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Abstract

Nutrient availability is an important environmental variable during development that has significant effects on the
metabolism, health, and viability of an organism. To understand these interactions for the nutrient copper, we used a
chemical genetic screen for zebrafish mutants sensitive to developmental copper deficiency. In this screen, we isolated two
mutants that define subtleties of copper metabolism. The first contains a viable hypomorphic allele of atp7a and results in a
loss of pigmentation when exposed to mild nutritional copper deficiency. This mutant displays incompletely penetrant
skeletal defects affected by developmental copper availability. The second carries an inactivating mutation in the vacuolar
ATPase that causes punctate melanocytes and embryonic lethality. This mutant, catastrophe, is sensitive to copper
deprivation revealing overlap between ion metabolic pathways. Together, the two mutants illustrate the utility of chemical
genetic screens in zebrafish to elucidate the interaction of nutrient availability and genetic polymorphisms in cellular
metabolism.

Citation: Madsen EC, Gitlin JD (2008) Zebrafish Mutants calamity and catastrophe Define Critical Pathways of Gene–Nutrient Interactions in Developmental
Copper Metabolism. PLoS Genet 4(11): e1000261. doi:10.1371/journal.pgen.1000261

Editor: Mary Mullins, University of Pennsylvania School of Medicine, United States of America

Received July 15, 2008; Accepted October 14, 2008; Published November 14, 2008

Copyright: � 2008 Madsen, Gitlin. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Institutes of Health grants DK44464 and DK61763 (JDG), Medical Scientist Training Program Grant T32 GM07200
(ECM) and the Chancellor’s Hartwell Prize for Innovative Research from Washington University (JDG). No funding source had any role in the production of this
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jonathan.d.gitlin@vanderbilt.edu

¤ Current address: Department of Pediatrics, Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, Tennessee, United States of America

Introduction

Proper maternal nutrition is critical for early embryonic

development. The Dutch Famine Study examined the consequenc-

es of nutrient deprivation on developmental outcome during severe

food shortages near the end of the Second World War and clearly

demonstrated that inadequate nutrient availability during human

gestation increases the likelihood of developmental anomalies [1].

From these initial observations arose the well-recognized link

between maternal folate supplementation and the suppression of

neural tube defects [2]. Despite overwhelming epidemiologic data

indicating the benefits of folate and other nutrient supplementation

we do not fully understand the genetics of predisposition to these

abnormal developmental phenotypes when faced with suboptimal

nutrient levels. There are several large difficulties in the study of

these processes in mammals that have prevented faster progress.

The first is that the genetics of mammals has been cumbersome.

The second, and more important, is that development of placental

animals occurs in utero making rapid detection of developmental

phenotypes difficult. Finally, controlling the level of nutrient

available to the developing embryo cannot be done with precision

as it depends both on the genetics of the mother and the embryo as

well as maternal nutrition.

Copper is an essential nutrient which when absent results in

severe developmental abnormalities. This is most clearly illustrated

by Menkes disease (OMIM #309400), a rare X-linked disorder of

copper metabolism. Patients with Menkes disease have an array of

symptoms including seizures, neurodegeneration, hypopigmenta-

tion, and lax skin which result from decreased copper incorpora-

tion into critical enzymes such as dopamine-b-hydroxylase and

lysyl oxidase [3,4]. This usually fatal disease is caused by mutations

in a copper transporter, ATP7A (NM_000052), which resides in

the secretory pathway and is responsible for transport of copper

into this compartment. The Menkes gene product is also

responsible for placental copper transport. While patients

complete in utero development apparently normally, it is clear

from biochemical studies at birth that there are significant defects

that arise from gestational copper deficiency [5].

In order to study the effects of developmental copper

deprivation our lab has previously created a zebrafish model of

severe copper deficiency [6]. High doses of the cell permeable

copper chelator neocuproine cause embryonic zebrafish to exhibit

a Menkes-like phenotype with neurodegeneration, hypopigmen-

tation, and connective tissue defects. Isolation and cloning of the

mutant calamity, which shared these same characteristics, revealed

a loss-of-function mutation in the zebrafish orthologue of ATP7A

(NM_001042720). In this current study we expand this model to

study the effects of induced genetic alterations on the develop-

mental response to mild copper deprivation. We describe two

mutants sensitive to nutritional copper deficiency that illustrate the

potential power of this approach to overcome the limitations of

studying gene-nutrient interactions in vertebrate organisms and
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that define combinations of loss-of-function mutations of known

ion homeostatic pathways that result in aberrant development.

