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The measurement of dose distributions in clinical brachytherapy, for the purpose
of quality control, commissioning or dosimetric audit, is challenging and requires
development. Radiochromic film dosimetry with a commercial flatbed scanner may
be suitable, but careful methodologies are required to control various sources of
uncertainty. Triple-channel dosimetry has recently been utilized in external beam
radiotherapy to improve the accuracy of film dosimetry, but its use in brachytherapy,
with characteristic high maximum doses, steep dose gradients, and small scales,
has been less well researched. We investigate the use of advanced film dosimetry
techniques for brachytherapy dosimetry, evaluating uncertainties and assess-
ing the mitigation afforded by triple-channel dosimetry. We present results on
postirradiation film darkening, lateral scanner effect, film surface perturbation,
film active layer thickness, film curling, and examples of the measurement of clini-
cal brachytherapy dose distributions. The lateral scanner effect in brachytherapy
film dosimetry can be very significant, up to 23% dose increase at 14 Gy, at+ 9 cm
lateral from the scanner axis for simple single-channel dosimetry. Triple-channel
dosimetry mitigates the effect, but still limits the useable width of a typical scanner
to less than 8 cm at high dose levels to give dose uncertainty to within 1%. Triple-
channel dosimetry separates dose and dose-independent signal components, and
effectively removes disturbances caused by film thickness variation and surface
perturbations in the examples considered in this work. The use of reference dose
films scanned simultaneously with brachytherapy test films is recommended to
account for scanner variations from calibration conditions. Postirradiation darken-
ing, which is a continual logarithmic function with time, must be taken into account
between the reference and test films. Finally, films must be flat when scanned to
avoid the Callier-like effects and to provide reliable dosimetric results. We have
demonstrated that radiochromic film dosimetry with GAFCHROMIC EBT3 film
and a commercial flatbed scanner is a viable method for brachytherapy dose
distribution measurement, and uncertainties may be reduced with triple-channel
dosimetry and specific film scan and evaluation methodologies.
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. INTRODUCTION

The measurement of dose distributions produced by clinical brachytherapy treatment equipment
is challenging due to large dose ranges, high dose gradients, and small spatial scales. However,
accurate dose verification is required to confirm that the intended radiation treatment prescribed
is actually delivered. Radiochromic film dosimetry is often employed for dose distribution
measurement in radiotherapy, with a number of advantages over other dosimetry methods,
including high spatial resolution, low energy dependence, and near water equivalence,(!->34
and relative ease of signal readout with a desktop scanner.>%) However, the resulting pixel
value in a scanner-produced image of a radiochromic film is a complex convolution of scan-
ning lamp emission, absorption of the film, sensitivity of CCD array and, importantly, optical
properties of the scanner along the light path influenced by polarization caused by the film.
All of these may change as a function of position on the flatbed scanner, and each have further
dependencies including scanner warm-up characteristics and fluctuations, film orientation, film
temperature, film humidity level, postirradiation film darkening kinetics, dose-dependent effect
on polarization, and scan and analysis protocols. There are likely to be large dose variations
across films used in the dosimetry of brachytherapy applications, which may exacerbate the
above issues. For brachytherapy dosimetry, Perez-Calatayud et al.(”) reports that radiochromic
film must be considered “under development at this time, because of numerous artifacts which
require rigorous correction”. Advanced film dosimetry techniques, including triple-channel scan
processing,®?) has the potential to improve the accuracy and reliability of film dosimetry and
mitigate sources of uncertainty. The use of all three color channels of a flatbed scanner has been
proposed to correct for deviations from the calibrated average film-scanner response. Hence
the non-dose—dependent signal component can be separated from the signal and compensated
for. The triple-channel film dosimetry implemented by Ashland Inc.,® is stated to have the
following features and advantages: a) separates dose and dose-independent parts of the signal
and signal disturbances, such as film thickness variation, scanner distortion, and background
correction, which can then be accounted for; b) enables entire dynamic dose range of the film;
¢) improves dose map accuracy; and d) indicates any inconsistencies between film and cali-
bration and estimates the dose uncertainty of the measurement. Triple-channel film techniques
have been studied in external beam radiotherapy applications, typically up to 2 to 3 Gy,!%1D
but their application in brachytherapy, with prescription doses of 7 to 8 Gy and peak doses that
are significantly higher, as well as different dose distribution and different energy spectrum,
needs further investigation.

In brachytherapy, film dosimetry applications are usually for routine quality control, com-
missioning or audit,(!?) where there is generally some freedom in the time between irradiation
and scanning. However, postirradiation film darkening kinetics is often considered a poten-
tially significant uncertainty in film dosimetry.(!3) Polymerization of the active component in
radiochromic film continues after irradiation, but the rate of polymer growth decreases with
time. Casanova Borca et al.(!) studied postirradiation darkening appropriate for external beam
radiotherapy, up to 4 Gy over three days. The effect is studied in the present work at dose levels
and scan times appropriate for brachytherapy applications, up to 14 Gy, and we evaluate dark-
ening kinetics during a three-month postirradiation period. Irrespective of whether multiple or
single-channel dosimetry is used, it is important to characterize postirradiation darkening to
minimize uncertainties in film dosimetry.

