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Background: Neuroscience lacks a reliable method of screening the early stages

of dementia.

Objective: To improve the diagnostics of age-related cognitive functions by developing

insight into the proportionality of age-related changes in cognitive subdomains.

Materials and Methods: We composed a battery of psychophysiological tests

and collected an open-access psychophysiological outcomes of brain atrophy (POBA)

dataset by testing individuals without dementia. To extend the utility of machine learning

(ML) classification in cognitive studies, we proposed estimates of the disproportional

changes in cognitive functions: an index of simple reaction time to decision-making

time (ISD), ISD with the accuracy performance (ISDA), and an index of performance in

simple and complex visual-motor reaction with account for accuracy (ISCA). Studying

the distribution of the values of the indices over age allowed us to verify whether diverse

cognitive functions decline equally throughout life or there is a divergence in age-related

cognitive changes.

Results: Unsupervised ML clustering shows that the optimal number of homogeneous

age groups is four. The sample is segregated into the following age-groups: Adolescents

∈ [0, 20), Young adults ∈ [20, 40), Midlife adults ∈ [40, 60) and Older adults ≥ 60 year

of age. For ISD, ISDA, and ISCA values, only the median of the Adolescents group is

different from that of the other three age-groups sharing a similar distribution pattern (p >

0.01). After neurodevelopment and maturation, the indices preserve almost constant

values with a slight trend toward functional decline. The reaction to amoving object (RMO)

test results (RMO_mean) follow another tendency. The Midlife adults group’s median

significantly differs from the remaining three age subsamples (p < 0.01). No general

trend in age-related changes of this dependent variable is observed. For all the data

(ISD, ISDA, ISCA, and RMO_mean), Levene’s test reveals no significant changes of the

variances in age-groups (p > 0.05). Homoscedasticity also supports our assumption

about a linear dependency between the observed features and age.
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Conclusion: In healthy brain aging, there are proportional age-related changes in the

time estimates of information processing speed and inhibitory control in task switching.

Future studies should test patients with dementia to determine whether the changes of

the aforementioned indicators follow different patterns.

Keywords: machine learning, cognitive domains, cognitive decline, aging, clinical psychology, neurodegeneration,

proportionality, psychophysiological test

1. INTRODUCTION

Neuroscience lacks a reliable means for screening patients in the
early stages of dementia (Habuza et al., 2021a,d). Furthermore,
the accuracy of clinical diagnostics of the disease is also limited
(see Table 1). This may delay the identification of dementia
for over a year, thus reducing the supposed benefits of early
treatment (e.g., an improvement of memory, reduction of
anxiety, and engagement into social activities) (Milne, 2010).

There are several ways to improve the diagnostics. The
first one is a multi-modal approach to identify early dementia.
The second approach is an informant-based assessment during
the primary diagnostics. Scientists and medical professionals
advocate for this because good knowledge of the personality of
the patient is crucial for the disease identification. The informant-
based assessment is reported to be more reliable than the Mini-
mental state examination (MMSE) (Panegyres et al., 2016).
The third approach is a further development of the screening
strategy. To be trusted and widely used in practice, a novel test
should be based on the concepts of brain aging. The prevailing
solution comprises three steps: 1) investigating possible new
causes of brain aging; 2) testing the reliability of the test in
a healthy population; and 3) testing the reliability in patients
with dementia.

Due to the growing interest in cognitive changes in the aging
brain, researchers have accumulated facts that provide segmental
insight on changes in reaction speed, working memory (Chai
et al., 2018; Verhaeghen, 2018), executive functions (Rosado-
Artalejo et al., 2017; Nyongesa et al., 2019), memory, linguistic
abilities, and knowledge (Antoniou and Wright, 2017; Peelle,
2019). To describe the mechanism of cognitive decline with
advancing age, scientists introduced a concept of brain reserve
and cognitive reserve both mitigating consequences of traumas
to the head, aging, and neurodegenerative diseases (Medaglia
et al., 2017). However, a general theory that would meet all the
needs ofmedical practitioners is missing. The following questions
remain unaddressed.

Abbreviations: ACC, Accuracy; CVMR, complex visual-motor reaction; DMT,

decision-making time; EF, executive functioning; EFT, executive functioning test;

IES, inverse efficiency score; ISCA, index of performance in simple and complex

visual-motor reaction with account for accuracy; ISD, index of simple reaction time

to decision-making time; ISDA, index of simple reaction time to decision-making

time with the accuracy performance; LR, Linear regression; ML, machine learning;

PS, psychophysiological status; PT, psychophysiological test; RMO, reaction to

a moving object; ROC AUC, Receiver Operating Characteristic Area Under the

Curve; SVM, Support Vector Machine; SVMR, simple visual-motor reaction;

Sens., Sensitivity; Spec., Specificity; TRVI, the time delay in responding to the

targeted stimulus because of visual interfering objects; WM, white matter.

First, both cognitive and brain reserves are not well defined
yet. The concept of reserve relies on anatomic measurements
(the cranial volume, and its height and length) as predictors
of the brain reserve (Brickman et al., 2011). According to
novel findings, the list of predictors should be extended to the
total count of neurons, synapses, and dendrites in the brain
(Cullati et al., 2018). In contrast to the aforementioned structural
findings, the cognitive reserve comprises a set of psychological
factors and different lifestyle activities throughout life (Brickman
et al., 2011). However, there is an opinion that the cognitive
reserve consists of the neural reserve and neural compensation
(Lee et al., 2019).

Second, it is not clear what exactly accounts for the resilience
of the brain to cognitive decline. There is an opinion that the
brain reserve is a primary defense, and it defines a potential
of the cognitive reserve (Van Loenhoud et al., 2018). People
with more neurons may face dementia later compared to people
with a lesser brain reserve (Giovacchini et al., 2019). Contrarily,
neuroplasticity depends on premorbid intelligence, education,
and lifestyle (cognitive reserve), e.g., people with more years of
education and higher intelligencemay cope better with dementia.

Moreover, cognitive and brain reserves are independent in
moderating symptoms of dementia (Groot et al., 2018). Further
research is required to study a relationship between the brain
reserve and the cognitive reserve.

To date, psychophysiological tests widely used for assessing
cognitive domains have not been fully studied or justified in
such aspects as accuracy and implication. As an example, a
meta-analysis of cognitive tests showed that MMSE—the most
commonly used tool—had the lowest sensitivity for diagnostics of
Mild Cognitive Impairment (MCI) (Breton et al., 2019). This was
confirmed by another review that also showed that the predictive
power of MMSE and Montreal Cognitive Assessment (MoCA) is
more limited than in recall tests (Tsoi et al., 2017).

1.1. Significance of Studies on Cognitive
Decline in Healthy Aging
1.1.1. Novelty of Studies on Age-Related Changes in

Cognitive Subdomains
Though some studies are dedicated to comparison of patients
with neurodegenerative diseases with cognitively normal
population (Nemmi et al., 2019; Rehman et al., 2019), they have
limited value as the processes that unfold in normal aging are not
studied well (Boyle et al., 2013; Murman, 2015; Hedden et al.,
2016). There is no strong concern about the pathophysiological
changes responsible for aging. Age-related cognitive decline
seems to be conciliated by underlying neurobiological changes,
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TABLE 1 | Accuracy and limitation of methods of diagnosing dementia.

Method Diseases studied Limitations

S
e
n
s
it
iv
it
y,
%

S
p
e
c
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c
it
y,
%

R
e
fe
re
n
c
e
s

MRI

MCI to AD progression* 87 66 Desikan et al., 2010 In either case, it is often important to not

appear to be overly certain, as in most

instances imaging features are not

pathognomonic Gaillard, 2021

Parkinson’s Disease 61 68 Nemmi et al., 2019

Multiple sclerosis 93 81 Eitel et al., 2019

Tractography
Amnestic MCI 96 94.2 Jung et al., 2018

Parkinson’s disease 40–86 41–94 Kamagata et al., 2013

fMRI mild AD 77.3 70 Balthazar et al., 2014

Altered BOLD signals found in AD/MCI

patients can reflect impairments in

haemodynamic processes separately

from changes in neuronal activity Göttler et al., 2019

PET

AD vs. FTLD 69.4 93.2 Kim et al., 2019 Despite promising reliability and accuracy,

PET/MRI exists predominantly as a research-based

tool in dementia as it requires

specific radiotracers Lorking et al., 2021

AD vs. MCI 81.8 86 Arbizu et al., 2013

Amyotrophic lateral

sclerosis

94.8 80 Van Laere et al., 2014

Angiography

Dementia with

Lewy bodies (DLB) 93 87 Kamagata et al., 2017

The technique exposes the patient to radiation

as well as iodinated contrast which may

induce nephropathy and allergic reactions

Brain perfusion

MRI AD vs. FTLD 69 68 Steketee et al., 2016 Damage of the brain function in FTLD,

assessed with ASL perfusion, can vary

regionally despite widespread

atrophy Shimizu et al., 2010

SPECT
Dementia 61 70 Uchida et al., 2006

DLB vs. AD 87–100 90–96 Roquet et al., 2016

SPECT

+ MMSE

DLB vs. AD 81 85 Hanyu et al., 2006

Cognitive tests

FBI FTLD 90 100 Kertesz et al., 2003 The tests may exhibit the limited sensitivity

to subtle brain abnormalities Spencer et al., 2013.

