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Zika virus (ZIKV) infection, along with the concurrent circulation of other arboviruses,
presents a great public health challenge, reminding the utilization of mathematical
modelling as a crucial tool for explaining its intricate dynamics and interactions with co-
circulating pathogens. Through a scoping review, we aimed to discern current mathe-
matical models investigating ZIKV dynamics, focusing on its interplay with other patho-
gens, and to identify underlying assumptions and deficiencies supporting attention,
particularly regarding the epidemiological attributes characterizing Zika outbreaks.
Following the PRISMA-Sc guidelines, a systematic search across PubMed, Web of Science,
and MathSciNet provided 137 pertinent studies from an initial pool of 2446 papers,
showing a diversity of modelling approaches, predominantly centered on vector-host
compartmental models, with a notable concentration on the epidemiological landscapes
of Colombia and Brazil during the 2015e2016 Zika epidemic. While modelling studies have
been important in explaining Zika transmission dynamics and their intersections with
diseases such as Dengue, Chikungunya, and COVID-19 so far, future Zika models should
prioritize robust data integration and rigorous validation against diverse datasets to
improve the accuracy and reliability of epidemic prediction. In addition, models could
benefit from adaptable frameworks incorporating human behavior, environmental factors,
and stochastic parameters, with an emphasis on open-access tools to foster transparency
and research collaboration.
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1. Background

1.1. Rationale

Due to their persistent appearance and re-appearance, mosquito-borne illnesses are a global health problem inmany parts
of the world. Global distribution shifts primarily stem from the increasing mosquito population, driven by several factors,
including the migration of people and the existence of a favorable climate (Kraemer et al., 2019; Wint, Jones, Kraemer,
Alexander, & Schaffner, 2022). Recent literature has estimated that by 2050, approximately 40% of the world's population
will be exposed to disease transmitted by mosquitoes (Kraemer et al., 2019). The majority of viruses that infect humans
through mosquitoes and cause disease are members of the flavivirus family Flaviviridae, including Dengue virus (DENV), Zika
virus (ZIKV), and Chikungunya virus (CHIKV) (Yu& Cheng, 2022). Among all of thesemosquito-borne diseases, Zika, caused by
ZIKV, stands out as a newly emerging mosquito-borne disease, responsible for large outbreaks in nearly 89 countries in the
last decade (Chang, Ortiz, Ansari,& Gershwin, 2016). However, like Dengue, Zika is categorized as a “neglected tropical disease”
because, despite its discovery many decades ago, it has received little attention until the recent major outbreaks this last
decade (Champagne et al., 2016)

ZIKV was first identified in 1948 and 1952 based on serological evidence; in 1954, human cases were identified in Nigeria
and the virus was isolated (MacNamara,1954; Yu& Cheng, 2022). Similarly, 2013 saw the first notable Zika outbreak recorded
in New Caledonia (Ioos et al., 2014). Although initially confined to Africa and Asia, the virus garnered global attention during
the extensive outbreak in Brazil in 2015 (Atif, Azeem, Sarwar,& Bashir, 2016). This outbreakmarked the largest in history, with
an estimate of between 440, 000 and 1, 300, 000 Zika cases and 4783 possible cases of microcephaly in the majority of
Northeast Brazil, leaving approximately 76 deaths (De Araújo, Nascimento, Da Matta Guedes, & Fernandes, 2021). The
outbreak quickly spread across several countries in Latin America, the Caribbean, and the Pacific, resulting in the World
Health Organization (WHO) announcing a worldwide public health emergency in 2016 (De Araújo et al., 2021). ZIKV is likely
to follow the epidemiologic pattern of DENV and CHIKV endemic areas where Aedesmosquitoes are present (Atif et al., 2016).

ZIKV primarily spreads via the bite of two mosquito species belonging to the Aedes genus (Ae. aegypti and Ae. albopictus)
that also transmit other diseases such as Dengue and Chikungunya (Atif et al., 2016). Notably, ZIKV has also been identified in
other mosquito species, such as Ae. hirsutus, Ae. vittatus, Ae. furcifer, and Ae. Taylori (Dasti, 2016). Mosquitoes of the genus
Aedes can procreate in a small amount of water, and their eggs are hard, making it difficult to control their growth (Paix~ao,
Barreto, Da Gl�oria Teixeira, Da Conceiç~ao N Costa, & Rodrigues, 2016). ZIKV can spread by four main routes: vector trans-
mission, person-to-person transmission, blood transfusion, and animal-to-person transmission. Non-human primates pro-
duce antigens and antibodies, suggesting that animals may act as reservoirs (Musso et al., 2015). Indeed, many non-human
animals are considered reservoir hosts of ZIKV, and people are viewed as incidental hosts; however, the virus has shown the
ability to adapt to humans andmaintain the cycle of infection, and therefore Zika is considered a zoonosis (Vue& Tang, 2021).
Moreover, because the virus may remain in semen for a maximum of six months post-infection, allowing the virus to spread
even in the absence of symptoms, ZIKV can be disseminated through sexual intercourse (Musso et al., 2015). The potential for
sexual transmission is higher when the infected partner exhibits symptoms or has been infected with the virus within the
past few weeks (Grischott, Puhan, Hatz, & Schlagenhauf, 2016).

The pathogenesis of ZIKV is unclear, with approximately 80% of the cases being asymptomatic (Kumar Goswami &
Shanmukha, 2020). ZIKV infections, onset 2e11 says after a mosquito bite, typically involve flu-like symptoms, conjuncti-
vitis, maculopapular rash and joint pain (Paix~ao et al., 2016). Unlike Dengue and Chikungunya infections, ZIKV infections
usually presents with milder symptoms with inconsistent rashesb (Romero-Leiton, Acharya, Parmley, Arino, & Nasri, 2023).
However, certain ZIKV infection instances could result in neurological side effects, such as congenital microcephaly in
newborns and fetuses and Guillain-Barr�e syndrome in adults, unlike other flaviviruses. Guillain-Barr�e Syndrome is rare, with
a ratio of one case for every 6.1 instances of microcephaly. These consequences are also uncommon (Akrami et al., 2021).
Treatment focuses primarily on symptoms since there is not a particular antiviral drug for ZIKV infection (Dasti, 2016). The
rapid spread of Zika, its potential for epidemic proportions, and its co-existence with other arboviruses pose challenges for
differential diagnoses. Laboratory tests, such as C-reactive protein and serological tests, lack sensitivity and specificity for
detecting the presence of the virus because of the cross-reactivity among viruses of the genus Flavivirus (Musso et al., 2015)

Moreover, the spread of Zika is mainly driven by the concurrence of multiple communicable agents in the same geographic
area (S�anchez-Duque, Rodríguez-Morales, Trujillo, Cardona-Ospina, & Villamil-G�omez, 2018). Co-circulation refers to the
simultaneous presence of multiple pathogenic organisms in the same area, while co-infection refers to the presence of
multiple infectious agents in an individual. There have been reports of ZIKV co-circulation and co-infection with other ill-
nesses in a number of nations, including Brazil, Colombia, and Venezuela (S�anchez-Duque et al., 2018). The most common co-
circulating viruses are DENV and CHIKV, both of which are transmitted by the Aedesmosquitoes (S�anchez-Duque et al., 2018).
This can have severe consequences for patients, particularly for pregnant women. However, ZIKV can co-circulate and co-
infect with other infectious agents, such as Human Immunodeficiency Virus (HIV). For example, in Colombia and Brazil,
cases of co-infection have been reported, resulting in an increased risk of liver damage (Aschengrau et al., 2021; Bidokhti et al.,
2018; Rothan, Bidokhti, & Byrareddy, 2018; Sherman et al., 2018).

The rapid spread of ZIKV and its potential impact on maternal and child health has prompted an urgent response from the
global health community. Researchers worldwide have quickly mobilized to study the virus, its transmission dynamics, and
its potential interventions to control outbreaks. Since then, understanding the dynamics of viral transmission has been made
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possible by mathematical modelling, which has deepened our understanding of disease epidemiology as well as risk factors
and predicting their spread. Models have been used to estimate the factors leading to microcephaly associated with ZIKV
infection during motherhood (Ndaïrou, Area, Nieto, Silva, & Torres, 2018), and evaluate the potential impact of different
mosquito control strategies (A. Ali, Iqbal, Asamoah, & Islam, 2022; Altaf Khan, Ullah, & Farhan, 2019; Alzahrani, Ahmad, Altaf
Khan,&Malebary, 2021; Altaf Khan et al., 2019). These studies have demonstrated the potential of mathematical modelling to
guide public health interventions and inform policy decisions in the context of Zika.

Some scoping reviews have attempted to identify the various methodologies employed in modelling ZIKV infections
throughout the years. Wiratsudakul et al. (Wiratsudakul, Suparit, & Modchang, 2018) reviewed mathematical modelling
approaches used to explain the dynamics of ZIKV outbreaks; however, this scoping review only emphasized ZIKV mathe-
matical models before 2017 and did not consider studies that included co-infections with other pathogens as variables. Our
scoping review will serve as an update on the modelling approaches used to study the dynamics of ZIKV outbreaks and their
evolution in recent years. It also determines the implications of incorporating co-infections into these models.