Characteristics of film dosimetry that must be understood for accurate use have been covered
in the literature, including film orientation, batch consistency, and disabling scanner image
correction.(1-!>) These considerations are not repeated in the current work. There are, however,
factors that have not been sufficiently researched, nor their impact in brachytherapy applications
assessed: we investigate postirradiation darkening, lateral scanner effect, film surface perturba-
tion, film active layer thickness, measurement of clinical brachytherapy dose distributions, film
curling, and proposed film dosimetry methodologies including, where appropriate, and whether
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triple-channel dosimetry can improve dosimetric accuracy. A potentially significant artifact is
the response of the scanner to the film as a function of lateral distance on the scan plane, which
increases with dose level, described by Menegotti et al.,('®) in the range 0 to 7 Gy. The response
artifact is caused by the polarization of transmitted light by the near-linear array of polymer
rods in the film, and the varying transmission on reflection at mirrors in the scanner being a
function of angle for polarized light, which changes with lateral position on the scanner. The
longer wavelength red light is affected significantly more than green and blue light; hence, it
is expected the multichannel process will mitigate the artifact. In this work, we investigate the
effect at up to 14 Gy, appropriate for brachytherapy, and compare the calculated film dose using
single- and triple-channel dosimetry.

Inadvertent surface contamination, such as fingerprint grease and scratches from contact
with phantoms and jigs, can cause artifacts in film dosimetry, changing the optical density in
the scanned image. The measured density will also vary proportionally with the thickness of
the active layer, which for GAFCHROMIC EBT3 is 28 microns. Manufacturing tolerances
of the active layer thickness are typically up to 1.5%, which would result in an uncertainty in
reported dose of 1.5% for single-channel conventional dosimetry. Triple-channel film dosimetry
is expected to mitigate such dose-independent signal components. We compare the response
from single- and triple-channel dosimetry in the presence of such film surface perturbations and
extreme active layer thickness variations in doses typical for brachytherapy applications.

A methodology for efficient dosimetry using radiochromic film has been proposed by Lewis
et al.(1” in which test films are scanned together with a reference dose film strip and an unex-
posed film strip in order to eliminate, by normalizing, any scan-dependent uncertainty, such
as scanner lamp output. This protocol is evaluated for external beam radiotherapy (IMRT and
VMAT) by Lewis et al.!7) We extend the evaluation to typical clinical brachytherapy situations
and suggest a modification.

In this work, we evaluate the perceived advantages of triple-channel compared to single-
channel analysis in dosimetric test situations applicable for brachytherapy. We also use the
latest GAFCHROMIC EBT3 film, which is structurally different to its predecessors, EBT and
EBT2; the latter having had greater coverage in the published literature to date.(' We also
compare measured film dose maps for brachytherapy exposures with brachytherapy treatment
planning system intended dose distributions, calculated using single- and triple-channel film
dosimetry, to evaluate any benefit of increased film dose range and dose map accuracy of the
triple-channel technique. Finally, taking account of the above work, we propose an optimum
methodology for film dose distribution measurement in brachytherapy.

Il. MATERIALS AND METHODS
A. Film calibration, scanning, and processing

A.1 Film dosimetry equipment and methodology

All film measurements were performed with GAFCHROMIC EBT3 (Ashland ISP Advanced
Materials, NJ) from a single batch (Lot A05151203). Film scanning was performed in red-
green-blue (rgb) format using a 48-bit (16-bit per channel) scanner (Epson Perfection V750
Pro; US Epson, Long Beach, CA) at 72 dpi, in transmission mode, with no color or sharpness
corrections, consistent orientation on the scanner, and 48 hours from exposure to scanning,
unless otherwise stated in the methodology. Dose-response calibration of the film was undertaken
within FilmQAPro software (www.filmqgapro.com, Ashland ISP Advanced Materials, version
3.0.4835, released 28th March 2013). A nominal 6 MV linear accelerator, traceably calibrated to
a primary standard at the National Physical Laboratory (Teddington, UK) and measured using
an ionization chamber calibrated for absorbed dose to water, was used for film calibrations,
and all test film dose exposures. Film strips of 10 X 5 cm were positioned on the central axis
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ina 10 X 10 cm field at 5 cm depth in Solid Water (RMI457, Gammex, Middleton, WI) and
each exposed to a different dose level: 0, 1, 2, 4, 8, 10, 15, and 20 Gy. The average film pixel
values in a 4 X 4 cm region centered on the axis of the beam were used to derive the average
film response at each dose level.