The results should be carefully

transfered from one to another type

of cognitive impairment Freitas et al., 2012

Mini-Cog Cognitive Impairment 60 90 Carnero-Pardo et al.,

2013

MoCA Vascular dementia 77 vs. 85 97 vs. 88 Freitas et al., 2012

MMSE

MCI vs. dementia

88 vs. 84 70 vs. 86 Tsai et al., 2016

full vs. short

MoCA

88 vs. 79 74 vs. 80 Tsai et al., 2016

∗AD, Alzheimer’s disease; BOLD, blood-oxygen-level-dependent; DLB, Dementia with Lewy bodies; FBI, Frontal Behavioral Inventory; FTLD, fronto-temporal lobe dementia; MCI, mild

cognitive impairment; MMSE, Mini Mental State Examination; MoCA, Montreal Cognitive Assessment.

such as vascular changes and accumulation of neuropathology
(Hassenstab et al., 2016; Statsenko et al., 2021b,c). The growing
support for an alternative hypothesis that estimates cognitive
change in older adults may have been biased negatively
by the influence of diseases that are common in late life,
especially neurodegenerative diseases such as Alzheimer’s disease
(Spiro III and Brady, 2011).

Studies on accelerated brain aging are of limited value without
knowledge of what can be considered as normal cognitive
changes (Kaufman et al., 2016). It is quite evident that all these
studies have common limitations andmisclassification bias. Most
research found it difficult to differentiate pathological cognitive
declines from normal cognitive aging especially among adults
over the age of 65 years old (Rönnlund et al., 2005; Salthouse,
2016, 2019).

There is a large number of neurodegenerative diseases
and schemes of classifying them (Armstrong, 2012), e.g., a
classification based on neuropathological findings provides over
10 groups with many nosologies within each group (Kovacs,

2019). Researchers struggle to count and put all these diseases
into a system because it is a huge number to cover. A
clinical appearance along with non-invasive diagnostic signs
is not specific enough to distinguish these diseases. This
requires invasive neuropathological examination (Kovacs, 2019).
In such circumstances, one cannot cover the whole range of
neurodegenerative diseases with comparative studies. This could
explain why some researchers try to work out a model of normal
aging with non-invasive studies, e.g., cognitive test and MRI
(Salthouse et al., 2003; Tamnes et al., 2013; Storsve et al., 2014;
Viviano et al., 2017; Chen et al., 2018; Salthouse, 2019; Habuza
et al., 2021b; Statsenko et al., 2021d). These researchers of brain
aging do not try to compare healthy adults with the individuals
that suffer from neurodegeneration. Instead of concentrating on
how to identify a particular disease, they tend to highlight the
permissible changes in the healthy population. This helps to raise
suspicion of the accelerated brain aging in the outstanding cases.
We use a similar approach in our studies (Gorkom et al., 2021;
Statsenko et al., 2021e,f; Uzianbaeva et al., 2021).
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1.1.2. Actuality of Studies on Information Processing
Age-related changes in information processing speed are an
issue of ongoing studies (Hong et al., 2015; Finkel et al.,
2016; Adólfsdóttir et al., 2017). An exceptional interest in this
cognitive feature is based on the fact that changes in information
processing speed correlate with functional abilities in older adults
(Wahl et al., 2010; Finkel et al., 2016). Many research questions in
these studies are not covered yet. Recent studies on the issue were
dedicated to structural and biochemical correlates of changes
in processing information. For example, a study of typical
aging reported an inverse relationship between information
processing speed and both the interleukin-6 level and fractional
anisotropy of corpus callosum (Bettcher et al., 2014). Another
study highlighted correlations between larger volume of corpus
callosum, lower levels of the inflammatory marker and insulin,
and greater self-reported physical activity of intact older adults
(Bott et al., 2017).

Some associate age-related decline in cognitive speed with
white matter integrity (Kerchner et al., 2012; Salami et al., 2012;
Hong et al., 2015). However, it is not entirely clear what are the
main factors responsible for white matter changes. There is still
no sufficient explanation for neurocognitive slowing observed
in aging.

By doing such research, scientists try to find out the
reasons for changes in the information processing speed during
normal aging. If studied thoroughly in a healthy population,
the reasons can be compared with the ones in patients with
neurodegeneration. This will evidence risk factors, e.g., genetics
(Cheng et al., 2014) and white matter changes (Hayes, 2017).
In such a way, studies of a healthy population may contribute
to identification and differentiation of the early signs of
neurodegenerative diseases in the future.

There are discrepant findings regarding age-related changes
in information processing speed depending on the tasks used.
Younger adults performed better in a symbol search and coding
task, whereas older adults were more proficient in inspection
time task (Ebaid et al., 2017). There is no convincing explanation
what accounts for this. In another study with the same
task, the performance speed slowed down across the lifespan
(Ebaid and Crewther, 2019).

Interestingly, some researchers claim that a decline in sensory
function reduces the processing speed (Tam et al., 2015; Ji
et al., 2019). The results of the studies indicated that cognitive
processing speed predicted general cognitive status in older but
not in younger adults. Future research may be needed to verify
the findings (Statsenko et al., 2021d).

1.1.3. Actuality of Research on Inhibitory Control and

Task Switching
Task switching has commonly attracted a particular interest of
neurophysiologists as it accounts for proficiency in multitasking.
Inhibition of planned response actions is used to explain various
findings in such studies. It is a known fact that seniors experience
difficulties in sustaining attention and inhibiting behavioral
responses to the stimuli that are inconsistent with the selected
goals. Despite this, studies on inhibitory control during normal
aging remain actual as distinctive features and exact mechanisms

of such a deterioration are not well justified (Gade et al., 2014;
Kray and Ferdinand, 2014; Gaál and Czigler, 2015, 2017).

Since some studies managed to establish a relationship
between white matter integrity and inhibitory control (Ystad
et al., 2011; Wolf et al., 2014; Hayes, 2017; Li et al., 2018) there
is an assumption that age-related changes in the white matter
underlie inhibitory control deficits in the elderly. Nevertheless,
specific evidence for this from a structural neuroscience
perspective is lacking (Coxon et al., 2012). Some researchers
investigated lifespan trajectories of inhibition deficit. The results
hint to a qualitative change of task switching at the age of 60
years old. However, the neuronal reasons for this are poorly
understood (Nyberg et al., 2012; Van der Elst et al., 2013;
Adólfsdóttir et al., 2017).

In the last decade, a large number of studies tested
the hypothesis that older adults experience inhibition deficit
(Pettigrew and Martin, 2014; Gade et al., 2017; Hsieh and
Lin, 2017). Surprisingly, some studies with both cross-sectional
(Pettigrew and Martin, 2014; Hsieh and Lin, 2017) and
longitudinal design (Adólfsdóttir et al., 2017) revealed the
presence of age-related decline in inhibitory functioning while
another study did not verify it (Sebastian et al., 2013). A
difference in the tasks and strictness of inclusion criteria may
resolve the controversy. To prove this assumption, new studies
should be initiated.

There are two distinct types of inhibition that are based
on two dissociable processes: the threshold adjustment process
involving the global inhibition of motor output and the
controlled selection process involving competitive inhibition
among coactive responses. Recent findings show that the
threshold adjustment process functions differently in early and
late adulthood (Larson et al., 2016; Erb et al., 2020). There is a
hypothesis that cognitive fatigue due to the tasks provided (e.g.,
Flanker task) may impact the findings in older adults andmislead
the research.

1.2. Processes Underlying Cognitive
Changes
Several processes may account for the declines associated with
cognitive aging (Zelinski et al., 2011). Two of them, atrophy and
neuroplasticity, are in direct theoretical opposition. The concept
of brain atrophy is intrinsically associated with vascular factors
(Borja et al., 2020) and inflammation (Alkasir et al., 2017), dietary
habits (Seetharaman, 2016), metabolic disorders (Komuro et al.,
2020), and dysbiosis (Alkasir et al., 2017). These factors provide
important clues to dementia-related mechanisms and support
the concepts regarding the management of cognitive impairment
through the modulation of these factors. In contrast, the concept
of brain neuroplasticity suggests that behaviors such as aerobic
exercise and direct cognitive training can serve as compensatory
factors that may potentially reduce the appearance of cognitive
aging and hinder the signs of dementia (Zelinski et al., 2011).

1.3. Concurrent Changes in Cognitive
Domains During Aging
Declines vary by cognitive domain. Many of them are subject to
deterioration, whereas others, such as language, remain stable. In
general, age-related changes in reaction speed underlie changes
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in a number of cognitive domains (Salthouse et al., 2003). The
decline in information processing affects executive functioning
(EF), a cognitive domain that accounts for individual goal-
directed behavior. This may be explained in two ways. The first is
that relevant operations cannot be executed within the required
(limited) period. The second is that slow processing reduces
the amount of simultaneously available information and that
the higher-level processing shuts down without the information
supply (Salthouse, 1996). For this reason, EF deficit has the
potential to affect performance in a wide variety of cognitive
variables and may serve as a potential mediator of age-related
cognitive decline (Salthouse et al., 2003).