1.2. Research questions

Mathematical modelling has extensively provided insight that would be difficult to obtain through pure experiments (Best
& Perelson, 2018). This scoping review is based on Zika mathematical modelling literature from January 2011 onwards. We
focused on the following objectives: (1) Classify the mathematical models used to describe the dynamics of Zika and its co-
circulation and co-infection according to their structure, type, main variables, and transmission parameter values; (2)
Determine interest over time in ZIKV mathematical modelling research; (3) Determine the geographic areas where the most
research has been conducted; (4) Determine the primary open-access data and coding sources used in the studies; (5) Classify
the most common control/intervention strategies used in the mathematical modelling of Zika; (6) Identify the limitations of
the proposed models.

2. Methods

This scoping review adhered to the guidelines of the Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA-P) and its extension for Scoping Reviews (PRISMA-ScR) (Tricco et al., 2018). The full methodology used for math-
ematical modelling in this review, including eligibility requirements, information sources, search strategies, data charting
procedures, and data items, as well as the synthesis of results, is detailed in our scoping review protocol (Romero-Leiton,
Acharya, et al., 2023). For this review, we incorporated relevant information outlined in the PRISMA-ScR checklist
(Supplementary Information S1).

3. Results

3.1. Selection of sources of evidence

The preliminary search identified 1664 studies for this scoping review after duplicates were removed. After screening all
abstracts and full texts based on the inclusion and exclusion criteria listed in the protocol (Romero-Leiton, Acharya, et al.,
2023) and shown in Fig. 1, 137 articles were included. The first screening stage, comprising title and abstract review, was
validated by JR and KA. Full-text selection and analysis of the results were performed and validated by JR and KA.

3.2. Synthesis of results

3.2.1. Geographical distribution of the research per year
An analysis was conducted to determine the temporal and geographic distribution of publications on the mathematical

modelling of Zika. Of the 137 analyzed studies, more than half (54.01%) lacked a specified regional focus, whereas a subset of
articles (3.64%) exhibited emphasis on more than one country. The remaining proportion of research endeavors (42.35%) is
graphically depicted in Fig. 2, which shows the distribution by country.

Notably, mathematical modelling of ZIKV was absent from the research landscape before 2015. A distinct shift in research
focus was materialized post-2016, coinciding with Zika's arrival in the Americas in 2015.

3.2.2. Models’ classification
A dual categorization scheme was employed for the classification of mathematical models, considering both typological

and structural aspects. The widest classification framework is built on the model type, which constitutes the most inclusive
level of categorization. This taxonomy includes.

(a) Deterministic models, such as those employing Fractional Differential Equations (FDEs), Partial Differential Equations
(PDEs), Ordinary Differential Equations (ODEs), and Difference Equations, constituted 84.7% of all studies.
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Fig. 1. Study selection pathway using the PRISMA-P diagram.

Fig. 2. Annual trends in Zika mathematical modelling research across countries. Latin American and Caribbean countries dominated, with Colombia, Brazil, and
Costa Rica as key research centres driven by elevated Zika transmission after the 2016 epidemic in the Americas.
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(b) Stochastic models, including Stochastic Differential Equations (SDEs), Branching Processes and Agent-Based models,
representing a mere 0.3% of studies were included.

(c) Network-based models, which can be deterministic or stochastic models that describe the relationships and in-
teractions between objects or entities in a system. For example, metapopulation and contact network models
accounted for 2.9% of the total studies.

(d) Mixed-type models, incorporating studies that combine two or more different modelling approaches into a single
framework, constituted 11.7% of the total studies.

A more refined classification was performed for each model type, focusing on the structural attributes inherent to these
models. Specifically, this structural categorization delineates models into two principal subcategories: (1) a vector-host
structure, which describes how ZIKV spreads betweenmosquitoes (vectors) to humans (hosts), accounting for 97% of studies;
and (2) a within-host structure, which refers to the processes within an individual's body during a ZIKV infection, repre-
senting 3% of the total studies. We did not consider the between-host model structure, which explains how a pathogen is
transmitted from one host to another, because the literature we reviewed consistently combined the sexual transmission
(between-host) of ZIKV with vectorial transmission. Consequently, it is sufficient to focus on the vector-host structure with a
sexual transmission route. Table 1 gives a summary of the various models that are categorized, along with the references for
each.

The analysis of the data presented in Table 1 revealed that the majority of the mathematical models employed in Zika
research follow a vector-host structure. Notably, the majority of studies were deterministic, with 82.7% of the studies
exhibiting an overlap between the two categories. These vector-host models are key to understanding Zika transmission
dynamics, given that Aedes mosquitoes primarily transmit the virus. They incorporated the intricate interplay between
humans and mosquitoes under the assumption that infection in mosquitoes occurs through biting of infected humans.

Nevertheless, within-host Zika models have garnered less attention, accounting for only 2.2% of the total studies. The
relatively limited exploration of these model types may be attributed to the challenges associated with the intricate in-
teractions between ZIKV and the host immune system. Nonetheless, these models offer valuable insights into specific aspects
of Zika dynamics and host-pathogen interactions despite their comparatively lower prevalence in the research landscape.
Table 1
Distribution of Zika mathematical models by type and structure. By type, deterministic (84.7%), stochastic (0.3%), network-based (2.9%), and mixed-type
(11.7%) models were used. By structure, we have vector-host transmission, including sexual and vertical transmission (97.8%) and within-host transmission
(2.2%).

Model Type Model Structure

References for vector-host (including or not sexual and vertical transmission) References for within-host

Deterministic (Adamu et al., 2017; Addai et al., 2022; Agudelo & Ventresca, 2022; Agusto, Bewick, & Fagan,
2017b; A. Ali, Iqbal, et al., 2022; A. Ali, Islam, et al., 2022; H. M. Ali & Ameen, 2021; Al-
Maqrashi et al., 2022, 2023 Alshehri & Hajji, 2022; Altaf Khan et al., 2019; Alzahrani et al.,
2021; Article et al., 2017; Atokolo et al., 2022; Baca-Carrasco & Velasco-Hern�andez, 2016;
Ba~nuelos et al., 2019; Barros et al., 2019; Begum, Tunç, Khan, Gulzar, & Khan, 2021; Bessey,
Mavis, Rebaza, & Zhang, 2021; Bi et al., 2020; Binder & Pilyugin, 2019; Biswas et al., 2020;
Bonyah, Khan, Okosun, & Islam, 2017, 2019 Chaikham& Sawangtong, 2017; Chen et al., 2018;
Cruz-Pacheco et al., 2019; Danbaba & Garba, 2018; Dantas et al., 2018; D�enes et al., 2019;
Denu & Son, 2021; Dohare et al., 2021; Durham et al., 2018; Farman et al., 2020, 2022
Fitzgibbon et al., 2017; W. Gao et al., 2019; Gonz�alez-Parra et al., 2020; Goswami et al., 2018;
Hasan, Singh, Richards, & Blicblau, 2019; He et al., 2020; Huber et al., 2018; Huo et al., 2023;
Hussain et al., 2021; Ibrahim & D�enes, 2021; Imran et al., 2018, 2021 Khan et al., 2019;
Kucharski et al., 2016; Kumar Goswami & Shanmukha, 2020; L. et al., 2019; Li & Zhao, 2021;
Lourenço et al., 2017; Massad et al., 2019; Mina et al., 2020; Mishra, 2021; Miyaoka et al.,
2019; Moreno et al., 2017; Goswami & Shanmukha, 2020; Ndaïrou et al., 2018; Ngonghala
et al., 2021; Okuneye et al., 2017; Okyere et al., 2020; Olawoyin & Kribs, 2018, 2020 Omame
et al., 2022, 2023 Omame & Abbas, 2023; Padmanabhan et al., 2017; Padmanabhan &
Seshaiyer, 2017; Pan, Zhu, & Wang, 2022; Rahman et al., 2019; Saad-Roy, Ma, & van den
Driessche, 2018; Sadeghieh et al., 2021; Sanchez, Barboza, & V�asquez, 2019; Sasmal et al.,
2018; Sharma et al., 2021; Srivastav et al., 2018, 2019 Tang et al., 2018, 2019 Terefe et al.,
2018; Thaiprayoon et al., 2022; Tuncer, Marctheva, LaBarre, & Payoute, 2018; Ukanwoke
et al., 2022; Veeresha et al., 2022; L. Wang et al., 2017; L. Wang & Wu, 2022; L. Wang & Zhao,
2019; W. Wang et al., 2023; X. Wang et al., 2019; Xue et al., 2018; Yuan et al., 2021; Yue,
Yusof, & Shafie, 2020; L. Zhang & Zhao, 2021; R. Zhang & Zhao, 2022; Zhao et al., 2020; Zhu
et al., 2022)

(Best & Perelson, 2018; Tang et al., 2020;
Tuncer & Martcheva, 2021)

Stochastic Nguyen-Van-Yen et al. (2021)
Network-

Based
(X. F. Luo et al., 2021; X. S. Luo et al., 2020; Stone et al., 2017; Tchepmo Djomegni et al., 2021)

Mixed-Type (Angina et al., 2022; Carlson et al., 2018; Champagne et al., 2016; Counotte et al., 2019; Marini
et al., 2017; Mu~noz et al., 2017; Roy et al., 2020; Shutt et al., 2017; Soewono & Lahodny, 2021;
Tang et al., 2016; Wattanasirikosone & Modnak, 2021; Xue et al., 2021; Zevika & Soewono,
2018)

540



J.P. Romero-Leiton, E.K.E. Laison, R. Alfaro et al. Infectious Disease Modelling 10 (2025) 536e558
3.2.3. Model variables
In mathematical models, variables and parameters are two aspects that play distinct roles (Banerjee, 2014). Variables are

elements that can change or vary in the model, representing aspects of interest for prediction or deeper understanding.
Examples include the number of human infections, recovered humans, and Zika-carrier mosquitoes. However, parameters
can be constants or fixed in themodel that do not change during simulation or analysis, but sometimes parameters depend on
other covariates or even be random parameters. These values are essential for defining the model but are not the principal
focus of this review. Parameters in Zika models could include the mosquito biting rate and transmission probabilities (vector
to host and host to vector).