Scanned images of irradiated films in TIFF format were converted to dose maps using both
a single-channel method (red channel) and a triple-channel method (red, green, and blue chan-
nels), via FilmQAPro software. The single-channel dose conversion utilizes a simple calibration
function; the red channel was chosen, as this is the most commonly used in simple radiochromic
film dosimetry since this wavelength has the highest absorption spectra.?) The multichannel
analysis method uses an algorithm described by Micke et al.®® to separate the scanned signal
into a dose-dependent part and a dose-independent part. The algorithm essentially determines
and subtracts a disturbance function that is independent of dose by fitting the measured colour
signal to allowed colors in the dose-to-rgb signal calibration. Calibration functions of the form
in Eq. (1) were derived for each color channel.

X(D) = (a+bD)/(c+D) (1)

where X(D) is the scanner response at dose D, and a, b, and c are the fitted function constants.
Reference dose films were also used for linear rescaling of the calibration function to account
for any system variations, such as scanner response, between test film and calibration film.

A.2 Investigation of postirradiation film darkening

All film dosimetry requires careful consideration of postirradiation film darkening. In this
investigation, the net optical density of film test strips was determined as the ratio of the
measured average pixel value in a 4 X 4 cm region of interest from the test film to the aver-
age pixel value from a fixed reference density sample (a film irradiated over 12 months ago,
full expression of postirradiation darkening having occurred). The test and reference density
samples were scanned simultaneously, to account for any scanner-dependent variations with
time. Nine GAFCHROMIC EBT3 test films were irradiated to dose levels between 0 and 14 Gy,
at 5 cm depth in a Solid Water phantom, and their optical density measured over a range 0.7 to
2277 hrs (three months) postirradiation. Individual film samples were scanned repeatedly for
the various postirradiation times. Additional control film samples exposed to the same dose
level, but not repeatedly scanned, were compared after three months to ensure the test films
were not affected by the repeated scanning.

B. Evaluation of triple-channel dosimetry in test situations

B.1 Lateral position of film on scanner

Four 4 X 4 cm EBT3 film pieces were exposed to 1, 8, 12, and 14 Gy, respectively, at 5 cm
depth in a Solid Water phantom. The films were cut in half to provide two identical film
samples at each dose level. One of each dose level film was positioned along the central axis
of the scanner, while the other piece was displaced laterally by 1, 2, 3, 4, 6, 7, and 9, cm, in
both positive and negative directions. The lateral direction is defined as being perpendicular
to the direction of travel of the scanning lamp, with zero lateral displacement being the center
of the scan plane. Scans were acquired at several lateral displacements. Film dosimetry, using
single-channel and triple-channel analysis, was performed for each film piece in each scan. To
account for any scan-dependent variations, the calculated film dose of the laterally displaced
piece was corrected for any variations in the reported dose of the central piece. The resulting
change in dose was a function of the lateral scanner effect only, and this was compared for the
two dosimetry methods.
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B.2 Film surface perturbation

Three 4 x4 cm GAFCHROMIC EBT3 film samples were uniformly exposed to 0, 4, and 10 Gy
respectively, at 5 cm depth in a Solid Water phantom. Each film had surface perturbations applied
on one face: scratches were made with medium hand pressure using a solid block corner at one
end and a thin layer of grease applied at the other end, typical of fingerprint marks. The change
in color signal caused by these disturbances was between 6% and 13% (at 16 bits per channel,
in the red channel, for the 0 Gy film a maximum reduction from 40420 to 35280, and for the
10 Gy film, a maximum reduction from 13900 to 11860). Variations in surface perturbations
between the films are inconsequential, as this test examined the qualitative performance of
single-channel and triple-channel dosimetry at each dose level. The films were scanned using
the methodology described in Materials & Methods section A.1 above, and film dose maps
created using single-channel and triple-channel dosimetry. Dose profiles were taken through
the two dose maps, and the effect of surface perturbations was compared.

B.3 Film active layer thickness

The measurement of the effect of variations in film active layer thickness on the scanned image
and calculated film dose is limited by difficulties in measuring the actual thickness of the active
layer, sandwiched between two polyester layers. However, to test the concept of thickness
compensation by multichannel film dosimetry, the active layer of irradiated film samples was
doubled through a process of delamination of irradiated EBT3 film and restacking to produce
an effective double active layer, as shown in Fig. 1. While there are significant uncertainties
in the physical process of de-laminating and re-laminating, the process is sufficient to test the
relative performance of single-channel and triple-channel dosimetry to significant variations in
active layer thickness, accepting the additional error sources introduced by this process. One
can then infer relative performance of the two systems to more modest variations that may be
encountered in commercially available film. Four film samples were exposed uniformly to 1, §,
12, and 14 Gy, at 5 cm depth in a Solid Water phantom. Each sample was cut into three pieces,
two of which were carefully delaminated. In de-laminating, the active layer remained adhered
to one of the polyester sheets, the other being essentially clear (see Fig. 1). The polyester layers
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F1G. 1. Process of delamination and restacking to produce a double-thickness active layer: (a) original films, (b) delaminated
with active layer adhered to one polyester, (c) restacked with effective two active layer thickness.