Studies suggest that there are several interdependent cognitive
aging mechanisms. Despite the common pattern of findings for
different speed-based tasks, cognitive slowing is not known to
be a general factor of decline in abilities (Zelinski et al., 2011;
Anderson and Craik, 2017). For example, working memory
is required for recalling a task. It correlates positively with
reasoning. Logically, its impairment has substantial ramifications
for cognitive performance in older adults.

Executive Functioning (EF) and Cognitive Control.
Cognitive control is the ability to orchestrate our thoughts
and actions per internal goals. EF is commonly used as an
umbrella term that covers both EF and cognitive control and
applies to a set of higher-order (cognitive) processes involved
in organizing intentional behavior in a novel situation (Miyake
and Friedman, 2012). EF comprises three subdomains: inhibitory
control that involves the preclusion of irrelevant information
and the prohibition of prepotent responses; task switching that is
the ability to switch flexibly between mental sets; and updating
that is the constant monitoring and rapid addition/deletion of
working memory contents. Decreased inhibitory control is a
feature of age-related cognitive decline (Maldonado et al., 2020).
Switching between different tasks requires working memory if a
cue is absent, and a decline of the memory domain across time
may impact this EF (Aschenbrenner and Balota, 2015; Moreira
et al., 2018).

Attention is typically divided into two global subdomains:
selective attention (e.g., concentration) and sustained attention
or vigilance (e.g., divided attention) (Harvey, 2019). The
elderly have a reduced ability to pay attention to selected
stimuli. Age-related declines in selective attention interact with
other cognitive domains and other known age-related changes
(Zanto and Gazzaley, 2017).

There are other attentional subsystems. For example, it was
shown that aging affects the balance between goal-guided and
habitual spatial attention (Twedell et al., 2017). By the habitual
spatial attention, authors of this study understand attention to
the target that attracts notice more frequently, i.e., a space with
the high-probability of triggering stimuli. Older adults suffer
from disrupted goal-guided attention, but they are relatively
unimpaired in deploying spatial attention through incidental
habit-based learning. Hence, training older adults to develop
good search habits may help compensate for a decline in some
other attentional subdomains. All the attentional skills have EF
components, the age-related decline of which impacts attention
(Harvey, 2019). Older adults have a deficit in inhibiting irrelevant

information, presumably because of changes in the prefrontal
cortex (Zanto and Gazzaley, 2017).

Memory, as a cognitive domain, may be affected by multiple
processes including speed, working memory, executive control
operations, and sensory declines. Memory declines in aging may
stem from a deficient ability to dynamically allocate attention
and switch between functional brain networks. Because of
structural and functional brain changes, older adults do not
ignore distraction but, rather, co-encode relevant and irrelevant
information. This leads to the overload of the limited cognitive
resources (Zanto and Gazzaley, 2017).

Despite the well-established fact that memory performance
declines with age, not all aspects of memory are impaired
equally (Balota et al., 2000). The procedural memory is manifested
without the direct recollection of the previous events, whereas
the declarative memory is revealed through intentional retrieval
of previous experience. It encompasses the episodic memories on
some events and the semantic memories that reflect our general
knowledge of facts and word meanings. In general, older adults
have the most significant memory deficits that appear in long-
term episodic memory because of the major attention demand.
The semantic, sensory, and procedural memory have a minimal
demand for attention, and they produce relatively little age-
related change in performance (Balota et al., 2000; Zanto and
Gazzaley, 2017).

The mediation of memory with other cognitive domains is
described with the concept that semantic memory is an organized
data storage of words or concepts - “nodes” - connected to other
nodes via associative pathways. When an individual by directing
attention activates a node, the activation spreads through the
network from the node to other related nodes for subsequent
processing (Balota et al., 2000).

Working memory as a temporary buffer for cognitive
processing undergoes such age-related changes as a reduction
of its capacity and speed of processing. The reasons for the
changes are a decline in the processing speed and/or a breakdown
in the basic control processes (resistance to interference, task
coordination, memory updating, binding, and/or top-down
control as inferred from neuroimaging data). Working memory
is more age-sensitive regarding spatial rather than verbal material
(Verhaeghen, 2018).

The age-related sensory and perceptual deficits exacerbate
cognitive decline and complicate the performance of cognitive
tasks. Declines in these domains indicate a reduction of the
ability to detect a stimulus that occurs in one of the five
sensory modalities, to process and integrate the acquired
information. Clinically, the elderly may experience a variety
of challenges in the identification of objects, sounds, tastes,
smells, and tactile sensations. These include agnosia, the inability
to recognize previously identifiable objects (Harvey, 2019).
Cognitive aging in sensation and perception domains impacts
other domains in turn. For example, at any age, hearing
deficits lead to auditory memory problems and may affect
language comprehension (Zelinski et al., 2011). There are
strategies to compensate for declines in perceptual processes. The
“posterior-to-anterior shift in aging” model by Davis describes
the increased prefrontal activity as a means to overcome declines
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in perceptual processes that occur in occipital regions. This
accounts for the task performance comparable in both older and
younger adults, although it utilizes different neural mechanisms
(Zanto and Gazzaley, 2017).

Motor skills (the basic elements of motor activity) and
construction (the ability to either copy or produce drawings
of common objects, as in clock drawing paradigms) may
be impaired in severe cases of dementia, damage to the
nondominant hemisphere, or lesions to the parietal cortex
(Harvey, 2019).

Language. Some cognitive processes associated with language
remain stable or improve into the mid-70s (Zelinski et al., 2011).
Language deficits may be associated with a deficit in EF (e.g., the
ability to access semantic storage successfully) or with a slowed
processing speed (Harvey, 2019).

A general slowness of a neurologic response is the major
factor in comprehension impairment. Additionally, attentional
changes and memory decline impact speech comprehension
(Obler and Albert, 1981).

Inseparability and intercorrelation of cognitive domains.
Cognitive domains should not be viewed as lacking validity if they
are intercorrelated. There is considerable evidence that in many
patient populations, including those with schizophrenia and
bipolar disorder, conventional domains of cognitive dysfunction
are not truly separable (Harvey, 2019).

2. OBJECTIVES

We aim to improve the diagnostics of age-related cognitive
functions by developing insight into age-related changes in
cognitive subdomains. Specifically, we want to determine
whether diverse executive functions decline proportionally
throughout life.

Hypothetically, cognitive domains are interdependent, and
the pace of their age-related decline is thought to be
approximately equal. Moreover, there is a concept that explains
the normal neurocognitive slowing with the slowing of central
or computational processing common for all cognitive functions.
Alternatively, disproportional changes may indicate accelerated
brain aging.

To address the objectives, we formulated the following tasks:

1. To develop new indices that reflect the ratio of cognitive
functional activities during psychophysiological task
performance.

2. To divide the studied sample into an optimal number of age-
groups with regard to the psychophysiological test results,
and find attributes that can be used as subtle biomarkers of
age-group identification by assessing the performance of the
deployed unsupervised ML model.

3. To study the distribution of the novel designed indices
and selected psychophysiological attribute values across the
lifespan in both sexes.

4. To inspect possible associations of the age with the newly
proposed scores, and to determine the predictive potential of
PTs to identify the values of the indices developed.

3. MATERIALS AND METHODS

3.1. Psychophysiological Tests Used
To estimate the psychophysiological status, we used a battery
of neurophysiological tests that involve such cognitive domains
and subdomains as attention, working memory, information
processing speed, task switching and inhibitory control, and
executive control (Statsenko and Charykova, 2010; Statsenko
et al., 2019, 2020). The tests and their dependent output variables
are listed below.

1. Simple visual-motor reaction (SVMR). The task estimates
mean reaction time recorded as a result of subsequent
attempts in the task with the only type of stimuli and the
only way to respond to them. Reaction time (ms) is a major
dependent variable. Typically, the test contains over 30 trials
(SVMR_trialsNo) with unequal intervals of time between
them. One can calculate the mean value of reaction time
out of subsequent episodes of testing (SVMR_mean). By
making a set of trials, researchers improve the accuracy of
assessing information speed processing. They also count the
number of mistakes made by the examinee (SVMR_mistakes).
The mistakes can be either missing the targeted events
(SVMR_passes) or preliminary responding (SVMR_falstart).

SVMR time reflects themobility of the examinee. Themean
reaction time under 177 ms accounts for the pronounced
mobility of the nervous processes. The range of values from
177 to 200 ms is characteristic of a mobile type of the
processes. Its length within 200–210 ms depicts an average
type of the nervous processes. SVMR_mean value of 210–233
ms indicates the inertial status of the nervous system. After
reaching the threshold value of 233ms, the pronounced inertia
is diagnosed. The SD (SVMR_variance) is a measurement
that shows how the length of the reaction is scattered
in time.

2. Complex visual-motor reaction (CVMR) is a variant of the
“go/no-go” test in which the examinee is to respond to one
of the two possible types of triggering stimuli. We asked
the examinee to respond by pushing the button when the
green indicator light appears (see Figure 1A). In reverse
to this condition, when the indicator is colored red, no
motor response is expected (see Figure 1B). The system
records the latency between the time the light emerges and
the time the examinee responds. The result is processed as
mean length of response time calculated after 30 subsequent
presentations of the triggering stimulus (CVMR_mean).
We also reported a number of mistakes (CVMR_mistakes).
Those were the mistakes analagous to SVMR: missing
the triggering object (CVMR_passes), untimely responding
(CVMR_falstart). There was one more type of errors that was
specific to CVMR. It was a false reaction to the triggering
stimulus of the wrong color, i.e., the responding to the red flash
rather than to the green one (CVMR_false_reaction).