Considering this distinction, we analyzed 137 selected studies to determine the variables of interest associated with each
model structure. First, these variables were identified for models that did not consider co-circulation or co-infection and for
models that did consider the interaction of ZIKV with other pathogens. Second, we focused on two distinct model structures,
as previously identified: vector-host (including or not including sexual or vertical transmission routes) and within-host
models. Therefore, we defined two types of variables: state and control variables, which will be described in the following
section.

3.2.3.1. State variables in vector-host models. We identified 132 studies using a vector-host structure that incorporated human
and mosquito compartments. Human compartments contain the number of susceptible individuals, symptomatic and
asymptomatic cases, and individuals who have recovered and acquired immunity. The mosquito compartments comprised
variables describing different stages of the mosquito life cycle, such as counts for eggs, larvae, and pupae in the aquatic stages,
as well as susceptible, exposed, and infected adult mosquitoes. In network-based models, compartments remain constant,
and multiple regions (patches) are considered, expanding the structure of these compartments across diverse regions.

In the following, we present compartmental diagrams illustrating the variables of interest for the vector-host models.
Fig. 3 provides a general diagram representing vector-host model structures that do not consider the sexual or vertical
transmission routes of the disease. Fig. 4 shows a general compartmental diagram that includes the variables of interest for
vector-host model structures that account for sexual and vertical transmission routes.

Within the vector-host model structure, we found 13 studies (9.48% of the total studies) that considered co-infection or co-
circulation with other diseases. More specifically, of the thirteen articles, seven considered co-circulation/co-infection with
Dengue (Bonyah, Khan, Okosun,&G�omez-Aguilar, 2019; Olawoyin& Kribs, 2020; Tang, Xiao,&Wu, 2016, 2018, 2019, 2020; L.
Wang & Zhao, 2019), 3 with Dengue and Chikungunya (Huber, Childs, Caldwell, &Mordecai, 2018; Okuneye et al., 2017; Xue,
Fang,&Hyman, 2018),1 with COVID-19 (Omame, Abbas,&Onyenegecha, 2022), and onewith COVID-19 and Dengue (Omame
& Abbas, 2023). Fig. 5 shows a general compartmental diagram of the variables of interest in the co-infection/co-circulation
vector-host models.

3.2.3.2. State variables in within-host models. Only three studies, comprising 2.18% of the total, utilized the within-host
structure model (Best & Perelson, 2018; Tang, Xiao, Sander, Kulkarni, & Wu, 2020; Tuncer & Martcheva, 2021). These
studies incorporated various components such as susceptible cells, infected cells, antibodies, T cells, and viral particles. These
models aim to capture various stages of infection and immune responses in the human population and pregnant women.
Fig. 6 provides a compartmental diagram specifically designed to illustrate the structural elements of the within-host models.
This diagram focuses on the variables of interest that pertain to the interactions between the host cells and the infecting virus,
capturing the stages of infection and immune responses within individual hosts (including pregnant women).

Of the three studies that considered the within-host structure, only one (Tang et al., 2020) modelled the co-connection
between ZIKV and DENV. Fig. 7 shows the state variables associated with this model.

To further delve into the specifics of the submodels within these general diagrams (Figs. 3e7), Supplementary Information
S2 provides a detailed overview of the submodel structures and their respective references. These sub-models offer a more
granular understanding of the components and interactions within broader model structures.

3.2.3.3. Intervention variables. Of the 137 studies reviewed, 34 (24.8%) incorporated intervention (or control) variables into
their analysis. Among the 34 studies, 76.47% identified personal protection, 64.70% considered insecticides, 32.35% examined
medical treatment, 20.58% addressed sexual protection, 11.76% discussed, and 11.76% explored the incorporation ofWolbachia
bacteria.

Personal protection interventions include behaviours such as using insect repellents and donning long sleeves, and
sleeping under mosquito nets, all of which contribute to mitigating the risk of mosquito-borne transmission and ZIKV
dissemination. Insecticides, including larvicides and adulticides, eliminate mosquitoes and curtail their population densities,
thereby mitigating disease transmission. The production of antiviral medications to prevent or treat Zika infection is referred
to as a medical therapy intervention.

Conversely, hospitalization (Imran, Usman, Malik, & Ansari, 2018), health campaigns (Huo, Fu, & Xiang, 2023), in-
terventions aimed at reducing the incidence of babies with abnormalities (e.g., protecting pregnant women from Zika
infection and subsequently reducing the risk of vertical transmission to the fetus) (Huo et al., 2023), advocating for delayed
pregnancy (Huo et al., 2023), water sanitation (Biswas, Ghosh,& Sarkar, 2020) (each identified in only one study per category)
represent less commonly utilized intervention strategies within the mathematical modelling domain of Zika. The limited
541



Fig. 3. General compartmental diagram of the variables of interest in vector-host models excluding sexual and vertical transmission routes. In the human
compartments the variables of interest are the population of: S (susceptible), V (vaccinated), E (exposed), I (infectious), R (recovered), H (hospitalized), Ia
(asymptomatically infected), Is (symptomatically infected), Ic (convalescent infected), Ir (reported infectious), Iu (unreported infectious), S1 (individuals with
reduced susceptibility to strain 1 due to past exposure and recovery from strain 1), S2 (individuals with reduced susceptibility to strain 2 due to past exposure and
recovery from strain 2), I1 (individuals infected with strain1), I2 (individuals infected with strain 2), R1 (individuals who have recovered from strain 1 and are still
immune to strain 1), R2 (individuals who have recovered from strain 2 and are still immune to strain 2). For mosquito compartments the interest variables are the
mosquitoes of: A (aquatic phase: eggs, larvae, and pupae), Sv (susceptible), Ev (exposed), Iv (infectious), IV1 ð vector infected with strain 1), IV2 ð infected with
strain 2).

J.P. Romero-Leiton, E.K.E. Laison, R. Alfaro et al. Infectious Disease Modelling 10 (2025) 536e558
adoption of these strategies can be attributed to their comparatively minor impact on reducing viral transmission or the
scarcity of data to reliably estimate their efficacy. For detailed insights into the specific combinations of the intervention
strategies employed in each study and the corresponding references, please refer to Supplementary Information S3.

3.2.4. Model parameters
The parameters examined in the selected studies were categorized into four distinct subcategories: transmission prob-

abilities in vector-host (whether or not sexual transmission is considered), transitions between compartments, parameters
related to infected cells, and intervention (control) parameters. The intervention parameters are analyzed in the subsequent
section. Owing to the substantial number of parameters associated with each subcategory, Table 2 provides the reported
ranges of vector-host, host-vector, and host-host transmission parameters, along with the estimated or utilized values for the
sexual and vertical transmission probability and mosquito biting rate.

On the other hand, Table 3 shows the co-infection/co-circulation transmission parameter values for those models.
Although co-infection or co-circulation of ZIKV with other pathogens can affect the kinetics of transmission, very few

mathematical models have taken this into account. However, the co-circulation of ZIKV with other arboviruses, such as DENV
and CHIKV, is prevalent in many parts of the world. Incorporating these arboviruses into mathematical models of ZIKV allows
a better understanding of their interplay. The limited focus on concurrent infection in mathematical models of COVID-19 and
ZIKV is due to its novel nature; therefore, research efforts are more focused on analyzing the dynamics of COVID-19 alone
rather than exploring co-infection/co-circulation with other infectious agents.
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Fig. 4. General compartmental diagram of interest variables in vector-host models, including sexual and vertical transmission routes. In the human compart-
ments the variables of interest are the population of: Suf (sexually active susceptible no pregnant females), Euf (sexually active exposed no pregnant females), Iuf
(sexually active infectious non pregnant females), Ruf (sexually active recovered non pregnant females), Sfp (sexually active susceptible pregnant females), Efp
(sexually active exposed pregnant females), Ifp (sexually active infectious pregnant females), Rfp (sexually active recovered pregnant females), Sm (sexually active
susceptible males), Em (sexually active exposed males), Im (sexually active infectious males), Rm (sexually active recovered males), SN (sexually inactive sus-
ceptible host), EN (sexually inactive exposed host), IN (sexually inactive infected host), RN (sexually inactive recovered host). For mosquito compartments the
interest variables are: Sv (susceptible mosquitoes), Ev (exposed mosquitoes), Iv (infectious mosquitoes).
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3.2.5. Model analysis methods
This section presents a classification of the methods employed to analyze the 137 Zika mathematical models selected in

this study.
This review classified the methods employed in the analysis into four distinct categories, each with a specific purpose.

(a) Model calibration using data accounted for 5.10% of total studies, which involves methods used to evaluate the ac-
curacy of mathematical models. This is achieved by comparing model predictions to observed data and adjusting the
model parameters to enhance performance. This includes methods for computing the basic reproduction number (ℛ0),
conducting forecast analysis, model validation, and performing numerical experiments using data (Durham et al., 2018;
Fundzama& Patidar, 2020; Maxian, Neufeld, Talis, Childs,& Blackwood, 2017; Morrison& Cunha, 2020; Prasad, Kumar,
& Dohare, 2023; Suparit, Wiratsudakul, & Modchang, 2018; van den Driessche, 2017).

