers and advan-
cing tumor stages of human colorectal cancer.14

γδT cells possess potential regulatory roles in the control of
tumor immune responses. For example, according to Peng
et al.,73 tumor-infiltrating γδT cells in breast cancer contribute
to the formation of an immunosuppressive microenvironment
by suppressing naive and effector T cells and impairing DC
maturation and function. In addition, γδTreg cells derived
from breast cancer induce the immunosenescence of naive and
effector T cells and DCs, and this immunosuppressive activity
is further amplified by the senescent cells themselves.119

Moreover, our group has identified a novel γδTreg subset in
human colorectal cancer that promotes an immunosuppressive
microenvironment via a metabolism-related mechanism
(unpublished data). Thus, certain γδT cell subsets behave as
immunosuppressive cells and promote tumor progression in
specific cancers. However, more studies focusing on the
polarization mechanisms of protumor γδT cells in human
tumor microenvironments (TMEs) are needed.
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CLINICAL IMPLICATIONS

Given their potent MHC-unrestricted antitumor effector activ-
ities, γδT cells are attractive candidates for antitumor immu-
notherapies. The cytotoxic features of the Vδ1 and Vδ2 subsets
have been investigated.8 Preclinical and clinical studies have
paved the way for Vγ9Vδ2 T-cell-mediated immunotherapy,
given the high-frequency and broad antitumor properties of
this cell type.120 Clinical-scale expansion of Vγ9Vδ2 T cells via
direct stimulation by phosphoantigens or the induction of
agonist accumulation with aminobisphosphonates makes
Vγ9Vδ2 T-cell-based cancer immunotherapy feasible.120 Phase
I and II clinical trials have been conducted in patients with
various tumor types, and objective tumor responses have been
observed.7 Given the accumulating evidence supporting the
cytotoxic functions of Vδ1 subsets in basic research,13,121,122

Vδ1 T cells may be a potent tool for clinical manipulation in
cancer immunotherapy, and efforts have been put forth to
explore strategies for clinical-grade expansion. Intriguingly,
IL-4 promotes the proliferation of Vδ1 T cells and simulta-
neously inhibits Vδ2 T-cell growth,123 thus providing a novel
basis to develop preferential expansion approaches for Vδ1
T cells. Recently, Almeida et al.124 have reported a robust two-
step protocol for the selective expansion of Vδ1 T cells up to
2000-fold, and cellular products demonstrated strong cytotoxi-
city in vitro and therapeutic potential in xenograft models of
CLL. Clinical trials are necessary to ascertain the safety and
efficacy of Vδ1 T cells to move forward with autologous or
allogeneic cell therapies for both hematological and solid
tumors.

Immunosuppressive functions of γδT cells infiltrating breast
cancer and colorectal cancer TMEs have been described.14,73

The emerging evidence supporting protumor roles for specific
γδT-cell subsets potentially poses an obstacle to the develop-
ment of future therapies.125 Although knowledge of γδT-cell
function in the TME has gradually increased, it remains a
challenge to determine whether the inflammatory and regula-
tory features of γδT cells in the tumor-infiltrating lymphocytes
are intrinsic or induced by inflammatory factors in the TME.
To achieve successful therapeutic effects, it may be better to
identify immunosuppressive functional subsets and eliminate
them from a population of adoptive γδT cells before transfer or
to combine γδT-cell-based adoptive immunotherapy with a
strategy targeting the TME to prevent potential polarization
into tumor-promoting subsets.

CONCLUDING REMARKS

There are no clear boundaries between the structural and
functional subsets of γδT cells, and it is possible to polarize
Vδ2 T cells into nearly all functional subsets. However, efforts
should be made to further distinguish between Vδ1 and Vδ2
subsets, which may differ substantially in terms of their
localization and demonstrate context-dependent plasticity and
function. To date, no one-to-one correspondence between a
specific TCR structure and a specific effector γδT-cell type has
been reported. A myriad of evidence indicates either antitumor
effects or tumor-promoting activities for γδT cells in tumor

immunity. The dual role of γδT cells is closely associated with
their complex surrounding microenvironment, which influ-
ences γδT-cell polarization. Our group has identified the ability
of ex vivo-expanded Vδ1 T cells to exert favorable killing
activity against colon cancer, whereas γδT17 cells in colon
cancer tissue, the majority of which demonstrate Vδ1 TCR
usage, promote the formation of an immunosuppressive TME
and thus exert a tumor-promoting role. Therefore, deciphering
the mechanisms underlying the development, tissue tropism,
ligands and immune responses of γδT-cell subsets should
elucidate their effects in tumor immunity, thus providing
sufficient evidence for the application of γδT-cell subsets for
antitumor adoptive immunotherapy or for targeting certain
inflammatory or regulatory γδT-cell subsets for tumor therapy.
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