(a)
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with the active layer attached were stacked together to produce a sample with an active layer of
effectively double the original thickness. A scan was made of the two configurations: original
film and restacked delaminated with a double active layer. The film dose for each of these at
each dose level was determined using single-channel and multichannel dosimetry.

C. Evaluation of triple-channel dosimetry in clinical brachytherapy dose
distributions

Film measurement of a typical cervix treatment dose distribution using multiple dwells from
a Nucletron microSelectron Ir-192 HDR source, in the vicinity of a Nucletron Interstitial Ring
CT-MR treatment applicator (Nucletron, Veenendaal, The Netherlands), were obtained using a
rigid support frame phantom consisting of a Solid Water structure in a water tank, described by
Palmer et al.(!Y GAFCHROMIC EBTS3 films, 105 mm along x 80 mm wide, were positioned in
the plane of the intrauterine tube, lateral through Point A and anterior to the treatment applicator,
and exposed using a typical clinical treatment with an Ir-192 HDR source. With a prescription
dose of 7 Gy to Point A, the dose range across the films was 0.3 to 13 Gy, with the highest
doses at the corner of the film closest to the applicator. Films were converted to dose maps with
single-channel and triple-channel dosimetry and compared to the Nucletron Oncentra Brachy
(Nucletron) treatment planning system (version v4.1.0.132) (TPS)-calculated 3D dose grid
(1.0 mm resolution), using FilmQAPro software. Isodose overlay and gamma analysis®? were
used to compare the film dose and TPS-calculated dose maps. The gamma analysis passing rate
was calculated using no threshold dose, 3% local normalization, and 2 mm criteria.

D. Evaluation of proposed film dosimetry methodology applied to brachytherapy
Lewis et al.”) have proposed an efficient methodology for film dosimetry in external beam
radiotherapy, in which one reference dose film and an unexposed film are scanned simultaneously
with the test film, to account for scanner-related variations and time-since-exposure darkening
compensation from the calibration condition. In brachytherapy, the dose range across films
may be significantly greater than that in external beam radiotherapy, and the dose level for the
reference dose film must be carefully selected. Ten GAFCHROMIC EBTS3 test films were each
exposed to accurately known dose levels of 5, 7.5, 10, and 13 Gy, representative of dose ranges
expected in brachytherapy film dosimetry applications, using a nominal 6 MV linear accelerator,
at 5 cm depth in a Solid Water phantom. The film dose in 4 X 4 cm regions of interest at each
dose level for each film was calculated using FilmQAPro software, triple-channel dosimetry,
using 0 and 7.5 Gy, and then 0 and 13 Gy reference doses for linear rescaling of the film calibra-
tion function. The average percentage difference of the film-calculated dose at each dose level
from the anticipated dose for the two calibration systems was recorded and compared.

It has been anecdotally proposed that film scanning should be delayed for a time period
of at least four times longer than the interval between the exposure of the test film and the
calibration reference dose film, for typical external beam radiotherapy dosimetry, to ensure
that time-after-exposure differences make insignificant dose error. Using data acquired from
Materials & Methods section A.2 above, we test this proposition at dose levels up to 14 Gy,
for brachytherapy film dosimetry applications, and at time intervals between test and reference
films of up to 24 hrs, much larger than values typically experienced in external beam dosimetry.
There may be significant delays between the irradiation of test films on a brachytherapy unit
and corresponding reference films from an external beam linear accelerator (used to provide
uniform film dose irradiation) due to practical equipment access issues within a radiotherapy
department. In external beam therapy dosimetry, the test and reference films can be irradiated
consecutively from the same radiation source.

In brachytherapy, due to the large dose range across the film, we propose that two reference
calibration films, in addition to the unexposed film, are required to provide assurance of accuracy
across the range of doses. We propose that one film be accurately exposed to the brachytherapy
prescription dose (as this is generally of primary interest), and another to the expected maximum
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dose to be recorded on the film (to confirm accuracy across the dose range), in a nominal 6 MV
linac, as described in Materials & Methods section A.1. The clinical test films described in
Materials & Methods section C were exposed in this manner (7 Gy prescription dose and 13 Gy
expected maximum to be recorded on the film). Figure 2 depicts the arrangement of the test film,
reference films, and unexposed film on the scanner. The unexposed film and the prescription
dose film were used to rescale the film calibration function within FilmQAPro, the latter being
the dose level of greatest clinical significance. The high-dose test film was used to validate the
extrapolated calibration function for all dose levels across the film.

