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Simple Summary: Pro-inflammatory cytokines are considered to be one of the most important medi-
ators affecting the function of central nervous system during an immune/inflammatory challenge. It
was found that in acting on different hypothalamic nuclei, pro-inflammatory cytokines influence the
centrally regulated processes including reproduction. Recently, it has been shown that the endocannabi-
noid system and endogenous cannabinoids may attenuate the inflammatory response. Therefore, in
our study we examined the influence of anandamide, one of the earliest known endocannabinoids, on
the synthesis of interleukin (IL)-1β and IL-1 system gene expressions in the hypothalamic structures
involved in gonadotropin-releasing hormone (GnRH)-ergic activity, and thus the central control of repro-
duction, during immune stress induced by endotoxin injection. It was found that anandamide inhibited
lipopolysaccharide (LPS)-stimulated synthesis of IL-1β in the hypothalamus, likely affecting posttranscrip-
tional levels of this cytokine synthesis. Anti-inflammatory effect of anandamide at the level of central
nervous system might also result from its stimulating action on IL-1 antagonist and IL-1 type II receptor
gene expression. This study suggests the potential of endocannabinoids and/or their metabolites in the
inhibition of inflammatory process at the level of the central nervous system, as well as their usefulness in
the therapy of inflammation-induced neuroendocrine disorders, but further detailed research is required
to investigate this issue.

Abstract: This study evaluated the effect of anandamide (AEA) on interleukin (IL)-1β synthesis and gene
expression of IL-1β, its type I (IL-1R1) and II (IL-1R2) receptors, and IL-1 receptor antagonist (IL-1RN) in the
hypothalamic structures, involved in the central control of reproduction, during inflammation. Animals
were intravenously (i.v.) injected with bacterial endotoxin-lipopolysaccharide (LPS) (400 ng/kg) or saline,
and two hours after LPS administration., a third group received i.v. injection of AEA (10µg/kg). Ewes were
euthanized one hour later. AEA injection (p < 0.05) suppressed LPS-induced expression of IL-1β protein
in the hypothalamus. The gene expression of IL-1β, IL-1RN, and IL-1R2 in the hypothalamic structures
was higher (p < 0.05) in animals treated with both LPS and AEA in comparison to other experimental
groups. AEA administration did not influence LPS-stimulated IL-1R1 gene expression. Our study shows
that AEA suppressed IL-1β synthesis in the hypothalamus, likely affecting posttranscriptional levels of
this cytokine synthesis. However, anti-inflammatory effect of AEA might also result from its stimulating
action on IL-1RN and IL-1R2 gene expression. These results indicate the potential of endocannabinoids
and/or their metabolites in the inhibition of inflammatory process at the level of central nervous system,
and therefore their usefulness in the therapy of inflammation-induced neuroendocrine disorders.

Keywords: anandamide; endocanabinoids; inflammation; endotoxin; LPS; IL-1β; hypothalamus;
central nervous system
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1. Introduction