Results

Copper Deficiency Screen
In order to elucidate the molecular genetics of copper metabolism

we performed a forward genetic screen for zebrafish mutants with

enhanced sensitivity to subthreshold copper deficiency. To control

copper levels zebrafish embryos were treated with the cell

permeable copper specific chelator neocuproine which has been

previously shown to cause a copper-deficient phenotype including

loss of pigmentation and notochord defects at a dose of 1 to 10 mM

due to loss of cuproenzyme activity [6,7]. Prior to screening, a

subthreshold dose of 100 nM neocuproine was determined to cause

no alteration in pigmentation in wild-type, haploid embryos. We

then used this concentration of neocuproine to screen clutches of

haploid embryos derived from F1 carriers of ENU-induced

mutations. One half of each clutch was placed in 100 nM

neocuproine at 3 hours post fertilization (hpf) and allowed to

develop until 48 hpf when clutches were screened for loss of

melanin pigmentation in 50% of the embryos (Figure 1A). Only

those clutches which had loss of pigmentation at 100 nM

neocuproine but contained at least some pigmentation when

untreated were scored as mutant. In this pilot screen we examined

700 F1 females and found five potential mutants. Seven hundred

mutagenized haploid genomes at an estimated single locus mutation

rate of 1.161023 represents approximately a 65–70% coverage of

the genome [8]. Of the five potential mutants, four were confirmed

as true mutants as defined by the transmission of the neocuproine

sensitive phenotype to the offspring. One of these mutants fit the

‘‘ideal’’ criteria (no defect in vehicle and complete loss of pigment in

100 nM neocuproine in 50% of the haploid clutch) as illustrated in

Figure 1A and subsequent analysis revealed important insight into

the intersection of genetics with sub-optimal copper nutrition in

early development. A second mutant reveals a role for proton

transport in copper metabolism. The final two mutants were similar

in phenotype to the first but full analysis has not been completed.

The first mutant isolated from the screen displayed normal

melanin pigmentation when untreated but completely lost all

melanin upon treatment with 100 nM neocuproine (Figure 1B, C).

Crossing this mutant with calamityvu69 (cal) which bears an

inactivating mutation in the copper transport protein atp7a

resulted in partial non-complementation. The compound hetero-

zygote had no melanin in the developing retinal pigment

epithelium (RPE) and normally distributed mild hypopigmentation

over the rest of the body (Figure 1D). Based on the partial non-

complementation we tentatively assigned this mutant as an allele

of calamity, designated gw71.

The second mutant has a phenotype that is independent of

neocuproine. Named catastrophe, this mutant has normally

distributed melanocytes that are small and punctate (Figure 1E).

Catastrophe (cto) is homozygous lethal at about 3 days post

fertilization (3 dpf). The heterozygotes have no overt phenotype.

In addition, cto homozygotes display sensitivity to copper

deficiency by losing all melanin pigmentation in 100 nM

neocuproine (Figure 1F). Crossing cto with calvu69 results in

complete complementation (Figure 1G) including the observation

that the double heterozygote is not more sensitive to neocuproine

than calvu69 heterozygotes (data not shown). Thus, we continued

our analysis on the basis that cto identifies a new locus involved in

copper metabolism.

A Hypomorphic Allele of atp7a
Chromosomal localization using the early pressure partheno-

genesis method [9] placed the mutation in calgw71 (referred to

below as gw71) near the centromere of chromosome 14, the known

location of atp7a. Combining this data with the partial non-

complementation, we hypothesized that this mutant represented a

hypomorphic allele of atp7a and confirmed this by direct

sequencing of the mRNA. Mutant atp7a was cloned and displayed

100% identity with the published atp7a sequence

(NM_001042720) with the exception of a single base change

present in both mutant clones, T3182G, which results in a single,

non-conservative amino acid substitution, I1061S (Figure S1A).

This mutation is located in a region highly conserved in copper

transporting ATPases and exchanges a hydrophobic amino acid

for one that is polar and hydrophilic (Figure 2A). This single amino

acid change results in significant depletion of the full-length

protein in mutant embryos (Figure 2B).