(b) Parameter estimation and sensitivity analysiswere used in 2.18% of all studies to estimate unknown parameters in a
mathematical model or to evaluate their sensitivity (D. Gao et al., 2016; T€onsing, Timmer,& Kreutz, 2018; Towers et al.,
2016).
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Fig. 5. General compartmental diagram of the variables of interest in co-infection/co-circulation vector-host models. In the human compartments the interest
variables are the population of: S (susceptible), Id (infected by DENV alone), Iz (infected by ZIKV alone), Ik (infected by CHIKV alone), Ic (infected by COVID-19
alone), Izd (co-infected by both ZIKV and DENV), Izc (co-infected by both ZIKV and COVID-19), Izdk (co-infected by ZIKV, DENV and COVID-19), Izdkc (co-infec-
ted by ZIKV, DENV, CHIKV and COVID-19), Rd (recovered from DENV), Rz (recovered from ZIKV), Rk (recovered from CHIKV), Rc (recovered from COVID-19), Rzd
(recovered from ZIKV and DENV), Rzdk (recovered from ZIKV, DENV and CHIKV), Rzdkc (recovered from ZIKV, DENV, CHIKV and COVID-19). For mosquito com-
partments the interest variables are the population of mosquitoes: Sv (susceptible), Ev (exposed), Ivd (infected by DENV alone), Ivz (infected by ZIKV alone), Ivk
(infected by CHIKV alone), Ivzk (infected by both ZIKV and DENV), Ivzk (infected by both ZIKV and CHIKV), Ivzdk (infected by ZIKV, DENV and CHIKV).
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(c) Qualitative analysis comprised 4.37% of total studies. Qualitative analysis involves examining the behaviour of a
mathematical model without explicitly computing numerical solutions. Instead, the focus is on understanding the
model's properties and how these properties relate to the real-world system being modelled. Components of quali-
tative analysis in mathematical theory include stability, bifurcation, and equilibrium analyses. References associated
with this category include (Adeyemo, Akinwande, Abdulrahman, & Kuta, 2018; Agusto, Bewick, & Fagan, 2017a; Bates,
Hutson, & Rebaza, 2021; Cai, Wang, & Wang, 2019; Rezapour, Mohammadi, & Jajarmi, 2020; Yamazaki, 2019).

(d) Mixed methods dominated at 88.32% of the total studies. This method involves multiple analysis techniques to gain a
deeper understanding of the mathematical models' behaviour. Within this category, a combination of qualitative
analysis, optimal control analysis, sensitivity analysis of the parameters, andmodel validation is utilized. The references
within this category are the majority, more precisely those not cited in items (a)-(c).

Upon extracting insights from the analysis method, the prevalence of mixed methods approaches in analyzing Zika
mathematical models is unsurprising. The intricate nature of the disease, characterized by interrelated factors such as
mosquito population dynamics, human demographics, and weather variables, contributes to the adoption of mixed methods.
Multi-methods may enhance the accuracy of Zika mathematical model predictions by leveraging parameter estimation to fit
the model to data and sensitivity analysis to identify critical parameters for further research.
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Fig. 6. General compartmental diagram of the variables of interest in within-host models. Here, the variables considered are: T (uninfected target cells), Ti
(infected target cells), P (free virus), N (natural killer cells), H (Hofbauer cell population within the pregnant host), Hi (number of infected Hofbauer cells), Pf
(viremia level in the fetus).

Fig. 7. General compartmental diagram of the variables of interest in the within-host ZIKVeDENV co-infection model (Tang et al., 2020). Here, the variables
considered are: T (target cells), Az (ZIKV-specific antibody), Vz (free ZIKV), Iz (ZIKV infected cells), Ad (DENV-specific antibody), Vd (free DENV), Id (DENV infected
cells).
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3.2.6. Data and code availabilities
Our analysis of the 137 selected studies revealed that 77 (56.20%) studies did not use any data, 50 (36.49%) utilized open-

access data, and 16 (11.67%) utilized data that was not open-access. We further classified the studies that incorporated data
(66 in total) into five distinct categories: number of cases, viral load data, environmental data, demographic data, and mixed
data. The last category included articles that incorporatedmultiple datasets for analysis. Table 4 presents a classification of all
studies that integrate data, whether open-access or not, based on the country of study and the type of model employed (i.e.,
deterministic, stochastic, network-based, or mixed-type) and the principal compartments of interest associated with each of
the five categories.

Our analysis of the coding screening process revealed that out of the 137 selected studies, only 14 (10.2%) provided access
to their codes. These studies were classified according to the method employed to analyze the mathematical model, which
included model calibration, parameter estimation, and qualitative analysis. Additionally, we classified the studies based on
the country. Table 5 presents a detailed summary of the coding classification results for the 14 studies.

3.2.7. Model's results and limitations
Among the 137 selected articles, a notable convergence of findings highlighted the key aspects related to the spread and

control of Zika. Owing to the wide range of outcomes from the included articles, we divided them into four (4) primary
groups: (a) fitting experimental models with real-world data, (b) variables influencing ZIKV outbreaks, (c) the
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Table 2
Range of values for the vector-host, host-vector and host-host (through sexual contact) transmission probability parameters, vertical transmission prob-
ability, and mosquito biting rate estimated and/or used in the selected studies. Time is measured in days.

Definition Range Country Reference

Sexual transmission rate [0, 4.13] Brazil He et al. (2020)
[0.001, 0.1] Colombia Sasmal et al. (2018)
[0, 0.6] Brazil (Barros et al., 2019)
[0, 1] No specified Agusto et al. (2017a)
[0.01, 0.1] No specified Baca-Carrasco and Velasco-Hern�andez (2016)
0.0296 No specified Saad-Roy et al. (2018)

Transmission probability vector-human and human-vector [0.24, 0.61] Colombia (A. Ali, Islam, et al., 2022; Alkahtani et al., 2017)
[0.01, 1.5] No specified (Farman et al., 2020; Rezapour et al., 2020)
[0.1, 0.75] The Americas (Champagne et al., 2016; Prasad et al., 2023;

Shutt et al., 2017)
[1/16, 1/8] Brazil (Fundzama & Patidar, 2020; Thaiprayoon et al.,

2022; Veeresha et al., 2022)
[0, 0.0138] India Dohare et al. (2021)
2.65e-9 French Polynesia Nguyen-Van-Yen et al. (2021)
[0, 0.97] Asia (Altaf Khan et al., 2019; Cai et al., 2019; D. Gao

et al., 2016; Zhu et al., 2022)
[0.1, 0.75] Colombia (Bessey et al., 2021; Sow, Diallo,& Cherifi, 2022;

Yue et al., 2020; R. Zhang & Zhao, 2022)
Mosquito biting rate [9, 13] Brazil Luo et al., 2020

[0.3, 1] No specified Zhang & Zhao, 2022
Neurological disorders (cases reported/total ZIKV cases) [0.000050,0.000084] Brazil He et al. (2020)

500 No specified Agusto et al. (2017b)
0.133 No specified Soewono and Lahodny (2021)
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effectiveness of intervention strategies in ZIKV outbreaks, and (d) the role of sexual transmission in ZIKV outbreaks.
Each category is described as follows.

A significant number of articles focused on model validation and data-driven applications (Adamu, Bawa, Jiya, & Chado,
2017; Agudelo & Ventresca, 2022; A. Ali, Islam, et al., 2022; Alkahtani, Atangana, & Koca, 2017; Atokolo, Aja, Aniaku, Onah,
& Mbah, 2022; Best & Perelson, 2018; Bi, Chen, John, Wu, & Ben-Arieh, 2020; Carlson, Dougherty, Boots, Getz, & Ryan,
2018; Champagne et al., 2016; Dantas, Tosin, & Cunha, 2018; Dohare et al., 2021; Farman et al., 2020, 2022 Fundzama &
Patidar, 2020; W. Gao, Ghanbari, & Baskonus, 2019; He, Zhao, Lin, Musaid, & Stone, 2020; Marini, Guzzetta, Ros�a, &
Merler, 2017; Mina, Beryl Guterman, Allen, & Omer, 2020; Mishra, 2021; Morrison & Cunha, 2020; Nguyen-Van-Yen, Del
Moral, & Cazelles, 2021; Olawoyin & Kribs, 2020; Omame & Abbas, 2023; Prasad et al., 2023; Rahman, Bekele-Maxwell,
Cates, Banks, & Vaidya, 2019; Rezapour et al., 2020; Shutt, Manore, Pankavich, Porter, & Del Valle, 2017; Suparit et al.,
2018; Tang et al., 2020; Thaiprayoon et al., 2022; Veeresha, Akinyemi, Oluwasegun, Şenol, & Oduro, 2022; W. Wang, Zhou,
Zhang, & Feng, 2023; Zevika & Soewono, 2018), showcasing the successful alignment of experimental models with real-
world data in the context of Zika. The development and validation of mathematical models proved an instrumental role in
simulating and comprehending the patterns of Zika spread. Theoretical research indicates that a disease-free equilibrium
(DFE) is locally and globally stable when the basic reproduction number ℛ0 is less than one (1), while an endemic equilibrium
point is locally asymptotically stable if ℛ0 exceeds one (Adeyemo et al., 2018; Biswas et al., 2020; He et al., 2020). Asymp-
tomatic infections influence ZIKV epidemic forecasts, with a lower infection attack rate (IAR) and a positive correlation be-
tween the local temperature and ℛ0 (Danbaba & Garba, 2018; He et al., 2020). Atokolo et al. suggested enhancements for
refining deterministic approaches, notably by integrating the Laplace-Adomian decomposition method (Atokolo et al., 2022).
This method adeptly handles ordinary and partial differential equations, both linear and nonlinear, at fractional and classical
orders, offering increased flexibility. This improvement in methodology can help better calculate ℛ0, particularly in scenarios
involving seasonality and temperature dynamics, which are crucial factors in disease transmission dynamics. Those findings
suggested external factors, such as mobility patterns, environmental, demographic, and socioeconomic aspects, influenced
ZIKV propagation, with a specific emphasis on drastic changes in the basic reproduction number under the change of the
parameters’ models (Al-Maqrashi, Al-Musalhi, Elmojtaba, & Al-Salti, 2022, 2023; Altaf Khan et al., 2019; Chen et al., 2018;
Moreno, Espinoza, Bichara, Holechek, & Castillo-Chavez, 2017).