During inflammation induced by viral or bacterial infection, a number of immune
and non-immune cells produce cytokines and other inflammatory mediators able to af-
fect physiological processes in the organism, including those occurring in the central
nervous system (CNS) [1]. Acting on different hypothalamic nuclei, pro-inflammatory cy-
tokines may influence the centrally regulated processes such as food intake, thermogenesis,
rest/activity circadian rhythm, and reproduction [2,3]. Both acute and prolonged inflam-
mations decrease the circulating concentration of luteinizing hormone (LH) and therefore
affect the reproductive process [4,5]. These changes are connected mainly with decreased
gonadotropin-releasing hormone (GnRH) secretion in the hypothalamus [6–9]. It is worth
mentioning that in sheep, which were used as an animal model in the present study, GnRH
neurons do not form dense clusters but are spread from the brain septum and the diagonal
band of Broca through the preoptic area (POA) to the anterior hypothalamus (AHA) and
the medial basal hypothalamus (MBH). Nonetheless, more than a half of the population
of GnRH-ergic neurons in the hypothalamus have perikarya located in the POA [10]. The
inflammation caused by numerous physiological pathways impede GnRH/LH secretion,
however, centrally acting pro-inflammatory cytokine-interleukin (IL)-1β is thought to be
among the most important mediators inhibiting reproductive processes during the immune
challenge [1,11,12]. During inflammatory stimuli, IL-1β is produced at the periphery by
specific cells, mainly monocytes and macrophages and numerous other cells including
lymphocytes T and B, microglia cells, endothelial cells, astrocytes, oligodendrocytes, and
neurons [13,14]. It was previously shown that peripheral cytokines (e.g., IL-1β) are able to
reach the CNS by crossing the fenestrated capillaries in the structures such as the choroid
plexus (CP), median eminence, or organum vasculosum of the lamina terminalis [11]. At
the period of inflammation, these cytokines may also reach the brain via the blood–brain
barrier by saturated, self-inhibitable transport mechanisms [15]. Moreover, in recent studies
it was shown that during inflammation activated cells of the CP might express and release
pro-inflammatory cytokines into the cerebrospinal fluid (CSF) [16–18]. However, the local
synthesis of centrally acting inflammatory cytokines in the CNS is another important source
of such proteins. In numerous studies, it was observed that pro-inflammatory interleukins,
including IL-1β, are synthetized directly in the hypothalamus [4,14,19,20]. The ability of
IL-1β to impair secretion of GnRH enables the presence of interleukin 1 receptor (IL-1R1)
in the hypothalamic structures involved in GnRH-ergic activity [14,21]. Moreover, the
expression of IL-1Rs was demonstrated directly on GnRH neurons. This fact proves that
IL-1β ligands could take part in the modulation of these cells’ activity [22].

Recently, the majority of scientific research has been focused on the importance of the
endocannabinoid system and endogenous cannabinoids. It was found that cannabinoids
acting through their corresponding receptors are able to attenuate the inflammatory re-
sponse [23,24]. Anandamide (AEA) is the earliest known endocannabinoid that takes part
in the immune system regulation [25,26]. It may influence various physiological processes
acting through two major cannabinoid receptors: type 1 (CB1) and 2 (CB2). CB2, also
known as “spleen type”, is predominantly expressed by the immune cells but also, to a
lesser extent, in the brain [24,27]. CB1 mainly occurs in the CNS; it has been detected in the
cerebral cortex, limbic system structures, cerebellum, pituitary gland, and above all else in
the hypothalamus [28]. Having in mind the fact that on immune cells both CB1 and CB2
receptors have been detected, it could be suggested that cannabinoids play a substantial
role in the immune system regulation. It was demonstrated that administration of delta9-
tetrahydrocannabinol (THC) into mice generated a noticeable apoptosis in T and dendritic
cells. Cannabinoids may downregulate the production of cytokine and chemokine and, as
presented in some models, may upregulate T-regulatory cells (Tregs) in order to suppress
inflammatory responses [29]. From this point of view, cannabinoids may be considered as
a potent treatment against inflammatory disorders. It is worth mentioning, that in our pilot
study on ewes, the lack of effect of single AEA injection on the IL-1β and IL-1RN expression
in the hypothalamus was found.
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Therefore, the aim of our study was to check whether peripheral administration of
AEA will influence the expression of IL-1β protein and mRNA encoding IL-1β, its type I and
II receptors, and interleukin 1 receptor antagonist (IL-1RN) in the hypothalamic structures
involved in GnRH-ergic activity in ewe during inflammation induced by injection of a
lipopolysaccharide (LPS)—bacterial endotoxin present in the outer membrane of Gram-
negative bacteria.

2. Materials and Methods
2.1. Animals and Experimental Design

The study was performed on 18 adult 6-year-old Blackhead ewes during the repro-
ductive season (from September to October). The animal acclimation to the experimental
conditions was 1 month before the experiment. Ewes body condition score was kept at an
estimated level of 3 points on a 5-point scale. The animal housing system was customized
for sheep requirements, according to regulations of animal welfare. Each ewe was kept in
individual pen in the fold, and in order to prevent separation stress, we gave them visual
contact with other animals. The good health and condition of animals was assured by
commercial concentrates with hay fed to ewes and not limited access to water, according to
the recommendations of the National Research Institute of Animal Production for adult
ewes [30].