To verify that this was the causative mutation in gw71, we

performed an in vitro activity assay for the protein using wild-type

and mutant atp7a. Fibroblasts from patients with Menkes disease

which lack functional ATP7A were transfected with tyrosinase in

combination with either wild-type or mutant zebrafish atp7a

created via site-directed mutagenesis of the wild-type cDNA.

These fibroblasts were then treated with increasing doses of

neocuproine, fixed, and stained for tyrosinase activity using L-

DOPA. Activity is dependent on both atp7a and tyrosinase cDNAs

(Figure S1B and S1C). In contrast to zebrafish mutant embryos,

equal amounts of wild-type and mutant Atp7a were obtained via

transfection in these fibroblasts (Figure 2D). L-DOPA staining of

cells expressing mutant cDNA was only mildly reduced when

compared with wild-type (Figure 2D vs. E) indicating that the

mutant retains some transport function. Overnight treatment with

25 nM neocuproine resulted in complete loss of tyrosinase activity

in fibroblasts transfected with mutant, but not wild-type, atp7a

though a reduction in staining was observed with wild-type

(Figure 2F, G). These data suggest that this single mutation in

atp7a not only affects steady-state protein levels but is also capable

of reducing the functional capacity of the protein, leading to

sensitivity to copper deficiency.

The I1061S mutation is located in the intracellular loop which

comprises the ATPase domain of the transporter (Figure 2H).

Author Summary

Copper is an essential nutrient required for multiple
biologic functions. Proper uptake, transport, and excretion
of copper are critical for use of this metal while reducing
its inherent toxicity. While several key proteins involved in
this process have been identified, there are still gaps in our
understanding of copper metabolism—particularly during
early development. We have used zebrafish, a genetically
useful animal model system, to study genetic interactions
with copper deficiency during development. We treated
mutant embryonic zebrafish with a chelator that reduces
the level of available copper and screened for mutants that
displayed a copper deficient phenotype only in the
presence of the chelator. We identified and characterized
two mutants that advance our understanding of copper
metabolism during the early periods of development, as
well as show an interaction between copper metabolism
and another fundamental pathway—that of proton
transport. Our results expand our knowledge of copper
metabolism and illustrate the power of this type of genetic
screen in zebrafish to elucidate mechanisms of nutrient
metabolism.

Zebrafish Mutants Sensitive to Copper Deficiency
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Dimitriev et. al. have previously performed NMR spectroscopy on

the homologous domain of the Wilson disease copper transporter,

ATP7B, in the presence and absence of bound ATP and have

derived from the resulting chemical shift data the residues

important for ATP binding and hydrolysis [10]. We mapped the

same region of Atp7a onto their model by sequence alignment

(64% consensus, 49% identical) to better understand the potential

effect of this mutation on protein function. The mutation in calgw71

lies five amino acids away from a critical ATP binding residue,

E1064, which is highly conserved from yeast to humans (Figure 2A

and Figure S1D). While a mutation of a critical residue would be

expected to significantly alter ATP binding or hydrolysis, a non-

conservative mutation in the region of a critical residue might be

expected to only slightly alter ATP binding/hydrolysis through

minor shifts in regional structure.

gw71 Mutants Display Post-Embryonic Sensitivity
Phenotypes

Because the gw71 allele is homozygous viable, we were able to

examine several post-embryonic roles for atp7a. Adult homozygous

mutant zebrafish placed in varying doses of neocuproine did not

display an overt sensitivity phenotype (data not shown). However,

further study revealed a maternal effect of this mutation on

embryonic copper metabolism. Homozygous mutant embryos

derived from heterozygous females had a normal quantity and

distribution of pigmentation that was partially sensitive to 100 nM

neocuproine which abolished pigment in the retinal pigment

epithelium (RPE) and reduced pigment over the body of the fish

(Figure 3A, B). In contrast, homozygous mutant embryos derived

from homozygous mutant females had no pigment in the RPE and

reduced pigment over the body; treatment of these embryos with

100 nM neocuproine completely abolished pigmentation through-

out the embryo (Figure 3C, D). The effect of the mother’s genotype

on the embryonic phenotype indicates that though not overt, the

adult homozygous mutant does have defects in copper metabolism

demonstrated by a nutrient-deficient state in the offspring. Thus the

sensitivity of the embryo to neocuproine is due not only to aberrant

embryonic copper metabolism, as the embryos from heterozygous

mothers are sensitive to copper deficiency, but also to a deficient

maternal loading of copper into the egg as the phenotype is

exacerbated by maternal homozygosity.