Normally, CVMR takes more time than SVMR; the
difference in their length is called decision-making time
(DMT) (see Equation 1). It reflects the time cost of response
selection (see Figure 1). The process affiliates the cognitive
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FIGURE 1 | Simple and complex visual-motor reaction test (for details see Subsection 3.1).

FIGURE 2 | Reaction to a moving object test.

subdomains of task switching and inhibitory control,
i.e., the examinee inhibits prepotent responses and shifts
between tasks.

The number of incorrect responses is expected to be higher
in CVMR than in SVMR. For both SVMR and CVMR, one
can calculate the percentage of trials that went wrong in the
overall number of trials. To compare performance in the tests,
onemay use a derivative variable called inverse efficiency score
(IES) (see Equation 2).

3. Reaction to a moving object (RMO) allows us to estimate a
balance or predominance of either excitation or inhibition in
the central nervous system. At the time of the test, a circle, a
starting point and a finishing line appear on the screen. The
circle is quickly filled at a constant radial pace with a color,
from some starting point to the finishing line in a clockwise
direction as shown on Figure 2. The examinee is asked to

respond by pressing the button the moment the targeted
moving object crosses the finishing line. In a set of subsequent
attempts, the response time delays are documented as positive
values, whereas the premature responses are documented as
negative values.

There are a total number of over 30 trials (RMO_trialsNo).
The system calculated the mean value (RMO_mean) of
positive (the time delays) and negative values (the premature
responses). If the RMO_mean value is positive, it reveals the
predominance of inhibition over excitation. When negative,
RMO_mean indicates the predominance of excitation over
inhibition.

The application sums up the number of the delayed
responses (RMO_delays), the false starts (RMO_falstart) and
the total number of responses that were accurate in time
(RMO_acc). Also, the tester records the time length of the
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FIGURE 3 | Attention study and interference resilience technique (for details see Subsection 3.1).

responses (RMO_delaysTotalTime, RMO_falstartTotalTime,
and RMO_positiveSum).

4. Attention study technique: To test attention, identical
triggering stimuli are presented subsequently in different
locations on a computer screen (see Figure 3A). The mean
response time (AST_mean) reflects the level of attention to
the visual objects, stability, concentration of attention, speed
of information processing, and work efficiency.

5. Interference resilience technique: In contrast to the previous
task, this technique includes additional interfering objects
(e.g., circles of different color and size) overlapping each other
and the targeted stimuli, which requires additional time for
the participant to notice the triggering signal and respond
(see Figures 3B,C). The system calculates the average response
time (IRT_mean).

6. We used wrist dynamometry to measure the maximum
muscular strength of the right (WDR_MMS) and left hand
(WDL_MMS). Asymmetry coefficient (AC) is calculated as the
ratio of the maximum muscular strength of the wrists (see
Formula 4).

DMT = CVMR_mean− SVMR_mean (1)

IES =
Mean value of the reaction time

1−mistakes, %
(2)

TRVI = IRT_mean− AST_mean (3)

AC =
WDR_MMS

WDL_MMS
(4)

3.2. Characteristics of the Study
Participants
We analyzed the data from a publicly available dataset named
after the title of the project Psychophysiological Outcomes of
Brain Atrophy (POBA). The dataset contains about 100 features
reflecting the overall psychophysiological status of 231 people of
different age (4–83 years; 134 women, 97 men). Written patient

consent or parental consent with assent from minors for testing
and scanning was obtained in each case. The examinees were
scanned to exclude brain pathology. Some of them suffered from
periodic headaches. The others started their professional sports
career. Not to impact the study outcomes, the examinees were
not paid for participation or being tested.

The inclusion criterion was literacy, i.e., only those adults who
indicated that they did at least professional courses after finishing
general education took part in the study.

The exclusion criteriawere as follows: organic brain pathology,
mental disorders, and recent or past injury to the head. All
the participants were examined by a qualified neurologist.
They were found healthy based on the clinical examination
and the negative results of MRI which was conducted to
rule out any underlying pathology. In this way, we followed
the recent practice parameters of the American Academy of
Neurology that recommend neuroimaging (e.g., MRI) to detect
neurodegenerative conditions in early stages (Fuller et al., 2019).
Supplementary Table 1 shows the distribution of the subjects
across age and sex groups. The dataset is provided on demand
(see section 9). Additional details on the study design and
description of all the features are available in our recent studies
(Statsenko et al., 2020, 2021a).

3.3. Methodology of the Study
To find the appropriate solution for the first objective, we analyzed
the structure of the complex visual-motor reaction (CVMR),
which is also commonly called the choice reaction. Similar to the
simple visual-motor reaction, the choice reaction includes such
components as sensory acquisition (visual perception) andmotor
responding. Additionally, CVMR encompasses the decision-
making component required to process an inhibitory condition
present in the task (see Figure 4). This processing causes a
time delay (DMT). In our recent study, we analyzed the age-
related variability of DMT. In this study, we want to concentrate
on the ratio between DMT and SVMR time, because they
reflect different cognitive functions: the switching and inhibitory
control estimate vs. the information processing speed estimate.

We also found the analysis of RMO_mean variable relevant
to this study. In the RMO task, the examinee is supposed to
respond subsequently to a set of expected events accurately at
the anticipated moments when the events occur. To perform
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FIGURE 4 | Age-related changes in simple and complex visual-motor tasks estimates and the cognitive functions they reflect.

the test, the individual employs such cognitive domains as
attention, inhibitory control, and task switching. Thus, the
dependent variable of the reaction to a moving object test
(RMO_mean) reflects the cooperative involvement of different
cognitive domains.

The second objective was to find the optimal number k of
distinct nonoverlapping subgroups with regard to age. For this,
we used a heuristic approach based on the elbow method. We
utilized the K-means algorithm and evaluated the distortion
score or the sum of squared distances from each point to its
assigned centroid as a performance metric of each chosen k. The
optimal cutoff k value corresponded to the minimal distortion
score. When the optimal k was set, we utilized the K-means
clustering method to assess the separability measure with regard
to the age group by finding a centroid for each cluster and
counting the number of relevant and irrelevant data points in
the groups.

To address the third objective, we analyzed the charts
that describe age-related changes of the aforementioned
indices and dependent variables. Using the bootstrap method
with regard to age, we built the linear regression model fit
and 95% CI for the regression estimate. Then we analyzed
the progression or dynamics of the proposed indices.

To compare lifelong changes of the variables in different
age-groups, we used descriptive statistics and the Kruskal-
Wallis test (Habuza et al., 2021c). To figure out whether
there is statistically significant differences between the data
for two sexes, we resorted to statistical hypothesis tests,
specifically t-test.

The fourth objective was multifold. We hypothesized that
the newly developed indices may reflect age-related changes
of the psychophysiological status of the examinees. To look
for the possible associations of the age, indices, and other
psychophysiological tests, we fed these data to conventional ML
models, trained with a 10 fold cross-validation technique, and
compared their performance.

In the first part of the fourth objective, we used ML
classification algorithms to predict the age group from an
individual performance in PTs. The threshold value was 40 years
of age. Our recent study justifies this age to be a cut-off value
for cognitive decline that can be identified from test performance
(Statsenko et al., 2021a). In this study, we utilized classification
models. For this, we added a single newly proposed index to
the list of predictors used in the recent study (see the left
column in Supplementary Table 2). We employed conventional
ML classification models with default architecture from Python
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scikit-learn v. 0.24.2 library. The classifiers we used are listed
in comments to Table 5. We trained all the models in the
stratified k-fold cross-validation technique until convergence as
per scikit-learn default settings. The results predicted in each fold
were merged and then averaged to report the final accuracy of
the models. By comparing the model performance metrics, we
tested the informative input of the indices to the prediction of
the age. To evaluate the performance of the predictive models,
we generated a receiver operating characteristic (ROC) curve
averaged over 10 times. We also calculated the mean sensitivity,
specificity, accuracy (ACC), and area under the curve (AUC)
values. These performance measures were suitable as the dataset
was balanced across the age attribute. Then, we averaged the
accuracy of the models by calculatingMean ± SD for each index
used as a predictor (see the left columns of Table 5). Finally, with
the Kruskal-Wallis test we tested whether the variance of the
accuracy differs significantly (p > 0.05) for an index compared
to other indices.

Working on the second part of objective four, we figured out
whether the proposed indices provide a summary of the findings
obtained while testing individuals. To address the task, we used
ML regression models forecasting values of the newly proposed
indices. As predictors, we utilized the features comprising POBA
dataset with an exception of those from which the values of the
indices can be calculated. Specifically, to predict the values of
ISD and ISDA indices we used the variables listed in the middle
column of Supplementary Table 2. To forecast the value of ISCA
index, we used the same list of predictors with an exception of
“SVMR_IES” as the prognosis can be calculated from this feature.
To evaluate the quality of regressor outcome, we employed mean
absolute error (MAE), root mean squared error (RMSE), and a
proportion of MAE to the range of values (see the right columns
of Table 5).