The synchronization of estrous cycle stage was made by the Chronogest CR (Merck
Animal Health, Boxmeer, the Netherlands) according to the procedures described in our
previous studies [31,32]. Each ewe had a vaginal sponge containing 20 mg of cronolone
(Chronogest CR; Merck Animal Health, Boxmeer, the Netherlands) placed for 14 days. After
the sponge removal, animals were intramuscularly injected with 500 IU pregnant mare’s
serum gonadotropin (PMSG; Folligon; Merck Animal Health, Boxmeer, the Netherlands).
The experimental procedures started 7 days following PMSG injection, in luteal phase of
estrus cycle. An immune/inflammatory challenge was induced by the intravenous (i.v.)
administration of 400 ng/kg LPS from Escherichia coli 055:B5 (Sigma-Aldrich, St. Louis, MO,
USA), dissolved in saline (0.9% w/v NaCl) (Baxter, Deerfield, IL, USA) at a concentration
of 10 mg/L.

All experimental procedures carried out on animals were performed according to the
guidelines of the Local Ethics Committee of Warsaw University of Life Sciences-SGGW
(authorization no. WAW2/70/2017).

2.2. Experimental Procedures

Venous catheters were implanted into the jugular vein on the day prior to the experi-
ment. Ewes were randomly divided into 3 groups: control (n = 6), LPS-treated (n = 6), and
treated with LPS and AEA (n = 6) (see Table 1). Two hours after LPS injection, the animals
from the third group additionally received i.v. injection of AEA (Sigma-Aldrich, St. Louis,
MO, USA) at a dose of 10 µg/kg body weight chosen on the basis of a previous study [33].
Immediately after the blood collection, ewes were euthanized, and their brains were in-
stantaneously removed from the skulls. Then, the brain structures such as POA, AHA, and
MBH were dissected and at once frozen in liquid nitrogen. Collected hypothalamic tissues
were stored at −80 ◦C.

Table 1. Experiment organization chart.

Group No. of Animals Experimental
Treatment I Dose (ng/kg) Experimental

Treatment II Dose (µg/kg)

1 Control 6 NaCl 0 NaCl 0
2 LPS treated 6 LPS 400 NaCl 0
3 LPS + AEA i.v. treated 6 LPS 400 AEA i.v. 10

Total number of animals 18

LPS: lipopolysaccharide; AEA: anandamide; i.v.: intravenous.
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2.3. IL-1β Concentration Assesment

The concentrations of IL-1β in the hypothalamus were assayed using IL-1β ELISA
kits (cat. no. E0041Sh; Bioassay Technology Laboratory, Shanghai, China) designed and
validated for sheep. In the case of the ELISA assay, the hypothalamic tissues collected
from each ewe were combined into 1 sample and homogenized according to the method
described elsewhere [31]. The assays procedure was performed according to the instruc-
tions provided by the manufacturer. Plates incubation and absorbance measurement at
wavelength of 450 nm were estimated using the VersaMax reader (Molecular Devices LLC.,
Sunnyvale, CA, USA). The assay sensitivity was 0.24 pg/mL. IL-1β concentration in the
hypothalamus was computed relative to total protein content of the sample assayed by the
Bradford method.

2.4. Relative Gene Expression Determination

We followed the previously published methods of Herman et al. [31]. For the total
RNA isolation from the collected structures such as POA, AHA, and MBH, we used
the NucleoSpin RNA kit (MACHEREY-NAGEL GmbH and Co, Düren, Germany). The
concentration and purity of isolated RNA were quantified spectrophotometrically by
measuring the optical density at 230, 260, and 280 nm in a NanoDrop 1000 instrument
(Thermo Fisher Scientific Inc., Waltham, MA, USA). The verification of RNA integrity
was carried out by electrophoresis using 1% agarose gel stained with ethidium bromide
(Sigma-Aldrich, St. Louis, MO, USA). The synthesis of complementary DNA (cDNA) was
performed using 1000 ng of total RNA and components of Maxima First Strand cDNA
Synthesis Kit for RT-qPCR (Thermo Fisher Scientific Inc., Waltham, MA, USA).