The importance of optimal copper nutrition during develop-

ment is further illustrated by the presence of vertebral skeletal

defects in homozygous mutants. Homozygous mutant embryos

were stained at 21 dpf with alcian blue/alizarin red to reveal bone

and cartilage respectively. These were compared with wild-type

syngeneic age-matched controls raised in the same manner. The

wild-type fish had straight vertebral columns along the entire

length with long, straight bony processes extending from each

vertebra (Figure 3E). In contrast, homozygous gw71 fish displayed

variable vertebral defects, most often a significant warping of the

bony structures in the caudal-most region of the column caused by

irregular length of vertebrae and defects in the joint angles

(Figure 3F). In addition the bony processes were also shortened

and bent. Consistent with the observations in embryos that the

mutation in gw71 brings the homozygous embryo close to, but not

Figure 1. Chemical genetic screen for zebrafish mutants sensitive to copper deficiency. (A) Diagram outline of the sensitivity screen.
Haploid embryos are either wild-type (green) or mutant (yellow) for any given ENU-induced mutation. These embryos were placed in vehicle or
100 nM neocuproine (neoc) at 3 hpf and allowed to develop until 48 hpf when they were screened for loss of melanin pigmentation in drug only. The
ideal mutant is demonstrated on the right where mutant (yellow) embryos have no pigment only upon treatment with neocuproine (B–C) The first
mutant isolated has full pigmentation without neocuproine (B) and loses all pigmentation upon treatment with 100 nM neocuproine (C). (D) This
mutant does not complement a known allele of the mutant calamity, establishing it as a new allele of the same gene atp7a. (E–F) The second mutant
has reduced, punctate pigmentation without drug treatment (E) but loses all pigmentation upon treatment with 100 nM neocuproine (F). (G) The
second mutant fully complements calamity. Therefore we have isolated a new mutant which we have called catastrophe.
doi:10.1371/journal.pgen.1000261.g001

Zebrafish Mutants Sensitive to Copper Deficiency
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over, a threshold for copper deficiency, the persistent skeletal

defects in the juvenile fish were not fully penetrant. Whereas wild-

type fish had no vertebral defects (n = 26), a significant number

(38%, n = 60) of the gw71 fish contained defects (Figure 3G).

Incomplete penetrance of the defect in the homozygous mutant

fish could be attributed to either separate subtle genetic

interactions or to variable nutrient availability. We hypothesized

that if the penetrance of the defects were based on nutrient

availability then reducing the nutrient levels would worsen the

defects and increase the penetrance and vice versa. We thus took

gw71 mutant embryos and placed them in either normal egg water

or egg water supplemented with 100 nM neocuproine or 500 nM

CuCl2 from 3 to 51 hpf (48 hour exposure). In addition, two

separate groups of embryos were treated with neocuproine from

16 to 64 hpf and from 30 to 78 hpf to determine if there was a

window of developmental time critical for the genesis of later

defects. At 21 dpf the larvae were stained with alcian blue/alizarin

red and scored for the presence or absence of vertebral defects

(Figure 3G). Untreated wild-type embryos (not shown) or wild-

type embryos treated with 100 nM neocuproine from 3–51 hpf

had no perceptible skeletal defects. Thirty-eight percent of gw71

embryos had skeletal defects and this number was not significantly

affected by treatment with 100 nM neocuproine or 500 nM

CuCl2 from 3–51 hpf. However, there was a 50% increase in the

number of skeletal defects in gw71 embryos treated with 100 nM

neocuproine from 16 to 64 hpf. The larvae treated with 100 nM

neocuproine from 30 to 78 hpf died approximately 8 dpf from an

unidentified cause. These results indicate an increasing sensitivity

to mild copper deprivation as the embryo develops in the first 16–

72 hrs. Further experimentation with smaller, more discrete

treatment times might allow the determination of any develop-

mental window required for the effects of copper on vertebral axis

formation.