Using the normalized forward sensitivity index approach, one study determined the most sensitive aspects of the ZIKV
transmission model, which include the rate of mosquito bite, the probability of transmission per bite, recruitment rate, re-
covery rate and the rate of familiarity with the host population (Biswas et al., 2020). Climatic factors are also very important
when studying ZIKV transmission; indeed, global warming has a positive correlationwith the increase inmosquitoes' survival
rate and, thus, ZIKV outbreak length (Atif et al., 2016; Chang et al., 2016). While Suparit and collaborators have also discovered
a positive correlation between monthly average biting rates and average monthly temperatures; nonetheless, their findings
imply that the biting rate of mosquitoes is primarily responsible for the disease's transmission (Suparit et al., 2018). Predictive
models can accurately predict ZIKV outbreaks (Counotte, Althaus, Low, & Riou, 2019; Mina et al., 2020; Mu~noz et al., 2017;
Suparit et al., 2018) Studies have estimated ZIKV's highest activity during the DecembereFebruary and MarcheMay seasons
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Table 3
The co-infection/co-circulation parameters estimated and used in this review. Time dimension in days.

Parameter ZIKV DENV CHIKV COVID-
19

Value Reference

Recovery rate of infected humans with both diseases X X 0.1 Binder and Pilyugin
(2019)

Transition probability from Zika to Dengue co-infection X X [0.14, 0.71] Binder and Pilyugin
(2019)

X X 0.52 Bonyah et al. (2019)
Transition probability from Dengue to Zika co-infection X X [0.14, 0.71] Binder and Pilyugin

(2019)
X X 0.01 Olawoyin and Kribs

(2020)
Co-infection contact rate X X 0.2 Omame et al. (2022)
Co-infection disease induced death X X 0.015 Omame et al. (2022)
Co-infected recovery rate X X 1/15 Omame et al. (2022)
Maximum changing rate of DENV owing to cross-reactive response of ZIKV specific

antibody
X X [0.265,

0.421]
Tang et al. (2020)

Maximum changing rate of ZIKV owing to cross reactive response of DENV specific
antibody

X X [0.265,
0.421]

Tang et al. (2020)

Mosquito infected with both to human transmission probability X X [0.05, 0.18] Bonyah et al. (2019)
X X [0.03, 0.75] Tang et al. (2019)

Human infected with both to mosquito transmission probability X X [0.01, 0.1] Bonyah et al. (2019)
X X [0.3, 0.75] Tang et al. (2019)

Dengue and Zika transmissibility to mosquitoes X X 0.2 Olawoyin and Kribs
(2020)

Dengue and Zika transmissibility to humans X X 0.09 Olawoyin and Kribs
(2020)
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(Counotte et al., 2019; Mu~noz et al., 2017). In addition, seasonal variations in birth rate may provide natural population-level
protection against the spread of ZIKV (Suparit et al., 2018). Seasonal and regional weather variability also affects ZIKV
transmission. Various studies have correlated the highest transmission activity of ZIKV with high temperatures and annual
cumulative precipitation (Lourenço et al., 2017; Okuneye et al., 2017; Sadeghieh et al., 2021). Some studies have estimated
high transmission peaks when temperatures and precipitation fall within 25e26.4 �C and 90e128 mm, respectively, typically
in June, July, and September (Lourenço et al., 2017; Okuneye et al., 2017), while some estimated optimal temperature for the
ZIKV transmission to be between 25 and 35 �C (Huber et al., 2018; Lourenço et al., 2017). ZIKV transmission varies seasonally
and geographically, with population density and human-mosquito mobility being the main factors influencing its spread (L.
et al., 2019). Some studies suggest that ZIKV transmission trends may depend on the geographical location of the ongoing
outbreaks. ZIKV may behave in island communities similar to DENV, spreading through large, erratic outbreaks that involve a
sizable percentage of cases that are asymptomatic or unreported, which may sustain the likelihood of a second wave of virus
transmission unlike mainland areas (Kucharski et al., 2016). Transmission intensity peaks at intermediate host movement
levels are influenced by the human commuting frequency and neighboring patch dedication to vector surveillance and
control activities (Li& Zhao, 2021; Stone, Schwab, Fonseca, & Fefferman, 2017) Individual transmission (vertical) accounts for
almost 40% of ZIKV propagation, while autochthonous transmission is impacted by population immunity (X. S. Luo, Imai, &
Dorigatti, 2020).

However, certain studies explored the efficacy of intervention strategies in controlling ZIKV infection rates, offering a
critical perspective on ongoing efforts to curb its spread (A. Ali, Iqbal, et al., 2022; H. M. Ali & Ameen, 2021; Alzahrani et al.,
2021; Angina et al., 2022; Ba~nuelos, Martinez, Mitchell, & Prieto-Langarica, 2019; Bonyah et al., 2019; Chaikham &
Sawangtong, 2017; Durham et al., 2018; Gonz�alez-Parra, Díaz-Rodríguez, & Arenas, 2020; Goswami, Srivastav, Ghosh, &
Shanmukha, 2018; Huo et al., 2023; Imran et al., 2018; Kumar Goswami & Shanmukha, 2020; Massad, Coutinho, &
Wilder-Smith, 2019; Miyaoka, Lenhart, & Meyer, 2019; Goswami & Shanmukha, 2020; Ndaïrou et al., 2018; Okyere,
Olaniyi, & Bonyah, 2020; Padmanabhan, Seshaiyer, & Castillo-Chavez, 2017; Padmanabhan & Seshaiyer, 2017; Roy,
Upadhyay, & Caur, 2020; Sharma, Singh, Singh, & Castillo, 2021; Srivastav, Goswami, Ghosh, & Li, 2018, 2019; Tang et al.,
2016, 2018; Tchepmo Djomegni, Olupitan, & Dougmo Goufo, 2021; Tuncer & Martcheva, 2021; Ukanwoke, Okuonghae, &
Inyama, 2022; L. Wang, Zhao, Oliva, & Zhu, 2017; L. Wang & Zhao, 2019; X. Wang, Shen, Xiao, & Rong, 2019;
Wattanasirikosone &Modnak, 2021; Xue, Cao, &Wan, 2021; Zhao, Wang, Oliva, & Zhu, 2020). These studies have provided a
refined exploration of strategies aimed at mitigating the impact of Zika. Reducing contact rates between susceptible hosts and
infected mosquitoes and increasing cure rates within a plot can limit secondary infections, making interventions aimed at
reducing mosquito-human interactions or increasing mosquito mortality useful for reducing ZIKV prevalence (Rahman et al.,
2019). Few studies have evaluated the impact of population immunity on ZIKV spread which is as effective as ZIKV outbreak
control, even though protective measures against mosquito bites are far superior (Article, Mpeshe, Nyerere, & Sanga, 2017;
Ba~nuelos et al., 2019; Best& Perelson, 2018; Denu& Son, 2021; Durham et al., 2018; Soewono& Lahodny, 2021; T€onsing et al.,
2018; L. Wang & Zhao, 2019). Thus, vaccination, personal protection, condom use, and insecticide spraying are the most
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Table 4
Data description for mathematical models categorized by country, model type, interest, explanatory data and references. Of the total number of studies,
36.49% utilized open-access data, and 11.67% did not have open-access data.