Real-time RT-PCR analysis was carried out with the use of the HOT FIREPol EvaGreen
qPCR Mix Plus (Solis BioDyne, Tartu, Estonia) and HPLC-grade oligonucleotide primers
(Genomed, Warszawa, Poland) in line with the method described elsewhere [34]. Specific
primers to determine the expression of the genes of interest and housekeeping genes were
chosen on the basis of our previous experience (see Table 2). One reaction mixture of
total volume amounting 15 µL contained 3 µL of PCR Master Mix, 10.05 µL of RNase-free
water, 0.45 µL of primers (0.225 µL each primer), and 1.5 µL of the cDNA template. The
PCR reactions were carried out using Rotor-Gene 6000 instrument (Qiagen, Dusseldorf,
Germany) with the following protocol: 95 ◦C for 15 min and 30–35 cycles of 95 ◦C for 10 s for
denaturation, 59 ◦C for 20 s for annealing, and 72 ◦C for 10 s for extension. A final melting
curve analysis and agarose gel electrophoresis of PCR products were performed to verify
the specificity of the amplification reaction. The relative gene expression was calculated
using the comparative quantification option [35] of the Rotor Gene 6000 software 1.7.
(Qiagen, Dusseldorf, Germany) with reference to the mean expression of 3 housekeeping
genes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-actin (ACTB), and histone
deacetylase1 (HDAC1).

2.5. Statistical Analysis

Statistical analysis was performed using the STATISTICA 10 software (Stat Soft. Inc.,
Tulsa, OK, USA). The results of gene and protein expression were analyzed using one-way
analysis of variance (ANOVA) to identify the influence of anandamide on protein and
gene expression during immune challenge and were followed by a post hoc Fisher’s least
significance test. The results are presented as the mean ± standard error of the mean
(S.E.M.); statistical significance was set at p < 0.05.
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Table 2. The list of all genes analyzed by real-time PCR.

GenBank Acc.
No. Gene Amplicon

Size (bp)
Forward/
Reverse Sequence 5′→3′ Reference

NM_001034034 GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) 134 forward AGAAGGCTGGGGCTCACT [2]

reverse GGCATTGCTGACAATCTTGA

U39357 ACTB
(beta actin) 168 forward CTTCCTTCCTGGGCATGG [2]

reverse GGGCAGTGATCTCTTTCTGC

BC108088.1 HDAC1
(histone deacetylase1) 115 forward CTGGGGACCTACGGGATATT [2]

reverse GACATGACCGGCTTGAAAAT

X54796.1 IL-1B
(interleukin 1 beta) 137 forward CAGCCGTGCAGTCAGTAAAA [2]

reverse GAAGCTCATGCAGAACACCA

NM_001206735.1 IL-1R1
(interleukin 1 receptor, type I) 124 forward GGGAAGGGTCCACCTGTAAC [2]

reverse ACAATGCTTTCCCCAACGTA

NM_001046210.1 IL-1R2
(interleukin 1 receptor, type II) 161 forward CGCCAGGCATACTCAGAAA [36]

reverse GAGAACGTGGCAGCTTCTTT

NM_001308595.1 IL-1RN
(interleukin 1 receptor antagonist) 145 forward AGGATCTGGGATGTCAACCA [36]

reverse CATGGATCCCCAGGAACATA

3. Results
3.1. Effect of AEA Injection on LPS-Induced Synthesis of IL-1β in the Hypothalamus of
Endotoxin-Treated Ewes

Injection of LPS increased (p < 0.05) the concentration of IL-1β protein in the hypothala-
mic tissue in comparison with the control group. Contrarily, the peripheral administration
of AEA diminished this stimulatory effect of LPS on the expression of IL-1β protein in the
ovine hypothalamus. The concentration of IL-1β in the group treated simultaneously with
LPS and AEA was lower (p < 0.05) in comparison to the group treated only with LPS and
did not differ from the IL-1β expression determined in control individuals (Figure 1).
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3.2. Effect of AEA Injection on IL-1 Gene Expression System in the Hypothalamus of
Endotoxin-Treated Ewes