In addition to the presence of vertebral skeletal defects in fully

ossified skeletons, larvae at earlier stages of development displayed

hyperossification of vertebrae adjacent to defects in the vertebral

column (Figure 3H, I). Normal zebrafish bone ossification begins

rostrally and generally proceeds caudally with the exception of the

caudal fin vertebrae [11]. In gw71 this pattern is maintained

(arrowhead in Figure 3H) except for areas containing defects

(arrow in 3H). The defects affected the joints between vertebrae

and had differing degrees of connective tissue bulges which

partially stained with alcian blue indicating the presence of some

cartilaginous tissue in these defects (Figure 3H arrowhead).

Figure 2. calamitygw71 contains a hypomorphic allele of atp7a. (A) The mutation in calgw71 is a T1061S substitution in a highly conserved region
of the vertebrate copper transporters and exchanges a normally hydrophobic amino acid for a hydrophilic one (asterisk). (B) This single amino acid
change results in near complete loss of immunoblot-detectable protein levels. Wild-type and gw71 mutant embryos were blotted for Atp7a using a
peptide antibody to the C-terminus of the protein. b-catenin was used as a loading control. (C) Despite loss of protein in the zebrafish, transfection of
an ATP7A-deficient human fibroblast cell line with either wild-type or mutant cDNA (derived from site-directed mutagensis of the wild-type) results in
near equivalent expression of the zebrafish protein. b-catenin is again used as a loading control. (D–E) Both wild-type (D) and mutant (E) cDNAs are
capable of producing functional protein as measured by functional tyrosinase activity in ATP7A deficient fibroblasts fixed and stained with L-DOPA.
(F–G) Both wild-type (F) and mutant (G) Atp7a are sensitive to the effects of low-dose neocuproine in the above assay; however, the mutant cDNA is
much more sensitive to mild copper chelation (F vs. G). (H) Model illustrating the relationship of the mutation (red, asterisk) to the known topology
and functional domains of Atp7a. The mutation lies in the ATPase domain of the protein near a glutamate (green ‘‘E’’) required for ATP binding and
hydrolysis [10].
doi:10.1371/journal.pgen.1000261.g002

Zebrafish Mutants Sensitive to Copper Deficiency
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catastrophe Contains a Defect in Proton Transport
Before mapping the catastrophe mutant it was important to

determine the extent of the defect in copper metabolism. The loss

of pigmentation in the mutants could result from toxicity in a

‘‘two-hit’’ model whereby the mutation damages melanocytes and

the drug acts to further affect these already sick cells. Therefore we

examined the sensitivity of the mutant to another copper-

dependent process–notochord formation. Notochord formation

requires the action of the cuproenzyme lysyl oxidase and its family

members. Both reduction in lysyl oxidase levels and copper

chelation result in wavy, distorted notochords [12]. Placing cto

mutants in 2 mM neocuproine at 3 hpf resulted in wavy

notochords in the mutant embryos at 24 hpf while having no

effect on heterozygous or wild-type embryos (Figure 4A, B). This

experiment indicates that the mutation in cto causes a global defect

in copper metabolism and is not limited to melanocytes.