3.4. Hardware and Software Used
All the experiments were conducted with the Linux Ubuntu
18.04 workstation with 24 CPU cores and two NVIDIA GeForce
GTX 1080 Ti GPU with 11 GB GDDR5X memory each
using programming language Python, and its libraries for data
processing, ML, and data visualization, such as scikit-learn,
NumPy, Pandas, Matplotlib, Seaborn, and Yellowbrick.

4. RESULTS

4.1. Estimates of the Dis/Proportional
Changes in Cognitive Domains
Based on the analysis described in section 3.3, we came up with
the index of simple reaction time to decision-making time (ISD). It
provided us with the ratio of processing speed to decision-making
time (see Equation 5). Both the time estimates were vulnerable to
age-related neurocognitive slowing; however, there are no clear
data supporting the assumption that the pace of decline is equal
in diverse cognitive domains. Therefore, the derivative variable
may serve as a marker of their disproportional decline.

ISD =
SVMR_mean

DMT
(5)

ISD index considers two indicators that constitute the reaction
time of the visual-motor task with the switching condition in it.
The weak point is that it does not take the performance accuracy
into consideration. For this reason, we proposed an additional
derivate variable, which was the index of simple reaction
time to decision-making time with the accuracy performance
(ISDA). If compared with the previous one, the index includes
the percentage of correct responses in the denominator (see
Equation 6).

ISDA =
SVMR_mean

DMT × (1− CVMR_mistakes, %)
(6)

Another way to combine the speed and accuracy estimates of
SVMR andCVMR is to calculate the IES score for each of the tests
separately and then find the ratio between them. This solution
leads us to the index of performance in simple and complex visual-
motor reaction with account for accuracy (ISCA) calculated as it is
seen in Equation 7.

ISCA =
IESSVMR

IESCVMR
=

SVMR_mean× (1− CVMR_mistakes, %)

CVMR_mean× (1− SVMR_mistakes, %)
(7)

In this research, we did not intend to test all the possible ratios
of the performance metrics in different cognitive tasks. Our
goal was to show the utility of the approach when cognitive
testing covers several domains and estimates their interrelated
divergent changes.

4.2. Identification of the Optimal Number of
Age Cohorts
In the cluster analysis, we used two variables (age and a proposed
index) and employed K-means method to segregate the data
points between groups. We utilized the unsupervised learning
clustering K-means method to find the optimal number of
homogeneous groups of data points. With the elbow method, we
found the most appropriate number of clusters. It was justified by
the separability measure based on a distortion score. The score
is the sum of squared distances from each point to its assigned
centroid. All centroids are obtained iteratively by minimizing the
intracluster proximity while maximizing the distance between
clusters. We applied the elbow method to two-dimensional data
points composed of the age of the subjects and corresponding
index values, where the index was set to ISD, ISDA, or ISCA.

The knee point detection algorithm (Satopaa et al., 2011)
returns the optimal value of clusters equal to four for each
proposed indices. In Figure 5, built for the data points
(age, ISCA), the optimal choice is annotated with a black dashed
line. The blue line on the graph is plotted from the values of
distortion scores with regard to the number of clusters, whereas
the green dashed line displays the amount of time needed to train
the clustering model per k.

The participants in our sample were not uniformly distributed
over age; however, with the proper choice of bin width, the age
histogram can become very close to the uniform one. Another
concern is related to the number of subjects who were over the
age of 75 years old, a relatively small subgroup, in contrast to the
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FIGURE 5 | Selection of the optimal number of clusters by using the Elbow method with the knee point detection algorithm for ISCA index.

number of participants who were under 15. To get a relatively
equal number of participants in each group, we decided to count
the 20 years long intervals from birth rather than from the age of
the youngest examinee.

We assessed the performance of the clustering method

by looking at the values of the aforementioned indices as
predictors of age-groups. We plotted the points returned by
the clustering method with their centroids and thoroughly

analyzed their age values. The centroids were almost uniformly
scattered on the age axis with the step of approximately 20
years (see Table 2). The centroid coordinates were calculated

as the average value of all the points in the corresponding
cluster; therefore, we used the obtained age granulation to

compose our groups. In such a manner, we segregated four
groups in our sample: Adolescent ∈ [0, 20), Young adults ∈

[20, 40), Midlife adults ∈ [40, 60), and Older adults ≥ 60. With

this division in Table 2, we presented the number of points
correctly identified by the clustering method (performance

column) vs. misclassified points (misclassified column). The
best performance was obtained on the ISCA. Only five cases
of Midlife adults were misclassified as Young adults. So,
the ISCA index reflects the age-related psycho-physiological
changes reliably.

4.3. Proportionality of Age-Related
Changes in the Cognitive Domains
We built a pairwise distribution of each proposed index with
age (see Figures 6, 7). The linear horizontal trendlines with
a 95% CI for the linear regression model estimates represent
tendencies toward sustaining a balance between cognitive
functions corresponding to diverse interrelated domains.

To compare the distribution of the indices over the age-
groups, we applied statistical significance tests. Because none
of our indices data underwent Gaussian distribution according
to the Shapiro-Wilk test for normality (p < 0.05), we utilized
nonparametric statistics. First, we checked the hypothesis that the
population medians of all the groups were equal to the Kruskal-
Wallis test, which showed significant changes in the distribution
of the four groups (p < 0.05).

To study which groups differed in their medians, we ran post
hoc Dunn test with the step-down method. We used Bonferroni
adjustments (Holm’s step-down procedure) to control the family-
wise error rate. Regarding the indices values, only the median
of the Adolescents group differed from those of the other
three groups in the indices values. The three remaining groups
shared a similar distribution pattern (p > 0.05). After a period
of neurodevelopmental changes and maturation, the indices
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TABLE 2 | Clusterization of the sample into age cohorts with regard to the variables describing the proportion between cognitive functional activities and cooperative

involvement of cognitive domains in tasks.

Group Capacity

(females:males)

ISD Index ISDA Index ISCA Index

Centroid Performance Misclassified Centroid Performance Misclassified Centroid Performance Misclassified

Adolescents 48 (19:29) 11.853 48 0 12.047 48 0 11.661 48 0

Young adults 64 (36:28) 31.302 62 2 31.600 60 4 30.075 64 0

Midlife adults 64 (39:25) 53.089 57 7 53.529 56 8 49.908 59 5

Older adults 55 (40:15) 70.647 46 9 71.018 46 9 68.274 55 0

FIGURE 6 | Over-the-age distribution of ISDA values.

preserve almost constant values with a slight trend toward
functional decline.

In the RMO test, however, there is another tendency. The
RMO_mean values pairwise comparisons show that the Midlife
adults group median significantly differs from the remaining
three age subsamples (p < 0.01). No general trend in age-related
changes of this dependent variable is observed (see Figure 8).

Finally, we investigated the variances of the proposed indices
and selected psychophysiological attribute values for different
groups. Levene’s test reveals no significant changes (p > 0.05) in
the variances among age-groups for the aforementioned values.
Homoscedasticity also supports our assumption about stable
linear dependency between the observed features and age.

4.3.1. Age-Related Trends in Cognitive Subdomains

and Proportionality of Their Changes
The information on statistically significant differences between
the age-groups in the performance in PTs is presented in Table 3.

4.3.2. Sex-Related Traits in Cognitive Subdomains

and Proportionality of Their Changes
Table 4 shows the descriptive statistics on the tests performance
in both sexes.

It is interesting to note that performance in the majority of the
PTs does not differ significantly (p > 0.05) between women and
men with an exception of the group of Midlife adults.
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FIGURE 7 | Over-the-age distribution of ISCA values.

In the age interval [40, 60) years, women seem to spend more
time on the task on average to compensate for a better accuracy in
both SVMR and CVMR tests. Women were also more accurate in
responding to RMO test stimuli (RMO_mean was−5.11±124.22
vs. 40.56 ± 49.66; p = 0.034). However, the variance of the
reaction time and the number of errors was significantly lower
in men (182.65 ± 96.42 vs. 121.47 ± 75.85; 23.36 ± 2.99 vs.
20.44± 4.27).

In the same age group, ISCA index was significantly higher in
women compared to men (0.7± 0.12 vs. 0.65± 0.08; p = 0.036).
However, this difference does not seem to be considerable as the
mean values for both sexes stay close within the interquartile
range. No other essential differences were found between the
values of the indices for men and women of any age group.

4.4. Informative Value of the Indices
Developed
Our idea was to inspect possible relationship of ISD, ISDA, and
ISCA both with the general psychophysiological status of the
examinee and the age of the individual. For getting an insight into
this, we resorted to machine learning approach.

4.4.1. Associations of the Newly Proposed Indices

With Age
We tried to estimate the potential of the variables derived
from the test results to reflect the entire psychophysiological
status of the individual. As the individual psychophysiological

status undergoes age-related changes, one may expect that the
derivative indices should also reflect this process. In this study,
we trained classification models to predict the age group of the
examinee, i.e., whether it is below or above 40 years of age. The
utility of the cut-off level has been already justified in our recent
studies (Statsenko et al., 2021a). By feeding the models with the
data of the novel indices, we analyzed the information value of
the latter for such a prediction. The performance metrics of the
models are presented on the left side of Table 5.

4.4.2. Predictive Potential of PTs to Identify the

Values of Proposed Indices
We tried to estimate whether the variables derived from the
test results could reflect the entire psychophysiological status of
the individual. As the battery of PTs describes the individual
psychophysiological status, we trained a regression model to
predict the values of the proposed indices. The performance
metrics are presented on the right side of Table 5.