Inflammation induced by LPS treatment increased (p < 0.05) the relative level of IL-1β
and IL-1RN gene expression in all studied structures such as the POA, AHA, and MBH.
Furthermore, in the animals simultaneously treated with LPS and AEA, the gene expression
of both IL-1β (Figure 2) and IL-1RN (Figure 3) in all analyzed hypothalamic structures was
higher (p < 0.05) compared to control and LPS-treated groups.
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Endotoxin treatment elevated (p < 0.05) the level of IL-1R1 gene expression in all
analyzed hypothalamic structures. On the other hand, the gene expression of IL-1R1 in
these hypothalamic structures in ewe simultaneously treated with LPS and AEA did not
differ in comparison to this gene expression in the endotoxin-treated group; however, it
was higher (p < 0.05) when compared to the control animals (Figure 4).
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Injection of LPS elevated (p < 0.05) the level of IL-1R2 gene expression in all studied
hypothalamic structures. However, in contrast to IL-1R1 gene expression, the simultaneous
administration of LPS and AEA increased (p < 0.05) IL-1R2 gene expression in the POA,
AHA, and MBH in comparison to both control and LPS-treated groups (Figure 5).
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inflammation (400 ng/mg; i.v.) on the relative receptor type II interleukin 1 (IL-1R2) mRNA level in preoptic area (POA),
anterior hypothalamus (AHA), and medial basal hypothalamus (MBH) normalized to the mean expression of three reference
genes (GAPDH, HDAC1, ACTB—see Table 2). All data are presented as the mean value ± S.E.M. Different letters indicate
significant (p < 0.05) differences according to a one-way ANOVA followed by Fisher’s least significance test.
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4. Discussion

We have shown that LPS-induced inflammation stimulated the synthesis of IL-1β in
the hypothalamus both at mRNA and protein levels. These results were not surprising
and confirmed the conclusions achieved in other studies that showed that systemic inflam-
mation increases the expression of IL-1β in the hypothalamus of many species including
rat [37], guinea pig [38], and sheep [2,31,39,40]. It is worth mentioning that at least a partial
increase in the expression of hypothalamic IL-1β could be induced by stress provoked by
LPS injection because it was proved that stress condition also stimulates the synthesis of IL-
1β in the hypothalamus [19]. It was also shown that LPS-induced inflammation increased
IL-1RN gene expression in the hypothalamus. IL-1RN is a natural anti-inflammatory factor.
One of its major features is high affinity binding to the IL-1R1 with no conformational
changes. As a result, IL-1RN blocks the IL-1b/IL-1R1 binding. Thus, IL-1β is unable to
interact with corresponding receptor, and the intracellular signal that promotes further
immune stimulation does not arise [41]. Moreover, IL-1RN is a terminal anti-inflammatory
factor that can not only competitively antagonize the biological effects of IL-1, but also
inhibit the effects of other inflammatory factors [42]. Furthermore, it was reported that
the synthesis of IL-1RN rises during various pathological states characterized by local or
systemic inflammation [43]. Therefore, the increased IL-1RN synthesis in the hypothalamus
during peripheral inflammation suggests that three hours after LPS, not only do inflam-
matory processes occur, but also anti-inflammatory mechanisms are activated in order to
protect the central tissues against unrestrained development of the inflammatory response.