The mutation in cto was localized to chromosome 7 and further

mapping reduced the region of interest to an approximately

1 Mbp region between markers z21519 and z43308 (Figure 4C). It

was possible to assemble a nearly complete BAC contig between

these markers using database BAC sequences (www.sanger.ac.uk/

Projects/D_rerio/). This contig was scanned for potential genes

using the FGENESH program (www.softberry.com) and compar-

ing to the Ensembl database (www.ensembl.org). A list of

candidate genes was generated from this comparison. To further

refine the list, a database of zebrafish insertional mutants was

scanned for mutants displaying a similar melanocyte phenotype

[13]. Approximately 6 mutants in this database had punctate

Figure 3. calamitygw71 embryos display developmental defects that are sensitive to maternal and environmental copper availability.
(A–D) Maternal effect on pigmentation in untreated gw71 homozygous embryos. Mutant embryos derived from a heterozygous mother (A) display
near normal pigmentation and have an incomplete loss of pigmentation in 100 nM neocuproine (B) most noticeable in the retina (arrowhead).
Mutant embryos derived from homozygous mothers have mild hypopigmentation (C), particularly of the retina (arrowhead) and lose nearly all
pigmentation in 100 nM neocuproine (D). (E–I) Partially penetrant juvenile skeletal deformities are present in gw71 mutant fish. Wild-type (E) and
gw71 mutant (F) 21 dpf larvae were stained with alcian blue (cartilage) and alizarin red (bone) to reveal skeletal defects. In (G), embryos were
untreated, treated with 100 nM neocuproine, or treated with 500 nM CuCl2 during the times indicated. The larvae at 21 dpf were scored according to
absence or presence of a vertebral axis defect. A one-tailed Fisher exact probability test was used to calculate p-values. Only the indicated p-value
was significant. (H) gw71 mutants at an earlier stage of bone ossification display hyperossification at the location of the vertebral defect (arrow).
Normal ossification is detected by alizarin red staining and begins rostrally (arrowhead). (I) A higher magification of the defect in (H) showing the
hyperossification (arrow) and an outpouching of connective tissue which stains with alcian blue (arrowhead).
doi:10.1371/journal.pgen.1000261.g003

Zebrafish Mutants Sensitive to Copper Deficiency
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melanocytes, 5 of which had insertions in genes encoding subunits

of the vacuolar (H+) ATPase (Atp6) (NM_199620). As the critical

region in cto contained the d subunit of the V0 complex of the

vacuolar ATPase we cloned and sequenced this cDNA in the

catastrophe mutants. A single base pair change C406T present in the

mutant resulted in a premature stop codon, Q136X (Figure S2).

Sequence alignment with the human sequences (NM_004691)

revealed a highly conserved protein sequence (94% identical) that

most closely aligned with the d1 subunit (Figure 4D). Further

database searches did not reveal a second d1 subunit in zebrafish.

The significant identity between the human and zebrafish

protein sequences allowed us to use an antibody directed against

human ATP6V0D1 to examine the steady state levels of protein.

We hypothesized that the early stop codon would result in a

significant decrease in protein levels. Indeed, in 48 hpf embryos

there is a near total reduction in Atp6v0d1 protein as compared

with wild-type embryos (Figure 4E). Total loss of this highly

conserved and essential protein (see below) may be the cause of the

catastrophe phenotype; however, there remains some possibility that

another, tightly linked mutation may contribute to the observed

phenotype. Based on significant experimentation in yeast a

proposed quaternary structure for the vacuolar ATPase complex

has emerged (Figure 4F) [14–18]. In this model, the two main

subcomplexes, V0 and V1 have complementary functions of

proton translocation and ATP hydrolysis respectively. The

complexes are connected through several stalk subunits, v1d,

v0d, and v1f (not shown). Loss of these connecting subunits in

yeast results in total loss of activity of the complex [19]. Thus in

catastrophe, the loss of the v0d subunit would be predicted to result

in complete loss of proton translocation throughout the embryo.

catastrophe Is Sensitive to Pharmacologic Inhibition of
Proton Transport

If the defect in catastrophe is loss of Atp6 function the

heterozygotes might be sensitive to pharmacologic inhibition of

this transporter. Consistent with this, wild-type embryos placed at

24 hpf in 200 nM concanamycin A, a potent and specific inhibitor

of Atp6 [20], showed no apparent phenotype at 48 hpf (Figure 5A).

However, treatment of embryos heterozygous for cto resulted in

punctate melanocytes and CNS degeneration, resembling the

mutant (Figure 5B). The mutants themselves appeared qualita-

tively worse, with further reductions in melanocyte pigmentation

and worsening of the degenerative appearance (Figure 5C).