Errors in film dosimetry may be introduced if the film is not flat on the scanner. Curling of
the film is more common with small film pieces, which are typically used in brachytherapy film
dosimetry. Scans of a brachytherapy dose distribution imaged with a clear glass plate on top of
the film to ensure perfect flatness and then with a significant induced curve (4 mm height from
the glass plate at the center of an 80 mm width film) were compared using isodose overlay.

Finally, scans of typical brachytherapy dose distributions were performed with and without
an antireflective mat surrounding the films, which is often anecdotally proposed to minimize
reflections from regions of the scanner plate not containing film. The film dose maps, with and
without mats, were compared.

Start of scan

Prescription
dose film

Test film

Scan direction

Maximum
dose film

Unexposed
film

FiG. 2. Arrangement of films for simultaneous scanning. The regions of interest, shown as red rectangles in the figure,
were placed centrally left-to-right in the scan window. For the clinical brachytherapy test film, the region of interest is the
corner of the film (which was closest to the clinical applicator and received the highest dose). This is aligned centrally
with the regions used for calibration and validation.
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lll. RESULTS

A. Film calibration

Figure 3 shows the pixel values in three color channels as a function of irradiated dose for the
GAFCHROMIC EBT3 calibration film exposures, scanned 48 hrs postexposure. The calibra-
tion function constants for Eq. (1), given in Materials & Methods section A.1, were a = 1.988,
b =0.058, c =3.142 for the red channel, a=4.018, b =-0.005, c = 6.791 for the green channel,
and a=4.483,b=0.047, ¢ = 14.070 for the blue channel.

45000

£y

¥ Red-pixel
value

40000 E
*\
—Red-
35000 librati

function

+ Green- pixel
30000 value

\Y\\ —
25000
\\ function
O Blue - pixel
20000 T vatue
\ ——Blue -
15000 -

function

Pixel value (16 bit per channel)

10000

Dose (Gy)

FiG. 3. Pixel value as a function of irradiated dose for GAFCHROMIC EBTS3 film scanned 48 hrs postexposure, for red,
green, and blue channels, with fitted calibration functions (Eq. (1) in the text).
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B. Postirradiation film darkening

Figure 4 shows the net optical density of EBT3 film as a function of time, postirradiation, over
arange 0.7 to 2277 hrs (approximately three months), at nine dose levels between 0 and 14 Gy.
All curves fit a logarithmic function of increasing gradient with dose level. Further analysis of
this data is included in Results section G below, as applied to a proposed methodology for film
dosimetry in brachytherapy applications.
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Fic. 4. GAFCHROMIC EBTS3 film net optical density (as a ratio to a simultaneously scanned reference density sample)
as a function of time postirradiation, up to three months (2277 hrs), over a dose range 0 to 14 Gy. (Error bars indicate one
standard deviation of the sampled pixels).
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C. Lateral displacement of film on scanner

Figure 5 shows film dose calculated using triple-channel and single-channel dosimetry as a
function of the lateral position of the film on the scanner, at dose levels 1, 8, 12, and 14 Gy.
For both triple-channel and single-channel dosimetry, there is a lateral-scanner effect, which
increases the reported film dose with increasing lateral position of the film on the scanner. The
effect is significantly larger for single-channel compared to triple-channel. The percentage
increase in film dose at 4 cm lateral distance compared to the film dose on the central axis of the
scanner, at 1 Gy, was 6% with single-channel dosimetry and 1% with triple-channel dosimetry;
at 8 to 12 Gy was 7% with single-channel and 1% with triple-channel dosimetry; and at 14 Gy
was 11% with single-channel and 2% with triple-channel dosimetry. At 9 cm lateral distance,
at 1 Gy, the dose increase was 20% with single-channel dosimetry and 5% with triple-channel
dosimetry; and at 14 Gy, the dose increase was 24% with single-channel dosimetry and 9%
with triple-channel dosimetry. The results for positive and negative displacements in the lateral
direction were consistent within experimental error.
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FiG.5. Change in film dose as a function of lateral distance on scanner, using single-channel (dashed line) and triple-channel
(solid line) film dosimetry, over range 1 to 14 Gy. (Error bars indicate one standard deviation of the sampled pixels).
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D. Film surface perturbation

Figure 6 shows film dose profiles through three GAFCHROMIC EBT3 film samples exposed
to 0, 4, and 10 Gy, respectively, each with surface perturbations caused by the application of
grease and scratches. Film dose calculated using triple-channel and single-channel dosimetry
is compared in the figure. The surface perturbations have significantly greater effect on the
reported dose using single-channel, compared to triple-channel dosimetry, with the latter accu-
rately reporting the expected dose values for all three films. Single-channel analysis reported
significantly higher dose values due to the presence of grease and scratches.