Endotoxin-induced inflammation also increased the gene expression of IL-1 receptor
type 1 and 2 in all analyzed hypothalamic structures. This observation is consistent with
the results of previous studies in which peripheral inflammation is thought to stimulate the
gene expression of IL-1R1 and IL-1R2 in the brain [31,39,40,44]. IL-1R1 plays an important
role in initiating inflammatory response. It is a signal-transmitting receptor, triggered by
both IL-1α and IL-1β ligands. The IL-1R1, with its intracellular domain, is responsible for
initializing the inflammatory signaling processes in target cells [45]. The activation of IL-
1R1 through its agonist is required to elicit intracellular signal and further development of
immune response [46]. On the other hand, IL-1R2 is a membrane-bound protein expressed
on the surface of various cells such as endometrial epithelial cells, basophils, neutrophils,
monocytes, and activated T and B cells but it was also found in the brain tissue. IL-1R2
inhibits pro-inflammatory IL-1 effect by acting as a decoy receptor and by preventing
IL-1/IL-1R1 binding [43].

The suppressive action of AEA on the synthesis of IL-1β, reported in our study, is
generally consistent with other studies that showed that endocannabinoids and cannabi-
noids exhibit anti-inflammatory properties. It was found that AEA treatment reduced the
serum level of pro-inflammatory IL-1β in rats exposed to water immersion and restrain
stress [47]. Anti-inflammatory effects of cannabinoids were also observed in the brain
tissue in neurodegenerative diseases occurring with accompanied neuroinflammation. A
study performed on neurodegenerative disease murine models indicated that cannabidiol
decreased the level of pro-inflammatory cytokines, including IL-1β, in the central nervous
system [48]. In other viral study on mice administration of R(+)WIN55,212, CB1 ago-
nist significantly reduced the expression of mRNA encoding pro-inflammatory cytokines
such as IL-1β, IL-6, and tumor necrosis factor α [49]. Moreover, in vitro studies on rat
microglial cells showed that cannabinoids inhibited LPS-stimulated gene expression of
pro-inflammatory cytokines including IL-1β [50]. Although many studies suggest that
there is a link between cannabinoids and TLR signaling pathways that leads to the synthe-
sis of pro-inflammatory cytokines including IL-1β [51], the definition of direct molecular
mechanism still awaits further study. On the other hand, the effect of cannabinoids on the
IL-1β synthesis may be more elusive. It has been reported that AEA stimulated secretion of
IL-1β from RAW264.7 cells [52]. Moreover, the administration of the psychoactive compo-
nent of cannabis, delta 9-tetrahydrocannabinol (THC), activated cerebellar microglia and
increased the expression of neuroinflammatory markers, including IL-1β [53]. The same
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pro-inflammatory effect of THC was reported in studies on murine resident peritoneal
macrophage cultures, showing that cannabinoid treatment increased, in a dose-dependent
manner, the secretion of IL-1β [54]. The different effect of AEA on the synthesis of IL-1
at the level of mRNA and protein expression demonstrated in our research indicates that
endocannabinoids may influence cytokine expression through different cellular pathways.
The findings that changes in IL-1βmRNA expression did not correspond with this cytokine
protein synthesis suggests that inhibitory effect of AEA is targeted on a post-transcriptional
level of IL-1β synthesis. It is known that after transcription, the inactive IL-1β precursor
accumulates in the cytosol until it is processed by the activation of nucleotide-binding
domain and leucine-rich repeat pyrin-containing protein-3 (NLRP3) and caspase-1 into
an active cytokine [55,56]. Therefore, inhibition of NLRP3 inflammasome results in the
reduction of the secretion of mature IL-1β. It was previously found that AEA and its
COX-2 metabolite-prostaglandin E2 ethanolamide may exert an inhibitory effect on the
NLRP3 inflammasome formation and activation [57]. Moreover, it seems that the inhibitory
effect of anandamide on NLRP3 inflammasome activation could be common feature of
cannabinoids because recent studies on LPS-nigericin-stimulated THP-1 monocytes also
showed that cannabidiol suppressed NLRP3 inflammasome activation [58]. However, it
is also possible that AEA influences the expression of mature IL-1β in the hypothalamic
tissue by stimulating processes leading to degradation of this cytokine. It was found that
activated matrix metalloproteinase (MMP)-1, MMP-2, MMP-3, and MMP-9 are responsi-
ble for degradation of IL-1β [59]. In turn, it was reported that AEA, acting via CB1 and
transient receptor potential vanilloid-1, induced production of MMP-2 [60].