Country Model-type Principal variable Explanatory data Open-
access

Reference

Brazil Deterministic Human/mosquito
compartments

Number of cases Yes (Barros et al., 2019; Cruz-Pacheco et al., 2019;
Dantas et al., 2018; Miyaoka et al., 2019;
Ndaïrou et al., 2018; Omame et al., 2023;
Ukanwoke et al., 2022; L. Wang & Zhao, 2019;
Yuan et al., 2021; Zhao et al., 2020)

Demographic data No (Lourenço et al., 2017; Omame & Abbas, 2023)
Environmental
data

No Sadeghieh et al. (2021)

Mixed-data Yes (He et al., 2020; Massad et al., 2019; L. Wang
et al., 2017)

Mixed-type Number of cases Yes Roy et al. (2020)
Colombia Deterministic Human/mosquito

compartments
Number of cases Yes (Agudelo & Ventresca, 2022; A. Ali, Islam, et al.,

2022; Al-Maqrashi et al., 2023; Alzahrani et al.,
2021; Biswas et al., 2020; Gonz�alez-Parra et al.,
2020; Huo et al., 2023; Ibrahim & D�enes, 2021;
L. et al., 2019; Moreno et al., 2017; Sasmal et al.,
2018; Sow et al., 2022)

Environmental
data

Yes Huber et al. (2018)

Mixed type Number of cases Yes Towers et al. (2016)
Costa Rica Deterministic Human/mosquito

compartments
Number of cases Yes (D�enes et al., 2019; Mishra, 2021; Sanchez et al.,

2019; Srivastav et al., 2018, 2019)
Network Demographic data No (X. F. Luo et al., 2021)

French
Polynesia

Deterministic Human/mosquito
compartments

Number of cases Yes (Kucharski et al., 2016; Prasad et al., 2023;
Rahman et al., 2019)

Hybrid Demographic data No (Champagne et al., 2016; Counotte et al., 2019)
Stochastic Mixed-data Yes Nguyen-Van-Yen et al. (2021)

Mexico Deterministic Human/mosquito
compartments

Number of cases Yes (Okuneye et al., 2017)

Deterministic Human/mosquito
compartments

Number of cases Yes (Chen et al., 2018; Mina et al., 2020; Tuncer
et al., 2018)

Mixed type Mixed-data Yes Marini et al. (2017)
Demographic data Yes Carlson et al. (2018)

More than one
country

Deterministic Human/mosquito
compartments

Environmental
data

Yes (Mu~noz et al., 2017; Zhu et al., 2022)

Mixed-data Yes Shutt et al. (2017)
Network Demographic data No Durham et al. (2018)

Mixed-data Yes (X. S. Luo et al., 2020)
No country Deterministic Human/mosquito

compartments
Number of cases Yes Okyere et al. (2020)

Cell/virus compartments Viral load data Yes (Tang et al., 2020; Tuncer & Martcheva, 2021)
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economical and efficient methods to lower the prevalence of ZIKV in the community (A. Ali, Iqbal, et al., 2022; Rezapour et al.,
2020). Antiviral medicationmay be effective in limiting ZIKV spread; however, avoidingmosquito bitesmay bemore effective
in limiting the disease outbreak in the general population (Denu & Son, 2021; Soewono & Lahodny, 2021). Decreasing ZIKV
propagation passes through reducing relevant transmission parameters such as protective measures since they reduce the
bite rate and thus affect the basic reproduction number (Chen et al., 2018; Kumar Goswami & Shanmukha, 2020; L. et al.,
2019; Ndaïrou et al., 2018; Okyere et al., 2020). Chen et al. (Chen et al., 2018) suggested that reducing the reproduction
number ℛ0 is insufficient and not enough but should be combined with the use of protective measures to be able to reduce
ZIKV infection rate. Targeting mosquitoes is the most effective technique, although risky sexual behaviour may increase the
impact of ZIKV sexual transmission on illness risk, according to a model that considers Zika as a vector-borne disease as well
as a sexually transmitted disease (Agudelo & Ventresca, 2022; Al-Maqrashi et al., 2022; Cruz-Pacheco, Esteva, & Ferreira,
2019; Dohare et al., 2021; Maxian et al., 2017).

Further investigations revealed the limited role of sexual transmission in causing widespread ZIKV outbreaks, enriching
the understanding of the complex dynamics involved in Zika transmission and providing valuable insights into the specific
role of sexual transmission in the broader context of Zika (Barros et al. n.d.; Biswas et al., 2020; Cruz-Pacheco et al., 2019;
D�enes, Ibrahim, Oluoch, Tekeli, & Tekeli, 2019; D. Gao et al., 2016; Hussain et al., 2021; X. F. Luo, Jin, He, & Li, 2021; Maxian
et al., 2017; Sasmal, Ghosh, Huppert,& Chattopadhyay, 2018; Terefe, Gaff, Kamga,& van derMescht, 2018; T€onsing et al., 2018;
Towers et al., 2016; L. Wang & Wu, 2022; Zhu et al., 2022). Some studies have evaluated human and vectorial factors that
impact ZIKV transmission. The three controllable parameters defining ℛ0 and influencing the spread of the disease are the
mosquito bite rate, rate of sexual transmission, and mosquito-human ratio (Sasmal et al., 2018). The sexual transmission
pathway may not significantly impact outbreak likelihood, but when ℛ0 > 1, it can lead to higher infectious patient numbers
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Table 5
Code availability for mathematical models categorized by country, analysis method, and data type. A total of 10.2% of the studies included in this review
reported the codes.

Country Analysis
Method

Demographic data Mixed data Number of cases Viral load data

Brazil Model
calibration

(Morrison & Cunha, 2020;
Suparit et al., 2018; van den
Driessche, 2017)

Mixed
method

(Lourenço et al., 2017; Omame
& Abbas, 2023)

(Barros et al., 2019; Cruz-
Pacheco et al., 2019; Dantas
et al., 2018; Miyaoka et al.,
2019; Ndaïrou et al., 2018;
Omame et al., 2023; Roy et al.,
2020; Ukanwoke et al., 2022; L.
Wang& Zhao, 2019; Yuan et al.,
2021; Zhao et al., 2020)

French Polynesia Mixed
method

(Champagne et al., 2016;
Counotte et al., 2019)

Nguyen-Van-
Yen et al.
(2021)

USA Mixed
method

Marini et al. (2017) (Chen et al., 2018; Mina et al.,
2020; Tuncer et al., 2018)

More than one country Model
calibration

Durham et al. (2018)

None Mixed
method

(Tang et al., 2020;
Tuncer & Martcheva,
2021)
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much earlier than when only considering mosquito bite transmission routes (Terefe et al., 2018). Various studies have
concluded that both the mosquito bite rate and human-to-human sexual transmission are the two main parameters trig-
gering variations in the ℛ0 number and thus in ZIKV infection rates (Agudelo & Ventresca, 2022; D�enes et al., 2019; Dohare
et al., 2021; X. F. Luo et al., 2021; Srivastav et al., 2018; Towers et al., 2016). The majority of the initial and subsequent Zika
outbreaks are produced by vectorial transmission, while sexual transmission has a larger early-stage role, particularly in
temperate locations where ZIKV transmission is reduced (Al-Maqrashi, Al-Musalhi, Elmojtaba, & Al-Salti, 2023; Barros et al.
n.d.; Maxian et al., 2017; Yuan, Lou, He, Wang, & Gao, 2021). De Barros et al. (Barros et al., 2019) showed that sexual contact
spreads the Zika virus three times faster than mosquito bites. Nevertheless, other studies show that sexual transmission has
little to no effect on ℛ0, which contradicts these findings (Biswas et al., 2020; Dohare et al., 2021; Terefe et al., 2018). Dohare
et al. (Dohare et al., 2021) argued that sexual transmission of the disease has not affected its transmission, which runs counter
to most studies. Another feature of the human component is population immigration, which may lower the rate of secondary
infections even if it may not have a significant impact on the dynamics of disease in communities, according to some studies
(Tchepmo Djomegni et al., 2021). A study conducted by Baca-Yamakazi et al. (Yamazaki, 2019) suggests that migration and
sexual transmission significantly impact the spread of the virus, with migration causing progressively smaller outbreaks and
sexual transmission affecting their size.

Another important aspect to consider in this review is the impact of co-infection and co-circulation of ZIKV with other
pathogens on transmission dynamics. Co-infections are very complex to understand because the interaction among the
involved factors leads to heterogeneous findings throughout the included studies in our review. While some studies sug-
gested increased ZIKV infections and the spread of co-infections with increased Dengue vaccination rate (Omame, Isah, &
Abbas, 2023; Omame & Abbas, 2023; Tang et al., 2016; L. Wang & Zhao, 2019), other studies found that vaccination
against dengue may help reduce ZIKV infections (Hussain et al., 2021; Tang, Huo, Xiao, Ruan, & Wu, 2018, 2019). The het-
erogeneity of these findings can be attributed to the model not accounting for asymptomatic and recovered cases (Omame &
Abbas, 2023; Omame et al., 2022, 2023).

Despite the significance of co-circulation and co-infection of ZIKV with other pathogens, only a few mathematical models
have delved into this aspect (Binder & Pilyugin, 2019; Bonyah et al., 2019; Okuneye et al., 2017; Omame et al., 2022, 2023;
Omame & Abbas, 2023; Riou, Poletto, & Bo€elle, 2017; Tang et al., 2018, 2019, 2020; L. Wang & Zhao, 2019; Xue et al., 2018).
ZIKV frequently co-circulates with other arboviruses such as DENV and CHIKV in numerous regions globally. Consequently,
research efforts have primarily focused on analyzing the dynamics of COVID-19 in isolation rather than investigating potential
co-infections or co-circulation with other infectious agents (Omame & Abbas, 2023; Omame et al., 2023). However, these
results shed light on various aspects of co-circulating diseases such as COVID-19, Zika, Dengue, and Chikungunya. For
instance, Omame et al. (Omame et al., 2023) underscore the potential of COVID-19 prevention measures in reducing the
burden of co-infections with other arboviruses, highlighting the pandemic's negative impact on controlling these diseases.
Additionally, Xue et al. (Xue et al., 2018) use a mathematical model for comparing Wolbachia strains' effectiveness in con-
trolling virus spread, demonstrating significant reductions in transmission rates. Furthermore, Omame et al. (Omame &
Abbas, 2023) emphasize the importance of vaccination efforts, showing potential positive impacts on Zika dynamics and
triple infection spread. However, Wang et al. (L. Wang & Zhao, 2019) warn of potential negative consequences of Dengue
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vaccination on Zika control. Huber et al. (Huber et al., 2018) highlight the influence of seasonal temperature variations on
disease transmission, underlining the necessity of considering environmental factors alongside human activities and so-
cioeconomic conditions for accurate outbreak prediction and management. In fact, when assessing vector competence in
ZIKV transmission in scenarios of co-infection with other flaviviruses, Aedes aegypti has the highest reproduction number for
both ZIKV and DENV at the same mosquito concentrations, indicating that Dengue and Zika infection rates would rise in
regionswhere Aedes aegypti populations are growing, whereas Aedes albopictus spreads CHIKVmore successfully (A. Ali, Iqbal,
et al., 2022; Altaf Khan et al., 2019; Xue et al., 2018). ZIKV and DENV viruses have the same risk of spreading throughmosquito
bites; however, human infections with DENV and ZIKV cause quite different behavioural changes, leading to very different
epidemics (Xue et al., 2018).