12 profile through film samples

ol

10 At
grease  scratches

- [ ]

grease  scratches

grease  scratches
I |

44 N "

Film dose (Gy)

==Film dose -3 ch
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L

0 20 40 60 80 100 120
Film profile distance (mm)

FiG. 6. Effect of film surface perturbation (grease and scratches) on calculated film dose using single-channel and triple-
channel dosimetry. Profile through three film samples irradiated to 0, 4, and 10 Gy each, with grease and scratches.

E. Film active layer thickness

Table 1 gives the calculated dose values for the original film and ‘doubled active layer’ film
scanned and analyzed using single-channel and multichannel dosimetry methods, at dose levels
of 1, 8, 12, and 14 Gy. The process of de-laminating and restacking increases the noise in the
scanned image, shown as an increase in the standard deviation of the sample region. However,
it is clear that an effective doubling of the active layer is reported as an approximate doubling
of the dose with single-channel dosimetry, but has much less effect on the dose reported by
triple-channel dosimetry, with doses being approximately consistent with the original single
active layer film. Triple-channel dosimetry is clearly less sensitive to active layer thickness
variations than single-channel dosimetry.
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TaBLE 1. Calculated film dose for original and ‘double active layer’ films using single- and triple-channel analysis. Mean
film dose calculated using single-channel dosimetry and triple-channel dosimetry for original GAFCHROMIC EBT3
film and for delaminated and restacked EBT3 film producing an effective double thickness active layer, for doses in
the range 1 to 14 Gy. One standard deviation of the pixel dose values in the regions of interest is shown in brackets.

Film Dose from De-Laminated Film and

Film Dose from Original Film Restacked with Two Active Layers

Dose Single-channel Triple-channel Single-channel Triple-channel
Level Dosimetry Dosimetry Dosimetry Dosimetry
(cGy) (cGy) (cGy) (cGy) (cGy)

100 100.2 (2) 100.0 (2) 246.5 (105) 91.6 (35)
800 785 (11) 799 (16) 1681.3 (269) 866.2 (118)
1200 1166 (26) 1214 (28) 2452.1 (204) 1187.5 (223)
1400 1401 (22) 1400 (35) 2601.4 (390) 1426.5 (261)

F. Measurement of clinical brachytherapy dose distribution

Figures 7 and 8 show isodose comparisons between treatment planning system (TPS)-calculated
dose planes and measured film isodoses, using single-channel and triple-channel dosimetry. The
corresponding gamma evaluation passing rates are provided in Table 2. Both single- and triple-
channel dosimetry provide good agreement close to the applicator axis, up to 20 mm lateral
(abscissa), corresponding to 3 to 13 Gy, and good agreement up to 105 mm from the applicator
base (ordinate), corresponding to 5 to 13 Gy. While triple-channel film dosimetry maintains
good agreement with TPS calculation across the entire film, the single-channel analysis exhib-
its an increasing difference between film dose and TPS dose with increasing lateral distance
(abscissa). This corresponds to increased lateral distance on the scanner. The gamma passing
rates presented in Table 2 demonstrate dramatically improved agreement between film dose and
TPS dose when triple-channel dosimetric analysis is used, compared to single-channel. These
results are consistent with the lateral scanner artifact presented in Results section C.
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I 11000 ¢Gy

yimm
yimm

150
100
50 50
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FiG. 7. Comparison of film-measured (thin lines) and treatment planning system-calculated (thick lines) dose distributions
from a typical clinical brachytherapy treatment, in a plane lateral to a cervix brachytherapy applicator, with (left) single-
channel film dosimetry and (right) triple-channel film dosimetry. Abscissa aligned with lateral direction on the scanner,
where x = 0 represents the middle of scanner.
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FiG. 8. Comparison of film-measured (thin lines) and treatment planning system-calculated (thick lines) dose distributions
from a typical clinical brachytherapy treatment, in a plane lateral to a cervix brachytherapy applicator, with (left) single-
channel film dosimetry and (right) triple-channel film dosimetry. Abscissa aligned with lateral direction on the scanner,
where x = 0 represents the middle of scanner.

TaBLE 2. Gamma analysis comparing film-measured with treatment planning system-calculated dose distributions,
from a clinical cervix applicator.

Gamma Passing Rate, at 3% (local norm.)
2 mm, zero threshold

Single-channel Triple-channel
Region of interest (105 cm along x 80 cm away) film dosimetry film dosimetry
Anterior to ring and IU cervix applicator 37.5% 90.6%
Lateral to ring and IU cervix applicator 50.1% 95.2%

G. Evaluation of proposed methodology for film dosimetry in brachytherapy

Table 3 shows the average calculated film dose at several known dose levels across a wide
dose range from a series of ten test films. The primary calibration function was derived over a
dose range 0 to 20 Gy. Within FilmQAPro software, the calibration function was rescaled to an
unexposed film and a known dose level film, scanned within the same image as the test film.
This allows correction for any scanner-related response changes since the film calibration. The
calculated film dose is forced into agreement with the expected dose at the reference dose level,
with the percentage difference increasing at other dose levels. While maintaining the 0 to 20 Gy
calibration function, two different sets of reference dose films, scanned with the test film, were
used. With reference doses of 0 and 7.5 Gy, a maximum discrepancy of 1.4% across the range
5to 10 Gy, increasing to 2.3% at 13 Gy, was found. Using reference doses of 0 and 13 Gy gave
agreement of 0.1% at 13 Gy, but a maximum discrepancy of 2.1% across 5 to 10 Gy.