The performance metrics of the regression model such as
mean absolute error (MAE), root mean squared error (RMSE),
and the coefficient of determination (R2) are presented on the
right side of Table 5. The notched boxplot in Figure 9 reveals the
accuracy of the prediction in terms of the proportion of MAE
to the range of the index in different age-groups. Its distribution
over the age-groups justifies the hypothesis that ISCA reflects
the psychophysiological status more reliably than ISD or ISDA
do. From Table 5, the MAE-to-range of values proportion is
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FIGURE 8 | Over-the-age distribution of time estimate values in RMO test.

significantly smaller in ISCA (3.49 ± 0.14% vs. 7.62 ± 0.5% in
ISD and 7.57 ± 0.55% in ISDA; p < 0.05). In Figure 9, both the
interquartile range and the CI are significantly smaller in any age
group for ISCA compared to the other indices.

5. DISCUSSION

In this study on aging, we resorted to psychophysiological tests.
This goes in line with the recent publications (McKinney et al.,
2019; Rech et al., 2020) that show that sensorimotor activity
studies are a promising area of research in gerontology. The tests
we used cover two related but not identical spheres: individual
cognition and emotions.

Individual cognition is a complex functional system in
which some blocks account for the basic implementation
of sensorimotor activity, while other blocks coordinate an
interaction of the sensory and motor components. The
components of sensorimotor response are closely interrelated
with the high-level mental functions (Mitchell et al., 2019)
that underlie the efficiency of the activity and imply for the
performance of the sensorimotor test. This makes it possible to
use the tests for the functional assessment of the central nervous
system in aging (Cassady et al., 2019, 2020) and professional
activities (Li et al., 2019; Boichuk et al., 2020; Myroshnychenho
et al., 2020).

The personal emotional status assessment is also possible
with PTs. Testing sensorimotor activity aims at overcoming the
limitations of the formal systematic assessment used in classical
psychology (Romero et al., 2019; Baksheva et al., 2020).

The battery of tests used in the study is strongly associated
with other cognitive metrics and appears to be a more
reliable predictor of important social and health outcomes
than other tests (Deary and Der, 2005; Der and Deary, 2006).
The most common cognitive changes in aging are declines
in memory, attention, and in information processing speed
(Bashore et al., 1997). Slowing of processing speed as a significant
contributor of age-induced changes in memory and attention
may be documented with RT (Kail and Salthouse, 1994).
Thus, the methodology of the study we did is relevant to the
pathophysiologic changes typical of aging. On the plus side, we
also have the fact that the tests are easy to administer.

5.1. Ideas Behind the Proposed Indices
5.1.1. Index of Simple Reaction Time to

Decision-Making Time (ISD)
Reaction time encompasses a series of subsequent processing
transactions from encoding of a presented stimulus to a response
execution. Unfortunately, RT does not reveal each of these
transactions separately but gives a summary time length. Some
researchers suggest using time latency of evoked potentials
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TABLE 3 | Comparison of results of PTs.

Total Adolescents Young adults Midlife adults Older adults p1−4

n = 231 n1 = 48(20.78%) n2 = 64(27.71%) n3 = 64(27.71%) n4 = 55(23.81%)

Performance in psychophysiological tests

SVMR_mean 260.51 [219.63–285.83] 282.03 ± 70.91* 221.03 ± 28.92* 259.76 ± 55.48 288.52 ± 53.75* 1.61005e-14

SVMR_variance 69.88 [41.09–80.82] 89.01 ± 73.36 49.41 ± 22.39* 67.69 ± 36.54 79.54 ± 42.92* 7.05157e-06

SVMR_mistakes 1.32 [0.0–2.0] 2.69 ± 3.83* 0.83 ± 1.32* 0.62 ± 1.11* 1.49 ± 1.54* 2.8462e-06

SVMR_IES 280.06 [224.94–304.73] 339.43 ± 236.3* 227.9 ± 32.9* 265.77 ± 59.02 305.56 ± 64.35* 7.00503e-15

CVMR_mean 360.77 [307.45–395.57] 360.8 ± 107.74 324.89 ± 56.55* 362.64 ± 65.15 400.32 ± 71.9* 9.41694e-08

CVMR_variance 108.91 [70.7-118.64] 121.55 ± 94.58 91.82 ± 80.43* 92.65 ± 30.46 136.69 ± 74.86* 2.0683e-07

CVMR_mistakes 2.87 [1.0–4.0] 3.65 ± 2.45* 2.58 ± 2.81* 2.14 ± 1.75* 3.4 ± 2.26* 0.000253234

CVMR_IES 402.91 [336.52–448.65] 416.17 ± 143.57 359.93 ± 81.36* 390.66 ± 66.29 455.62 ± 95.44* 5.88309e-09

DMT 100.26 [63.6-122.43] 78.76 ± 52.97* 103.86 ± 48.64 102.88 ± 51.65 111.79 ± 57.81 0.00056484

RMO_mean 0.32 [-18.5–31.35] −8.99 ± 69.28 −2.14 ± 54.25 12.73 ± 104.22* −3.12 ± 75.59 0.00646979

RMO_variance 167.86 [84.7-224.35] 168.85 ± 103.5 111.84 ± 67.33* 158.75 ± 93.83 242.81 ± 105.18* 5.6846e-12

RMO_errors 20.95 [18.0–24.0] 19.96 ± 5.22 18.14 ± 4.14* 22.22 ± 3.82* 23.62 ± 3.34* 5.24218e-11

Proportionality of changes in cognitive subdomains

ISD 3.82 [1.97–4.13] 4.53 ± 2.29* 3.02 ± 2.98* 4.14 ± 4.9 3.76 ± 3.59 5.53179e-06

ISDA 4.35 [2.15-4.87] 5.22 ± 2.75* 3.57 ± 4.48* 4.55 ± 5.65 4.26 ± 3.99 8.10003e-07

ISCA 0.7 [0.61–0.77] 0.81 ± 0.37* 0.65 ± 0.1* 0.68 ± 0.11 0.68 ± 0.12 1.82596e-05

Data for different age-groups are expressed as Mean ± SD. * If the distribution of performance metrics differs significantly (p < 0.05) compared to other cases taken together, its

Median± SD is marked with an asterisk.

for measuring the transactions successively, one after another
(Bashore et al., 1997). Our approach is to use a set of tasks with
the following specific features. Instead of measuring RT in a
single task or using disparate tasks, we constructed a battery of
tests in such a way that the testingmodalities (SVMR andCVMR)
have the same perceptual and motor response components but
differ in the central processing (DMT). This allows us to test
the complexity hypothesis of James Birren et al., which says
that neurocognitive slowing is restricted to the central nervous
system processing and the amount of slowing increases when the
level of the task complexity grows up (Birren et al., 1979, 1980).
However, this is true for non-lexical tasks, whereas in the word
processing tasks slowing does not correlate with the complexity
(Bashore et al., 1997).

Our findings justify the strong version of the complexity
hypothesis. According to the version, all the elements of
information processing (e.g., perceiving, reasoning, and
responding) slow to the same degree. The ISD index remains
unchanged as the time spent on reasoning in CVMR retards
across the years of life at the same pace as the summary length
of receiving, encoding, and responding components. This makes
the ratio between DMT and SVMR_mean stable throughout
years on a population scale.

The strong version of the complexity hypothesis offers distinct
advantages. It supports the idea that age-related retardation is
associated with the general slowing in the processing speed
rather than in components of information processing. It also

vastly simplifies the tasks of neuroscientists searching for brain
structure-functional associations while aging (Bashore et al.,
1997). The justification of this point of view typically comes from
the studies that, similar to our research, use RT as an aggregate
measure of processing speed.

The weak version of the complexity hypothesis asserts
that the level of a specific decline in perceptual, motor,
decision, or attentional processes may be different. Some
studies provide conflicting results, i.e., they show that “age-
related slowing in simple repetitive tasks is mainly related
to slowing at the stage of perceptuomotor processes, and
after 60 years, to additional decline in attention” (Godefroy
et al., 2010). Further research should utilize an event-
related potentials technique to measure thoroughly the
length of the transactions related to stimulus acquisition and
response processing.

5.1.2. Supplying ISD With Performance Accuracy

(ISDA)
Decision-making time is the time of inhibition of an automatized
action and task switching in CVMR test. The ratio of SVMR to
DMT indicates the proportion between deciding and perceptive-
motor components of the choice RT. The deciding and
perceptive-motor components of CVMR have different cognitive
loads. Comparing them, we see whether the age-related neuro
cognitive retardation starts from the cognitively demanding acts
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TABLE 4 | Performance in PTs with regard to sex and age.