Secretory Pathway Copper Transport Is Altered in
catastrophe

While it is apparent that loss of Atp6 results in altered

cuproenzyme activity for two enzymes in the secretory pathway,

it is unclear which step of global copper transport is affected in cto

embryos. To address this we performed transplant experiments to

determine the cell autonomy of the defect. Wild-type cells from

Figure 4. catastrophegw325 contains a copper sensitive mutation in the vacuolar (H+) ATPase Atp6. (A–B) cto embryos are globally sensitive
to copper deficiency. Wild-type embryos (A) in 2 mM neocuproine do not display notochord defects. In contrast, cto embryos (B) placed in this same
dose of neocuproine have significant distortion of the notochord in a pattern consistent with loss of lysyl oxidase activity [12]. (C) Meotic mapping
placed the cto mutation between markers z21519 (43.1cM) and z43308 (44.9cM) on chromosome 7. (D) Atp6v0d1 is highly conserved between
zebrafish and mammals and is easily differentiated from ATP6V0D2 present in humans. The amino acid Q136 is changed to a stop in the mutant
(asterisk). (E) The mutation in cto abolishes expression of the full length protein. Immunoblot analysis using a C-terminal polyclonal antibody shows
no recognition of the 40 kD band in 48 hpf cto embryos. The identity of the band at 50 kD is unknown. Actin was used as a loading control (lower
panel). (F) Model of the proposed quaternary structure of Atp6. The lower-case d subunit (yellow) forms part of a connecting stalk between the V1
and V0 subunits the presence of which is required for proper formation of the entire transporter [19].
doi:10.1371/journal.pgen.1000261.g004

Zebrafish Mutants Sensitive to Copper Deficiency
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actin::GFP transgenic zebrafish were transplanted into cto embryos

and examined at 48 hpf for pigmented cells and GFP expression.

Transplantation resulted in a few well-pigmented and stellate

melanocytes over the head and body as well as clusters of

pigmented retinal epithelial cells (Figure 5D). These same embryos

were mosaic for GFP expression (Figure 5E). In body melanocytes

the melanin obscured GFP fluorescence (Figure 5E arrowhead). In

contrast, the retinal pigment epithelial melanocytes display GFP

fluorescence in the central area not covered by melanin (Figure 5E

arrow). From this we make two observations: First, the melanized

melanocytes are derived from wild-type donor cells, and secondly,

that nearby wild-type epidermal cells are not required for normal

melanin pigmentation nor stellate appearance (Figure 5E arrow-

head). Thus copper metabolism must not be significantly disrupted

on an organismal level, as these wild-type melanocytes in a mutant

host still receive adequate copper for normal pigmentation. Also,

the stellate appearance indicates that the defect that causes

punctate pigment cells in cto is also cell-autonomous.

The transplant experiment addresses delivery of copper to each

cell, but the uptake or distribution of copper within the individual

cell could also be affected in cto embryos. We hypothesized that

disruption of the transporter responsible for secretory pathway

acidification would result in defects in copper metabolism in this

compartment. To test this we examined the sensitivity of cto embryos

to partial loss of Atp7a through the use of a morpholino. Previous

work from our laboratory has demonstrated that melanin synthesis

following loss of Atp7a is also cell-autonomous in the melanocyte

indicating that knock-down of Atp7a will allow interrogation of the

pathway on a cellular rather than organismal level [6]. Injection of a

splice morpholino previously shown to result in a copper deficient

phenotype at a dose that does not cause pigmentation defects in

wild-type or heterozygous embryos (Figure 5F) causes total loss of

melanin pigmentation in cto embryos (Figure 5G). Thus cto embryos

are sensitive to loss of the secretory pathway copper transporter,

Atp7a. Embryos heterozygous for the cto mutation did not show

sensitivity to the Atp7a morpholino indicating that near complete

loss of Atp6 activity is required to sensitize to alterations in copper

metabolism. At the same time, the cytochrome oxidase activity of

mitochondria derived from cto embryos is no different from wild-

type indicating that copper delivery to mitochondria is normal and

that the defect in copper metabolism in cto embryos is limited to the

secretory compartment (Figure 5H).