The data in Results section A have been used to determine the required delay before scanning
of simultaneous test and reference films, such that postexposure darkening of both films does
not introduce significant uncertainty into the dosimetry results. The rate of change of optical
density postexposure increases with dose level; hence, the longest delay before scanning is
required for the highest dose level. Considering the measured rate of change at 14 Gy exposure,
Fig. 4, the required delay for typical brachytherapy dosimetry situations has been evaluated. A
worst case delay between a brachytherapy test exposure and a reference film exposure from a
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different (external beam) treatment unit may be typically 24 hrs. If the test film irradiation is
performed at time t = 0 hrs and the reference film irradiation at t = 24 hs for the same 14 Gy
dose level, the difference in net optical density of the films due to postexposure darkening
would be 5% if scanned at 0.1 hr following the reference film exposure. This reduces to 3%
at 1 hr, 1% at 12 hrs, 0.6% at 48 hrs, 0.4% at 72 hrs, and 0.2% at 96 hrs following reference
film exposure. For a time difference of 6 hrs between test and reference films, the net optical
density difference between the films at a dose of 14 Gy is 3.8% at 0.1 hr postexposure, reducing
to 0.3% at 24 hrs. For a time difference of 2 hrs, the difference in net optical density at 14 Gy
is 2.8% at 0.1 hr, reducing to 0.3% at 8 hrs postexposure.

Figure 9 shows an isodose overlay comparison between film dose maps from a brachytherapy
dose distribution scanned with the film perfectly flat using a compression glass plate and with an
induced significant curvature of the film (isodoses aligned at the right side of the image). There
is a significant shift in the isodoses of the nonflat film. With the film curled and raised up from
the scanner plate, there is an apparent increase in the pixel value and reduction in film dose.

No significant difference was measured between films scanned with or without a surrounding
antireflective mat on the scanner. A comparison between film-measured dose distributions of
typical brachytherapy treatments, as discussed in Results section C, scanned with and without
the mat, showed consistent dose distributions, with gamma analysis at 1% (local normaliza-
tion) and 1 mm having a passing rate of 99.2%.

TaBLE 3. Calculated average film dose from ten test films using different calibration references. The calculated aver-
age film dose in a 4 X 4 cm region of interest using FilmQAPro software, triple-channel dosimetry, using either 0
and 7.5 Gy or 0 and 13 Gy reference dose films, which are used for linear scaling of the film calibration functions to
account for system variations compared to calibration film scans. The percentage difference of the film dose to the
actual irradiated dose is shown in the table.

Percentage Difference of Calculated Film-Dose

Film Dose References for from Actual Irradiated Dose, for Each Dose Level
Calibration Function Scaling 5 Gy 7.5 Gy 10 Gy 13 Gy
0and 7.5 Gy +0.1% +0.4% +1.4% +2.3%
0 and 13 Gy -1.0% -2.1% -1.1% +0.1%
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F1G. 9. Isodose comparison of film dose from a typical brachytherapy dose distribution, with the film perfectly flat (thin
lines) (compressed by glass plate) and with induced significant curvature (thick lines) (4 mm height of film from scan
plane at the left of the figure, 0 mm height at the right). There is an apparent reduction in dose with the film raised from
the scanner.
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IV. DISCUSSION

The postirradiation darkening behavior of GAFCHROMIC EBT3 film has been shown to be
a logarithmic function, continuing at least three months postexposure, with the effect more
significant at higher dose levels, shown in Fig. 4. These results differ from Casanova Borca et
al.! who considered postirradiation coloration over 72 hrs and concluded net optical density
stabilized after nearly 30 mins at dose levels up to 2 Gy, and 2 hs would be sufficient to guaran-
tee stability to perform analysis at studied doses up to 4 Gy. Theoretically, the film active layer
polymer formed by exposure will continue to grow, but the rate of growth will rapidly decrease
as the distance from the growing polymer chain to the next available monomer increases. Growth
will only occur on random occasions when enough thermal energy is acquired to bridge the gap.
The results presented here demonstrate postirradiation colorization is a continual, logarithmic
function, as predicted by theory. It is important to appreciate that continual darkening of the
film occurs, and films irradiated for purposes of reference dose calibration, scanned simultane-
ously with test films, must be irradiated at the same time, or the time difference recorded and
sufficient time allowed between test and reference irradiations prior to scanning. The anecdotal
recommendation of delaying scanning by a time four times the interval between test and refer-
ence films has been shown to be valid (in this work, up to 14 Gy and 24 hrs between test and
reference films), in order to reduce dose errors to less than 0.3%.