Despite the important results found in the revised articles, they made substantial contributions to the understanding of
the multifaceted challenges posed by Zika. 81.02% of the total studies did not mention any limitations in their research,
suggesting that the studies were conducted without significant difficulties or challenges. However, 18.91% reported some
limitations. Those limitations were categorized into two main categories: (a) Structural limitations of the mathematical
models, and (b) Data quality issues.

On the one hand,14.59% of the studies reported structural limitations of themathematical models. This limitation includes
manuscripts featuring simplified assumptions, reduced model complexity, and questionable robustness of the assumptions
made by the model, which may render it sensitive to external conditions (H. M. Ali & Ameen, 2021; Alkahtani et al., 2017;
Barros et al. n.d.; Bradley& Jackson, 2008; Carlson et al., 2018; Durham et al., 2018; Fundzama& Patidar, 2020; X. F. Luo et al.,
2021; Padmanabhan & Seshaiyer, 2017; Prasad et al., 2023; Rahman et al., 2019; Roy et al., 2020; Srivastav et al., 2018; Stone
et al., 2017; Tang et al., 2016, 2020; Xue et al., 2021). Population-level modelling may not fully describe the variability at the
local and neighborhood level for the prevalence of Zika or mosquito abundance (Stone et al., 2017). The investigation focused
on the immune response of antibodies, neglecting complex immune cell involvement (X. F. Luo et al., 2021). A few in-
vestigations revealed that cases may not have been reported to the appropriate authorities and that county-level aggregated
risk tends to overestimate the probability of infection, especially when employing stochastic parameters in a deterministic
model (Zevika & Soewono, 2018). Relevant variables, such as human mobility and population immunity, were not evaluated,
resulting in insufficient evaluation of these features.

In contrast, 4.37% of the total studies reported data quality issues as limitation (Champagne et al., 2016; Fitzgibbon,
Morgan, & Webb, 2017; Kucharski et al., 2016; Mina et al., 2020; Miyaoka et al., 2019; Omame et al., 2022). For instance,
Mina et al. (Mina et al., 2020) reported lack of specificity regarding the sources and reliability of the data used to develop the
stochastic epidemiologicmodel and validate its predictions. Miyaoka et al. (Miyaoka et al., 2019) reported completeness of the
data used for parameter estimation and numerical simulations, particularly concerning the first Zika outbreak that occurred
in Brazil's state of Rio Grande do Norte in 2015. Kucharski et al. (Kucharski et al., 2016) reported a potential data quality issue
in the reliance on estimates and assumptions rather than concrete, verifiable data to inform key parameters in the mathe-
matical model used to examine the Zika outbreak in French Polynesia during 2023-2014.

At this point, it is important to consider that only 5.10% of the studies employedmathematical modelling and data analysis
to gain insights into the spread and impact of ZIKV. However, these studies have focused more on theoretical modelling and
simulations rather than validating models using data. In terms of data accessibility, 36.49% of the studies incorporated data,
reflecting their significance as a pertinent public health concern. Public health officials routinely gather and disseminate such
data on a global scale (Kamradt-Scott, 2011), while open-access codes were almost unavailable, representing 10.12% of the
total studies. Now, in the context of the mathematical modelling of Zika considered in this review, it was found that “data
quality issues” refers to the reliability and completeness of the information used in empirical studies for calibration, vali-
dation, or parameter estimation of the mathematical models. This occurs when studies fail to provide sufficient detail or
transparency regarding the data sources, collection methods, or specific variables measured. As a result, uncertainties or
biases may exist in the data, which can affect the accuracy and robustness of the mathematical models developed based on
these data. Most research models' validity is limited due to poor data quality, with most studies focusing on accessible data
(Zhu et al., 2022).
4. Discussion

The purpose of this scoping studywas to investigate the application ofmathematical modelling of ZIKV to comprehend the
dynamics of its transmission and interactions with other infections. Through rigorous application of the PRISMA guidelines
(Tricco et al., 2018), the published protocol (Romero-Leiton, Acharya, et al., 2023), and extensive database searches, we
included 137 studies from an initial pool of 2446. Our analysis highlighted a diverse range of mathematical modelling ap-
proaches, with a predominant emphasis on vector-host compartmental models.

Mathematical modelling of ZIKV provides insights into predicting and understanding the infection patterns (Best &
Perelson, 2018). Frequently forecasted occurrences included spatial expansion, ℛ0 values, epidemic patterns, the burden of
microcephaly, and the capability of vectors. As anticipated, most research occurred in the Americas, with the highest number
of reported cases during the pandemic. Nevertheless, it is important to highlight the substantial global knowledge gap
regarding ZIKV dynamics in Africa. This continent, where ZIKV originated and remains endemic, poses a potential risk for
future epidemics.
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Some reviews have focused on identifyingmathematical and predictivemodels for Zika and other arboviruses, collectively
revealing a dynamic landscape within the context of vector-borne diseases (Aguiar et al., 2022; Berthiaume, Côt�e, &
Mascarenhas, 2019; Caicedo et al., 2021; Kobres et al., 2019; Ogunlade, Meehan, Adekunle, & McBryde, 2023; Sadeghieh,
Waddell, Ng, Hall, & Sargeant, 2020; Wiratsudakul et al., 2018). There are similarities across the model architectures used
in ZIKV transmissionmathematical models in our current and previous reviews. Our findings suggested that the predominant
approach in the mathematical modelling of Zika involved vector-host structures, incorporating sexual and vertical trans-
mission (97%). A common thread across other reviews was the identification of diverse model architectures employed to
understand and predict the dynamics of vector-borne diseases (Aguiar et al., 2022; Caicedo et al., 2021; Ogunlade et al., 2023;
Wiratsudakul et al., 2018). Compartmental, spatial, metapopulation, network, and individual-based models have frequently
been used (Wiratsudakul et al., 2018) reflecting a versatile approach to disease modelling. Furthermore, certain assessments
have indicated a gradual transition towards more intricate models in the modelling of diseases transmitted by mosquitoes
(Aguiar et al., 2022; Kraemer et al., 2019). This shift has been facilitated by advancements in computational power and the
availability of extensive real-world data, emphasizing the need for refined modelling frameworks, especially in the context of
evolving epidemics (Aguiar et al., 2022). However, differences between the results obtained in this review and those of other
reviews were also observed. First, in terms of disease focus, some reviews mainly concentrated on a specific virus (e.g., Zika,
Chikungunya, Dengue, or Mayaro), while others broadened the scope to include various mosquito-borne pathogens simul-
taneously (Reiner et al., 2013). This divergence in focus influenced the modelling parameters and outcomes. Second,
geographical emphasis varied across studies, with some mainly concentrating on the Americas (Caicedo et al., 2021; Kobres
et al., 2019), and others adopting a global perspective (Aguiar et al., 2022; Kobres et al., 2019;Wiratsudakul et al., 2018). These
differences influenced the generalizability and applicability of the models.

A second similarity lies in the limitations found in this review, mainly attributed to the lack of data and the structural
complexity assumptions of the mathematical models (structural limitations). These limitations parallel those found in the
existing reviews. For example, some reviews have also reported data limitations for model calibration (Berthiaume et al.,
2019; Kobres et al., 2019), such as a lack of confidence in historical case counts, vectors, and demographic data. Few
studies have incorporated near real-time web data, pathogen genomic information, and social science and behavioural data
(Kobres et al., 2019), suggesting potential avenues for improvement in data diversity. Model complexity assumptions have
also been a concern (Wiratsudakul et al., 2018). While the trend towards more complex models was noted, the balance
between model complexity and practical utility remained a challenge. The limitations of each model in capturing the full
complexity of vector-borne disease dynamics should be acknowledged. The geographical representation of mathematical
models has also been a limitation, with many studies focusing on the Americas (Caicedo et al., 2021; Kobres et al., 2019),
raising questions about the generalizability of the findings to other regions. The need for more extensive studies on ZIKV in
diverse geographical settings, especially in Africa, is evident (Article et al., 2017). Another important issue is model trans-
parency. In this review, 36.49% of the studies included open-access data, and only 10.2% shared their codes. This underscores
the importance of model transparency as a critical public health aspect. The observed variation in transparency levels
regarding reporting models, open-access data, code availability, and uncertainty assessment (Kobres et al., 2019) emphasizes
the essential requirement for standardized reporting practices. Such standardization is crucial for improving the reproduc-
ibility and transparency of modelling efforts across different studies.