Our experiment also showed that animals co-treated with LPS and AEA are character-
ized by higher gene expression of IL-1RN and IL-1R2 but not IL-1R1 in all hypothalamic
structures involved in GnRH-ergic activity in comparison to control and LPS-treated an-
imals. The findings that in the group treated with LPS and AEA, the gene expression of
IL-1RN was significantly raised compared to LPS-treated and control groups suggests that
the anti-inflammatory effect of AEA in the hypothalamus may result from the stimulation
of IL-1RN synthesis, which in turn competes with IL-1β for binding to its receptor. This
mechanism of anti-inflammatory action of cannabinoids was stated in previous in vitro
studies that showed potent anti-inflammatory effect of cannabinoids in murine glial and
neuronal cell cultures. It was shown that culture of murine glial and neuronal cell incubated
with cannabinoid agonists during inflammatory stimuli resulted in increased concentration
of IL-1RN in the analyzed supernatants. Moreover, the authors postulated that induction
of endogenous IL-1RN is essential for the neuro-protective effects of CBs [61]. The fact that
AEA treatment did not influence IL-1R1 gene expression in the hypothalamus suggests that
potential anti-inflammatory effect of AEA does not result from the reduced sensitivity of
brain tissue to IL-1 action. However, the obtained results suggest the existence of another,
novel mechanism of anti-inflammatory action of endocannabinoids in the central tissue on
the basis of the increased synthesis of IL-1R2. As was mentioned above, acting as a decoy
receptor IL-1R2 prevents IL-1/IL-1R1 binding, reducing the action of IL-1β. Additionally,
IL-1R2 exists in both a membrane-bound and soluble form (sIL-1R2) with biological prop-
erties alike to both a decoy receptor and a binding protein [62]. Therefore, some amount of
IL-1R2 from the hypothalamus may be released into the CSF, which in turn may reduce the
amount of free, centrally acting IL-1β.

5. Conclusions

Summarizing, our study showed that AEA interfered with the synthesis of interleukin-
1β and IL-1 system gene expressions in the hypothalamic structures involved in GnRH-ergic
activity during an immune/inflammatory challenge. It was found that AEA inhibited
the LPS- stimulated synthesis of central IL-1β in the hypothalamus, likely affecting post-
transcriptional levels of this cytokine synthesis. However, anti-inflammatory effect of
anandamide at the level of central nervous system might also result from its stimulating ac-
tion on IL-1RN and IL-1R2 gene expression. However, further detailed research is required
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to investigate this issue. In sum, our study suggests the potential of endocannabinoids
and/or their metabolites in the inhibition of inflammatory process at the level of central
nervous system, and therefore their usefulness in the therapy of inflammatory-induced
neuroendocrine disorders.
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6. Herman, A.P.; Skipor, J.; Krawczyńska, A.; Bochenek, J.; Wojtulewicz, K.; Antushevich, H.; Herman, A.; Paczesna, K.; Romanowicz,
K.; Tomaszewska-Zaremba, D. Peripheral inhibitor of AChE, neostigmine, prevents the inflammatory dependent suppression of
GnRH/LH secretion during the follicular phase of the estrous cycle. BioMed Res. Int. 2017, 2017, 6823209. [CrossRef] [PubMed]

7. Herman, A.P.; Krawczyńska, J.; Bochenek, J.; Haziak, K.; Romanowicz, K.; Misztal, T.; Antushevich, H.; Herman, A.; To-
maszewska-Zaremba, D. The effect of rivastigmine on the LPS-induced suppression of GnRH/LH secretion during the follicu-lar
phase of the estrous cycle in ewes. Anim. Reprod. Sci. 2013, 138, 203–212. [CrossRef] [PubMed]

8. Karsch, F.J.; Battaglia, D.F.; Breen, K.M.; Debus, N.; Harris, T.G. Mechanisms for ovarian cycle disruption by im-
mune/inflammatory stress. Stress 2002, 5, 101–112. [CrossRef]