Total Adolescents Young adults Midlife adults Older adults

Female Male p1−2 Female Male p3−4 Female Male p5−6 Female Male p7−8 Female Male p9−10

n1 = 134 n2 = 97 n3 = 19 n4 = 29 n5 = 36 n6 = 28 n7 = 39 n8 = 25 n9 = 40 n10 = 15

Proportion 58.01% 41.99% 39.58% 60.42% 56.25% 43.75% 60.94% 39.06% 72.73% 27.27%

Age 44.89 ± 20.08 36.18 ± 21.98 6.8e-4 11.64 ± 3.41 11.68 ± 3.35 0.368 30.82 ± 4.72 29.12 ± 5.38 0.105 50.56 ± 5.67 50.87 ± 6.68 0.371 67.84 ± 5.7 72.26 ± 7.72 0.037

Performance in psychophysiological tests

SVMR_mean 265.33 ± 57.56 253.84 ± 61.31 0.015 290.9 ± 82.47 276.23 ± 61.5 0.433 224.4 ± 25.96 216.69 ± 31.8 0.045 269.65 ± 50.34 244.34 ± 59.48 0.004 285.83 ± 50.36 295.71 ± 61.31 0.342

SVMR_variance 70.82 ± 47.22 68.57 ± 48.48 0.356 100.08 ± 82.66 81.75 ± 65.55 0.392 49.26 ± 21.14 49.6 ± 23.9 0.386 71.5 ± 36.82 61.76 ± 35.31 0.145 75.68 ± 40.62 89.85 ± 47.01 0.091

SVMR_mistakes 1.13 ± 1.57 1.58 ± 2.91 0.158 2.32 ± 2.23 2.93 ± 4.57 0.470 1.06 ± 1.51 0.54 ± 0.94 0.084 0.49 ± 1.13 0.84 ± 1.05 0.031 1.25 ± 1.24 2.13 ± 2.0 0.099

SVMR_IES 278.03 ± 72.12 282.86 ± 172.73 0.045 321.21 ± 112.6 351.37 ± 289.41 0.466 233.56 ± 33.02 220.62 ± 31.27 0.020 275.16 ± 57.34 251.12 ± 58.62 0.018 300.34 ± 63.59 319.48 ± 64.27 0.130

CVMR_mean 369.13 ± 81.17 349.22 ± 77.4 0.026 375.09 ± 142.16 351.43 ± 75.82 0.450 331.23 ± 47.76 316.73 ± 65.26 0.123 371.52 ± 60.98 348.79 ± 68.91 0.046 398.07 ± 68.13 406.3 ± 80.78 0.407

CVMR_variance 110.19 ± 79.9 107.14 ± 67.4 0.380 102.73 ± 77.28 133.87 ± 102.52 0.052 96.51±102.58 85.78 ± 34.53 0.226 98.4 ± 33.17 83.68 ± 22.95 0.062 137.54 ± 83.25 134.41 ± 45.39 0.194

CVMR_mistakes 2.52 ± 2.49 3.36 ± 2.23 3.3e-4 3.0 ± 2.66 4.07 ± 2.2 0.057 2.67 ± 3.26 2.46 ± 2.1 0.351 1.74 ± 1.63 2.76 ± 1.75 0.009 2.92 ± 2.09 4.67 ± 2.21 0.004

CVMR_IES 408.37 ± 110.89 395.36 ± 92.34 0.248 427.72 ± 195.46 408.6 ± 94.56 0.205 371.76 ± 91.25 344.72 ± 63.34 0.167 395.57 ± 67.73 383.0 ± 63.23 0.201 444.63 ± 90.66 484.91 ± 101.49 0.059

DMT 103.8 ± 58.5 95.38 ± 46.4 0.283 84.19 ± 71.55 75.2 ± 35.47 0.483 106.84 ± 44.24 100.03 ± 53.53 0.269 101.87 ± 56.28 104.45 ± 43.4 0.216 112.25 ± 62.59 110.59 ± 42.51 0.392

RMO_mean −2.72 ± 91.16 4.53 ± 58.05 0.415 −11.31 ± 90.65 −7.48 ± 50.55 0.288 −1.96 ± 63.88 −2.37 ± 38.5 0.262 −5.11 ± 124.22 40.56 ± 49.66 0.034 2.99 ± 71.71 −19.44 ± 82.9 0.288

RMO_variance 183.45 ± 107.07 146.33 ± 95.13 0.001 198.95 ± 123.68 149.12 ± 82.02 0.115 114.94 ± 70.91 107.85 ± 62.19 0.325 182.65 ± 96.42 121.47 ± 75.85 5.5e-4 238.53 ± 100.88 254.22 ± 115.11 0.356

RMO_errors 21.96 ± 4.25 19.57 ± 4.83 4.9e-5 20.95 ± 5.71 19.31 ± 4.77 0.097 18.72 ± 3.91 17.39 ± 4.3 0.116 23.36 ± 2.99 20.44 ± 4.27 0.003 23.98 ± 2.55 22.67 ± 4.71 0.191

Proportionality of changes in cognitive subdomains

ISD 3.92 ± 4.13 3.68 ± 2.95 0.360 4.59 ± 2.35 4.5 ± 2.24 0.466 2.75 ± 2.75 3.36 ± 3.23 0.292 4.66±5.53 3.34 ± 3.57 0.130 3.93 ± 4.01 3.29 ± 2.03 0.399

ISDA 4.42 ± 5.09 4.24 ± 3.47 0.214 5.14 ± 2.69 5.27 ± 2.79 0.376 3.42 ± 5.04 3.76 ± 3.63 0.340 5.05 ± 6.36 3.75 ± 4.21 0.186 4.37 ± 4.43 3.95 ± 2.41 0.251

ISCA 0.69 ± 0.12 0.71 ± 0.28 0.141 0.77 ± 0.1 0.83 ± 0.47 0.212 0.64 ± 0.09 0.65 ± 0.1 0.386 0.7 ± 0.12 0.65 ± 0.08 0.036 0.69 ± 0.13 0.67 ± 0.11 0.184

Data for the cohorts are expressed as Mean± SD.

The significant differences between the sexes are marked in bold. The differences close to significant are marked in italic.
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TABLE 5 | Performance of the classification and regression models.

Classification by age group

below and above 40 years
Regression models

Predictor

used
Sens. Spec. ROC AUC ACC

Forecasted

variable
MAE RMSE MAE

range
,%

ISD 0.7 ± 0.056 0.73 ± 0.03 0.78 ± 0.04 0.715 ± 0.29 ISD 2.15 ± 0.14 3.56 ± 0.31 7.62 ± 0.5

ISDA 0.72 ± 0.06 0.73 ± 0.04 0.8 ± 0.03 0.727 ± 0.28 ISDA 2.58 ± 0.19 4.34 ± 0.44 7.56 ± 0.55

ISCA 0.73 ± 0.04 0.73 ± 0.03 0.8 ± 0.02 0.73 ± 0.024 ISCA 0.102 ± 0.004* 0.18 ± 0.013* 3.49 ± 0.14*

*The performance is expressed as Mean±SD values among the following classifiers and regressors: Gradient Boosting, Gaussian NB/AdaBoost, Ridge/Lasso, SVM linear/LR, Random

Forest and SVM (non-linear).

If the distribution of metrics differs significantly (p < 0.05) for an index compared to other ones, its Mean± SD is marked with an asterisk.

FIGURE 9 | Over-the-age-groups distribution of MAE/range(index) values for Random Forest regression model.

(i.e., task switching) or involves both intellectual and non-
intellectual functions (their generalized slowing).

To get the overall efficiency of the examinee in the
test, we supplied ISD index with the accuracy metric (see
Figure 10). The idea behind the index is to inspect the
proportion of the speed of processing of cognitively demanding
to non-demanding tasks with the performance accuracy taken
into consideration.

5.1.3. Ratio of IES for Simple and Choice Reactions

(ISCA)
The last index presents the IES ratio between simple and
complex visual-motor reactions. IES score summarizes
the overall efficiency of decision-making. IES accounts
for different cognitive subdomains and may reflect their
disproportional changes throughout the lifespan (Statsenko
et al., 2020). We took into consideration that some studies
documented differences between the lifelong changes
of SVMR and CVMR (Der and Deary, 2006), but no
study showed the same for IES scores. The possible
explanation why this has not been done yet comes from
the methodology of calculating IES score. To calculate
the performance accuracy, neuroscientists mainly use the
mistakes of choice made while performing “go/no-go” test

(e.g., CVMR_false_reaction). The equipment that we used
recorded two more types of mistakes: 1. missing the targeted
events (e.g., SVMR_passes) and 2. preliminary responding
(e.g., SVMR_falstart). This allowed us to calculate IES for the
simple reaction and to compare it with the similar data for the
choice reaction.

We consider that studying the association of RTs is less
interesting than inspecting the relationship of IES for simple and
choice reactions that are highly correlated. Simple RT accounts
for 45% of variance of the choice RT (Der and Deary, 2006).

5.2. Age-Groups
To preselect and justify the age group ranges, we resorted to
a heuristic approach and clustering. Then, we did a review
to elucidate the biological changes that may underpin the
choice of such subcohorts. The group boundaries correspond
to the time points between the end of neurodevelopment,
the appearance, and the acceleration of the cognitive
decline. The following observations of other authors
evidence this.

Healthy educated adults start developing age-related cognitive
changes in their 20 and 30s (Salthouse, 2009). Reasonably, the
age period before 20s is the time of massive neurodevelopment,
acquiring skills, and possessing knowledge and intelligence.
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FIGURE 10 | Over-the-age distribution of ISD values.