The lateral scanner artifact described by Menegotti et al.(1©) for doses up to 7 Gy, has been
confirmed in this work and documentation of its effect extended up to 14 Gy, appropriate for
brachytherapy film dosimetry. Menegotti and colleagues showed a change in pixel value in
the range 9% to 19%, depending on scanner model, for a 7 Gy exposure at 10 cm lateral to the
central axis of the scanner. The results presented in the current work indicate a reported dose
increase of 23% at 14 Gy, 9 cm lateral position, for single-channel film dosimetry. However,
this effect is reduced to 9% with triple-channel dosimetry. The near linear array of monomer
rods in the film means the amount of polarization of light is different, depending on whether the
film is 0° or 90° rotated on the scanner, and this may explain the difference in results between
our work and Menegotti et al.(1)

The advantage of triple-channel dosimetry over single-channel dosimetry in mitigating the
effect of lateral scanner artifact has been demonstrated at dose levels and distributions typical
for brachytherapy dosimetry. However, the useable scanner width is limited even with triple-
channel dosimetry to less than + 4 cm width to reduce lateral scanner effect to less than 1% with
the Epson V750 Pro scanner (the useable width may increase with physically larger scanners).
The effects of film surface perturbations and of variations in active layer thickness have been
shown to be significantly reduced with triple-channel compared to single-channel dosimetry.

A proposed methodology for brachytherapy film dosimetry has been discussed, using three
reference strips (including zero dose), rather than two (including zero dose), in order to confirm
accurate dosimetry over the large dose ranges encountered in brachytherapy. We have also dem-
onstrated that choice of reference film dose level for linear calibration rescaling can improve
the dose uncertainty at dose levels of interest. This is particularly important in brachytherapy
dosimetry in which there are often very large dose ranges across films. We recommend to
use a reference dose level for rescaling of the film response function around the dose level of
particular interest, such as the prescription dose, rather than the maximum dose in the film,
as recommended by Lewis et al.,(!?) for external beam radiotherapy dosimetry applications in
which there is often a smaller dose range. We also recommend that film is perfectly flat on the
scanner to provide reliable dosimetric results, avoiding changes in scanner response which may
be due to variations in illumination, optical disturbances, and effects such as that described by
Callier®V in which light changes from a collimated to a diffuse source. A compression glass
plate positioned on top of the film is suggested to ensure sufficient flatness.

The proposed methodology for film dosimetry utilizing the triple-channel algorithm
implemented within FilmQAPro software, as discussed in this work, has been applied to the
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measurement of dose distributions around clinical brachytherapy treatment applicators. Using
gamma analysis to compare film-measured dose distributions with treatment planning system
calculations, at criteria 3% local normalization and 2 mm distance to agreement, over a region
of interest of 105 x 80 mm (equivalent to 0.3 to 13 Gy dose range), gamma passing rates
exceeding 90% for triple-channel dosimetry have been reported, but the passing rate reduced
to exceeding 37% for single-channel dosimetry. (Due to very steep dose gradients, the posi-
tion sensitivity of the gamma map is high, and in each case the relative position of the film
dose and plan dose was optimized for maximum gamma pass rate). The significant reduction
in performance of film dosimetry for brachytherapy with single-channel dosimetry compared
to triple-channel dosimetry is likely to be primarily the result of lateral scanner artifact, which
is mitigated with triple-channel dosimetry.

V. CONCLUSIONS

The use of triple-channel film dosimetry in brachytherapy has been evaluated in both test
cases and clinical dose distribution measurements. We have demonstrated that radiochromic
film dosimetry with GAFCHROMIC EBT3 film and a flatbed scanner is a viable method for
brachytherapy dosimetry, and uncertainties may be reduced with triple-channel dosimetry and
specific film processing methodologies. The separation of the scanner signal into dose and
dose-independent parts via triple-channel dosimetry enables the mitigation of signal distur-
bances, such as variations in film active layer thickness, film surface perturbations, and lateral
scanner effect. The lateral effect is particularly significant for accurate dosimetry and must
be considered in brachytherapy exposures to high dose levels and, even with triple-channel
dosimetry, limits the usable lateral region of the scan plane. The use of simultaneous scanning
of calibration reference films with test films is advantageous to scale the pixel value for any
scanner fluctuations, provided postexposure darkening kinetics are accounted for between
the two films. Darkening of the film continues after irradiation as a logarithmic function with
time, at least up to three months. We have also demonstrated the importance of keeping film
flat when scanning, an effect overlooked in previous recommendations on film dosimetry, but
it is not necessary to use a nonreflective mat around the films.
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