9. Battaglia, D.F.; Bowen, J.M.; Krasa, H.B.; Thrun, L.A.; Viguié, C.; Karsch, F.J. Endotoxin inhibits the reproductive neuroen-docrine
axis while stimulating adrenal steroids: A simultaneous view from hypophyseal portal and peripheral blood. Endocrinology 1997,
138, 4273–4281. [CrossRef] [PubMed]

10. Caldani, M.; Batailler, M.; Dubois, M.P. LHRH-immunoreactive structures in the sheep brain. Histochemistry 1988, 89, 129–139.
[CrossRef]

11. Herman, A.P.; Misztal, T.; Romanowicz, K.; Tomaszewska-Zaremba, D. Central Injection of Exogenous IL-1β in the Control
Activities of Hypothalamic-Pituitary-Gonadal Axis in Anestrous Ewes. Reprod. Domest. Anim. 2011, 47, 44–52. [CrossRef]
[PubMed]

12. Kang, S.S.; Kim, S.R.; Leonhardt, S.; Jarry, H.; Wuttke, W.; Kim, K. Effect of interleukin-1beta on gonadotropin-releasing hormone
(GnRH) and GnRH receptor gene expression in castrated male rats. J. Neuroendocrinol. 2000, 12, 421–429. [CrossRef]

13. Rothwell, N.J.; Luheshi, G.N. Interleukin 1 in the brain: Biology, pathology and therapeutic target. Trends Neurosci. 2000, 23,
618–625. [CrossRef]

14. Herman, A.P.; Tomaszewska-Zaremba, D. Effect of endotoxin on the expression of GnRH and GnRHR genes in the hypothalamus
and anterior pituitary gland of anestrous ewes. Anim. Reprod. Sci. 2010, 120, 105–111. [CrossRef]

15. Banks, W.A.; Kastin, A.J.; Broadwell, R.D. Passage of Cytokines across the Blood-Brain Barrier. Neuroimmunomodulation 1995, 2,
241–248. [CrossRef]

http://doi.org/10.22358/jafs/67366/2016
http://doi.org/10.1155/2014/475152
http://doi.org/10.1242/jeb.073411
http://doi.org/10.22358/jafs/65683/2014
http://doi.org/10.1016/S0739-7240(03)00042-0
http://doi.org/10.1155/2017/6823209
http://www.ncbi.nlm.nih.gov/pubmed/28894751
http://doi.org/10.1016/j.anireprosci.2013.03.005
http://www.ncbi.nlm.nih.gov/pubmed/23557940
http://doi.org/10.1080/10253890290027868
http://doi.org/10.1210/endo.138.10.5449
http://www.ncbi.nlm.nih.gov/pubmed/9322940
http://doi.org/10.1007/BF00489916
http://doi.org/10.1111/j.1439-0531.2011.01800.x
http://www.ncbi.nlm.nih.gov/pubmed/21595758
http://doi.org/10.1046/j.1365-2826.2000.00466.x
http://doi.org/10.1016/S0166-2236(00)01661-1
http://doi.org/10.1016/j.anireprosci.2010.03.011
http://doi.org/10.1159/000097202


Animals 2021, 11, 484 11 of 12

16. Kowalewska, M.; Herman, A.; Szczepkowska, A.; Skipor, J. The effect of melatonin from slow-release implants on basic and
TLR-4-mediated gene expression of inflammatory cytokines and their receptors in the choroid plexus in ewes. Res. Vet. Sci. 2017,
113, 50–55. [CrossRef] [PubMed]

17. Kowalewska, M.; Szczepkowska, A.; Herman, A.; Pellicer-Rubio, M.; Jałyński, M.; Skipor, J. Melatonin from slow-release implants
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Antushevich, H.; Skipor, J. Neostigmine attenuates proinflammatory cytokine expression in preoptic area but not choroid plexus
during lipopolysaccharide-induced systemic inflammation. Med. Inflamm. 2018, 2018, 9150207. [CrossRef] [PubMed]
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