In the next 20 years of life, cognitive functions undergo
conflicting changes. Basic physiological cognitive functions
decline early in life. Because of this, young adults may exhibit
early signs of fluid intelligence, memory, and processing speed.
At the same time, crystallized intelligence increases (Zimprich
and Mascherek, 2010). In a study on simple RT, authors reported
an increase in consistency of response with age from 8 to
about 30, after which a decline starts. They observed the fastest
response at the age of over 20 years, but the most consistent
responding in terms of time variance comes at over 30 years
(Pierson and Montoye, 1958). A roughly similar timeline of
changes was received in another study: The shortest RT comes
in the examinees’ mid-20s (Rabbitt, 1993).

The summary volume of the brain white matter rises up until
the early middle-age adulthood (aged over 35 year) (Ferreira
et al., 2014; Nilsson et al., 2014). Then comes a period of
stability in terms of WM volume and cognitive performance
(Ferreira et al., 2014; Nilsson et al., 2014). At this period
of life, neurocognitive slowing may impair cognitive abilities
of midlife adults. Neuroplasticity stimulated by physical and
mental exercising may attenuate the changes and ameliorate
the cognitive status (Bauermeister and Bunce, 2016; Haynes
et al., 2017). Nonetheless, cognitive decline is already evident
in the middle-aged population (Singh-Manoux et al., 2012).
But its more accurate onset remains an issue of debate
(Singh-Manoux et al., 2012).

Accelerated cognitive decline starts only after the late
middle age (55–60 years) (Ferreira et al., 2014; Nilsson et al.,
2014). It is marked with a massive WM volume reduction,
while gray matter volume follows a steady rate of reduction
throughout life.

5.3. Estimates of the Dis/Proportional
Changes in Cognitive Domains
Our findings suggest that there are proportional age-related
changes in the time estimates of inhibitory control in task
switching (e.g., DMT) and information processing speed (e.g.,
SVMR_mean). We claim that this is a feature of normal brain
aging because we did a cross-sectional study of the healthy
participants. In accelerated brain aging, the pattern of the changes
may differ, in which case the proposed indices may serve as
a screening tool for detecting such conditions. To verify this,
a comparison study of the cohort of patients with dementia is
required.

We do not see a significant accuracy decline in the relative
CI of the performance of RMO technique across the lifespan.
This is consistent with the origins of the Cognitive Aging Theory
according to which intelligence does not decline with age. At that
time, this pushed neuroscientists to correct the intelligence test
data for the speed of processing (Anderson and Craik, 2017).
Analyses revealed that most of the age differences in the cognitive
performance were attributable to a slower speed of executing
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a relevant operation (Salthouse and Fristoe, 1995). Our recent
studies conducted with the same battery of tests also showed that
the age-related decline in reaction time in the attention study test
is the most prominent feature of neurocognitive decline.

Many studies of the speed of processing have failed to develop
unconditioned criteria that could help to distinguish normal
aging from abnormal brain changes. Age-related declines in
measures of cognitive functioning have been known as relatively
large. They begin in early adulthood, manifesting themselves in
several different types of cognitive abilities (Salthouse, 2004). To
gain a better insight into the issue, scientists should investigate
the interrelated changes of the cognitive abilities. A study of
the proportionality of changes in the interdependent cognitive
domains may supply the missing evidence to build up a reliable
screening test for patients with dementia.

5.4. Informative Value of the Index of
Performance in Simple and Complex
Visual-Motor Reaction With Account for
Accuracy
We hypothesized that a single index (e.g., ISCA) may substitute
the dependent variables of the battery of PTs. In this way, it
may serve as a marker of the psychophysiological status. If so,
machine learning algorithms are capable to calculate its value
out of other PT results. The potential of PTs to predict the
values of ISCA is illustrated in Table 5. The performance metrics
are good; the proportion of MAE to the range of values is
low (3.49 ± 0.14%). All the created regression models are quite
reliable. Random Forest regressor showed the best performance
(3.36%). The accuracy of the models is higher than that of the
models that we built recently for predicting IES score out of PT
data (3.36–3.77% vs. 3.37–5.15%) (Statsenko et al., 2020).

The predictive accuracy is almost equal in all the age-groups
studied. In contrast to this, the performance of predicting IES
varies regarding the age: It is maximal for Adolescents and a
bit lower for Older adults (Statsenko et al., 2020). This reduces
the reliability of IES and makes ISCA the most suitable index
for assessing psychophysiological performance and comparing
the results irrespective of the age of examinees. As it is hard to
segregate between the normal vs. accelerated aging, the index
which is not vulnerable to aging may improve the currently
existing strategies for the early detection of dementia.

6. STRENGTHS AND LIMITATIONS OF THE
STUDY

The known limitation of the study—a restricted number of
participants—is quite common for research on the current issue.
Generally, there is a trade-off between the number of participants
involved in a study on aging and the accuracy of selecting
examinees. The stricter the inclusion criteria are, the smaller
the study cohort is. Because of this, studies of normal aging are
limited either in the cohort size or in evidence. In population-
scale studies, no fund can cover expenses for MRI which is a
golden standard of non-invasive screening for early stages of
dementia. To reduce the cost of research, some neuroscientists
resort to low-strength magnetic field MRI (Taki et al., 2008).

In our study, we worked out a balanced solution based on the
utilization of a high-field MRI and a thorough selection of the
study participants (see exclusion criteria in subsection 3.2). The
thorough selection of the participants who could fit the inclusion
criteria limited the size of the study cohort. At the same time, its
analysis provided a level of evidence that is impossible to reach in
a population-scale survey with less tough inclusion criteria (e.g.,
Der and Deary, 2006). Also, there are known studies on the issue
with the number of participants smaller (Jernigan et al., 1990; Gur
et al., 1991; Malko et al., 1991; Foundas et al., 1998; Resnick et al.,
2000; Scahill et al., 2003; Li et al., 2004; Edsbagge et al., 2011)
or almost similar to our research (Pierson and Montoye, 1958;
Grieve et al., 2005).

On the plus side, we have a big range of the age of the
participants and their equal distribution over the time scale. This
allows us to build the plots covering the entire population without
the approximation for years. Unfortunately, some research
concentrated on timing the onset of cognitive decline and many
longitudinal studies miss the subjects younger than middle age
(Singh-Manoux et al., 2012). Studies with a larger number of
participants commonly fail to present people of all the age
categories in equal proportion (Coffey et al., 1992; Good et al.,
2001; Chen et al., 2007).

We did not take into consideration the education level of
the participants unless they met the inclusion criteria (e.g.,
literate). There is no agreement on the issue in the literature as
well. While some authors counted the number of years of full
education, other researchers justified that education slows the
decline of crystallized intelligence rather than other cognitive
abilities. This is why a lower educational level is not predictive
of a decline of the cognitive speed, memory, or reaction time in
tests (Christensen et al., 1997). So, the absence of control of years
of education cannot be considered a limitation of this study that
deals with the reaction time and accuracy.

7. CONCLUSION

• Unsupervised ML clustering shows that the optimal number
of homogeneous age-groups is four. We segregated the study
sample into groups with the age range of 20 years starting from
birth: Adolescents ∈ [0, 20), Young adults ∈ [20, 40), Midlife
adults ∈ [40, 60), and Older adults ≥ 60 year of age.

• Our findings justify the strong version of the complexity
hypothesis. The version assumes that all the elements
of information processing (e.g., perceiving, reasoning, and
responding) slow to the same degree. The ISD index
remains unchanged as the time spent for reasoning in
CVMR retards across the years of life with the same pace
as the summary length of the receiving, encoding, and
responding components. This makes the ratio between DMT
and SVMR_mean stable throughout years on the population
scale.

• To extend the utility of machine learning classification
in cognitive studies, we proposed the estimates of the
disproportional changes in cognitive functions (ISD, ISDA,
and ISCA). The distribution of the indices and the values of
the RMO test over the age provide the evidence that diverse
cognitive functions decline equally throughout life.
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• The ISD, ISDA, and ISCA values are more stable across
the lifespan than the major dependent variable of the
battery of the psychophysiological tests we used. After
neurodevelopment and maturation, the indices preserve
almost constant values with a slight trend toward functional
decline. A new study is required to determine the utility of
the ratio for segregating the normal brain aging from the
accelerated one.

• The results of other psychophysiological tests (e.g., the
accuracy, reaction time, and its variance in the simple
visual-motor task, “go/no-go” test and “reaction to a
moving object” test) did not demonstrate any general trend
over age.

• The ISCA index for PT proved to be reliable: It reflects
the overall psychophysiological status of an individual.
We predicted ISCA values out of the results of other
psychophysiological tests with high accuracy (mean absolute
error/index range was 3.49 ± 0.14% vs. 7.62 ± 0.5% in ISD
and 7.57 ± 0.55% in ISDA; p < 0.05). The accuracy of the
models is higher than that of the models that we built recently
for predicting IES score out of PT data (3.36 − 3.77% vs.
3.37 − 5.15%). In contrast to the models predicting IES score,
the prediction performance on ISCA does not vary regarding
the age. This reduces the reliability of IES and makes ISCA
the most suitable index for assessing psychophysiological
performance and comparing the results disregarding the age
of examinees. As it is hard to segregate between the normal vs.
accelerated aging, the index that is not sensitive to aging may
improve the currently existing strategies for the early detection
of dementia.

• In normal brain aging, there are proportional age-related
changes in the time estimates of information processing speed
and inhibitory control in task switching. Future research is
supposed to collect the test data for the patients with dementia
to determine whether the changes in the aforementioned
indicators follow a different pattern.
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