A significant difference in this reviewwith respect to others found in the literature was the incorporation of interactions of
ZIKV with other pathogens (not only other arboviruses). This review found that 10.21% of studies incorporated this type of
interaction. Models that considered this phenomenon demonstrated that the transmission of one pathogen could be either
amplified or reduced based on the specific interactions between co-existing pathogens, highlighting the importance of
considering disease severity and the potential for adverse health outcomes (Olawoyin & Kribs, 2020; S�anchez-Duque et al.,
2018). Some of these studies have focused on the mathematical models used to describe the simultaneous concurrence with
other important arboviruses, such as DENV and CHIKV (Bonyah et al., 2019; Huber et al., 2018; Olawoyin & Kribs, 2020;
Omame & Abbas, 2023; Omame et al., 2022, 2023; Romero-Leiton, Sekkak, Arino, & Nasri, 2023; Tang, Zhou, Xiao, & Wu,
2019), which differ in disease focus, research objectives, methodologies, and scope. They highlight the diversity and speci-
ficity of research in the field of mathematical modelling for vector-borne diseases. Each study addressed different diseases,
utilized distinct research methodologies, and had unique research objectives, advancing a greater awareness of the mech-
anisms underlying these illnesses. Collectively, these investigations highlight the value of mathematical modelling in the field
of disease epidemiology and the need for different approaches to each disease and research question. However, there has
been a limited focus on the simultaneous concurrence of ZIKV with other pathogenic agents, such as COVID-19, except for a
few studies (Omame & Abbas, 2023; Omame et al., 2022) and HIV (Romero-Leiton, Sekkak, et al., 2023).

A critical investigation of the simultaneous concurrence of ZIKV with other diseases holds great significance for public
health and epidemiological research (Olawoyin & Kribs, 2020). The interaction between Zika and concurrent infections can
worsen clinical outcomes, complicate diagnostic procedures, and pose substantial challenges for disease management
(Mercado-Reyes et al., 2019). Understanding these complex interactions is crucial in designing preventive and control stra-
tegies. By explaining synergistic effects and potential cross-reactivity, researchers can contribute to the development of more
effective diagnostic tools, therapeutic interventions, and vaccination strategies (S�anchez-Duque et al., 2018). Moreover,
solving the intricate set of simultaneous concurrences can provide valuable insights into the mechanisms underlying viral
pathogenesis and host immune responses. This knowledge is essential for advancing the global preparedness for emerging
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infectious diseases. Therefore, continued research in this field is vital to secure public health and mitigate the impact of Zika
infection in conjunction with other infectious agents.

Deterministic models are often easier to create. Henceforth, they are largely used in ZIKV transmission mathematical
models. However, theymay not adequately capture the inherently stochastic nature of processes such as epidemics, leading to
underestimation of uncertainty. These models tend to ignore the complexity, variability, and ongoing changes in human and
mosquito populations, ignoring unanticipated sequencing risks that may have a significant impact on the dynamics of the
future spread of ZIKV infection. Deterministic models lack heterogeneity, which can hinder ZIKV outbreak patterns because
they cannot estimate patch inhabitants’ responses (Moreno et al., 2017). Deterministic, vector-host assumed uniform mixing
between humans and mosquitoes and thus did not incorporate spatiotemporal heterogeneities into their model (Lourenço
et al., 2017). Some studies used notified cases, so the recovered cases and asymptomatic cases were not taken into consid-
eration. Modelers often had to rely on assumptions in deterministic models due to missing variables in the collected data
(Moreno et al., 2017). When estimating parameters related to the spread of ZIKV, stochastic models are necessary due to their
ability to account for climatic factors, seasonal variations, and inconsistent human-mosquito contact. Deterministic models
tend to overlook these factors, potentially affecting their estimates (Kucharski et al., 2016; Rahman et al., 2019). Stochastic
epidemic models lack prediction of epidemic peaks and outbreaks with accuracy, especially with the SEIR model (Nguyen-
Van-Yen et al., 2021).

Compartmental models simplify disease processes but may oversimplify complex ones, leading to limitations. On the
other hand, network epidemic models, which consider heterogeneous contact numbers, offer a more realistic representation.
Nevertheless, local and neighborhood-level variation in mosquito abundance or Zika prevalence may not be completely
captured by population-level modelling (Adeyemo et al., 2018; Alshehri & Hajji, 2022; Durham et al., 2018).

Data-driven models used to predict ZIKV's transmission were limited by computational difficulties and the unavailability
of certain data. They were mainly used to predict the spread of ZIKV. One of the main limitations of these models was the
assumption that human behavior remains constant during outbreaks or infections, but actual casesmay be less mobile or lead
people to avoid contact situations or apply personal repellent more often (X. S. Luo et al., 2020; Stone et al., 2017). Addi-
tionally, they did not account for heterogeneity in the human population, such as duration of stay and risk of infection (X. S.
Luo et al., 2020). Due to the lack of vector data, ZIKVmodel prediction accuracy in studies that aim to study co-infections with
other Flaviviruses is sensitive to cross-reactivity in populations not previously exposed to DENV(Champagne et al., 2016).
Additionally, data-driven models were able to accurately predict outbreaks, but most of them did not include relevant var-
iables, including solely temperature and rainfall. Consequently, these predictive models failed to account for human com-
ponents such as direct human-to-human transmission, human population migration or co-infections or mixed states
(Counotte et al., 2019; Mina et al., 2020; Mu~noz et al., 2017); thus, they tend to underestimate the ZIKV risk of infection. The
predictive models assume uniform sensitivity, infectivity, and homogenous mixing between at-risk human groups and
mosquitoes, with spatial and time-invariant parameters. The model's accuracy depends on geographical and temporal het-
erogeneity during Zika outbreaks (Champagne et al., 2016; Shutt et al., 2017). Additionally, by overestimating high attack
rates, mathematical models, including vectorial transmission, run the risk of undermining the density-dependence
assumption and the proportionality between infected mosquitoes and the infection force (Champagne et al., 2016).

When studying factors that influence the disease spread, they ignore non-constant human-mosquito contact situations
and seasonal transmission variations due to climatic factors, and they assume homogeneity among the included variables
(Kucharski et al., 2016; L. et al., 2019; Mina et al., 2020; Rahman et al., 2019; Towers et al., 2016). Models incorporating the
sexual transmission aspect into modelling ZIKV overlook the role of male-male and female-female (biological sex suscep-
tibility) in the spreading dynamics (Agudelo& Ventresca, 2022). In addition, we did not find any studies that account for other
sexual transmission routes, which limits our understanding of the real influence of ZIKV sexual transmission on the spread of
the disease. Various studies did not incorporate environmental factors despite being strongly correlated with virus spread
(Agudelo & Ventresca, 2022).

We examined the evolution of the ZIKV epidemic and investigated the critical factors influencing the intensity of the
epidemic. These findings imply that environmental and demographic data should be addressedwhile developing appropriate
containment measures. The basic reproduction number ℛ0 is a crucial idea in infection models, regardless of whether they
study the dynamics of an epidemic or the dynamics inside specific hosts. Despite notable advances, challenges persist in
terms of data availability, model complexity, and generalizability. Consequently, future research efforts should prioritize
addressing these limitations to improve the reliability and applicability of mathematical models in guiding public health
interventions.
5. Conclusion

In conclusion, this paper emphasizes howmathematical modelling may be used to describe the complex dynamics of ZIKV
transmission and how it interacts with other infectious diseases, including Dengue, Chikungunya, and COVID-19. These
modelling efforts have proven invaluable in identifying the multifaceted determinants of ZIKV transmission, ranging from
human mobility patterns to environmental, socioeconomic, and demographic factors. Moreover, they shed light on the po-
tential simultaneous concurrence of multiple pathogens within the same geographic regions and their impact on the disease
burden.
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Nevertheless, our review highlights certain limitations of the current view of modelling studies. The structural limitations
inherent in the model formulation, such as the assumption of population homogeneity, require consideration and refinement
to represent real-world complexities more accurately. Additionally, the need for high-quality data on crucial parameters, such
as mosquito biting rates and transmission probabilities, also presents a substantial challenge that calls for enhanced data
collection efforts to effectively inform and validate these models.

Although mathematical modeling has greatly advanced our understanding of ZIKV transmission, further research is
required. The integration of real data and model validation techniques is an important area for improvement. With only a
small percentage of studies thoroughly validating models using empirical data, future research would greatly benefit from
rigorous testing of models against diverse, high-quality datasets. Improved data quality, including collection methods, var-
iable specificity, and transparency of data sources, could reduce bias and enhance the robustness of predictions, leading to
more reliable public health interventions. Greater emphasis on the integration of human behavioral trends, climatic in-
fluences and concomitancewith other diseases could also address some of the structural limitations of current models, which
often neglect these factors.

It is important to buildmodels that not only simulate, but also adapt to changing real-world conditions in endemic regions,
such as changes in human behavior or immune responses, and the impact of concomitant diseases. Futuremodels should also
emphasize adaptability, by incorporating stochastic parameters that can be adjusted according to various epidemiological
scenarios. The integration of advanced computational techniques can help optimize parameter estimation, enabling epi-
demics to be forecast more effectively. In addition, prioritizing open-access codes and transparent methodologies will
enhance reproducibility and collaboration between research communities.
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