Figure 5. cto contains a concanamycin A sensitive, cell autonomous defect which affects secretory pathway copper transport. (A–C)
cto gene dosage alters sensitivity to concanamycin A (concA) an inhibitor of Atp6. Wild-type fish have no phenotypic response when incubated in
200 nM concanamycin A beginning at 24 hpf (A). Embryos heterozygous for cto are sensitive to this same dose of concA, resulting in punctate
melanocytes (B). ConcA exacerbates the phenotype of catastrophe homozygotes resulting in total loss of pigmentation and increased degenerative
appearance (C). (D–E) The defect in cto is cell autonomous both in epidermal and retinal pigment epithelial cells. Wild-type, GFP-positive cells were
transplanted into cto mutant embryos at the 1000 cell stage and allowed to develop to 48 hpf. Robustly pigmented melanocytes with normal size
and shape can be seen sparsely distributed throughout the epidermis (D, arrowhead) and retinal pigment epithelium (arrow, D). The epidermal
melanocyte does not have visible GFP but is not surrounded by GFP-positive cells (E, arrowhead). The RPE cells have a central area of GFP-positivity (E,
arrow) Other areas are GFP positive without melanin pigment. (F–G) cto homozygotes but not heterozygotes or wild-type embryos are sensitive to
atp7a morpholino injection. At a sensitizing dose of morpholino that does not affect wild-type/heterozygotes (F), homozygous cto embryos lose all
pigmentation (G). (H) Cytochrome c oxidase activity is not reduced in cto embryos. Activity was normalized to protein levels in each sample. Three
independent samples were prepared from three groups of embryos and the standard deviation of the three experiments is shown.
doi:10.1371/journal.pgen.1000261.g005
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Subcellular Morphology and Melanosome Formation Is
Altered in catastrophe

The vacuolar ATPase has been implicated in diverse trafficking

events within the cell and inhibition of this protein results in

altered ion homeostasis, disrupted membrane trafficking, defective

acid secretion, deficient protein degradation, and loss of protein

sorting, endosomal recycling, and vesicular secretion [21–27]. To

examine the effect of loss of this protein on cellular morphology,

specifically melanocytes, we performed transmission electron

microscopy focusing on the pigmented cells. Thin (500 nm) plastic

sections of 48 hpf embryos stained with toluidine blue did not

demonstrate any further gross defects in organismal or cellular

morphology beyond those observed in the pigmented cells both of

the epidermis and the retinal pigment epithelium (data not shown).

Upon examination by electron microscopy in wild-type embryos

both epidermal pigment cells as well as retinal pigment epithelial

cells at 48 hpf display dark, uniformly round or ellipsoid

melanosomes distributed throughout flat melanocytes (Figure 6A–

C). In contrast, the melanocytes of cto embryos are rounded and

contain few fully melanized melanosomes, many large vacuolated

structures and small vesicles surrounded by rings of melanin

pigment (Figure 6D–F). These latter structures have been

identified as multi-vesicular bodies, the accumulation of which is

reminiscent of early blocks in melanosome maturation found in

the cappuccino, pallid, ruby-eye 2, and reduced pigmentation mice which

are all models of Hermansky-Pudlak syndrome and have specific

early defects in melanosome biogenesis [28]. Thus among other

abnormalities loss of proton transport results in early blocks in

melanosome maturation. It is interesting to note that there

remains active tyrosinase which produces some melanin in these

aberrant structures despite the loss of the proton transporting

ATPase (Figure 6F).

Discussion

Genetic Screen for Gene-Nutrient Interactions
In this work we have used the power of forward genetic screens

combined with the ease of ex utero nutrient level manipulation

accessible with the zebrafish to study the relationship between

specific genetic alterations, the levels of the essential nutrient

copper, and their combined effects on the developmental

phenotype of the embryo. From these experiments we have

Figure 6. cto melanocytes have significant ultrastructural defects. (A–B) Wild-type epidermal (A) and retinal pigment epithelial (RPE, B)
melanocytes are elongated and thin and contain many large, densely pigmented melanosomes. The epithelial basement membrane is indicated by a
black triangle in (A) and the RPE basement membrane by a black arrowhead in (B). (C) A higher magnification of wild-type melanosomes showing
significant pigmentation and ellipsoid shape when cut longitudinally. (D–E) cto mutant epidermal (D) and RPE (E) melanocytes showing rounded,
poorly pigmented cells that contain numerous large, empty vesicles (white arrows) The basement membranes are indicated as in (A and B). (F) A
higher magnification of RPE melanosomes showing the diverse array of immature, poorly pigmented vesicles. The white arrowheads point to multi-
lamellar, melanin filled vesicles which are identical to the melanin positive multi-vesicular bodies seen in the cappucino mouse (see text).
doi:10.1371/journal.pgen.1000261.g006
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derived a nutrient-sensitive allele of a known copper transporter

that results in a juvenile skeletal phenotype. We have also

implicated the vacuolar proton pump in vertebrate copper

metabolism and interconnect two ion transport proteins whose

individual effects on the other would not otherwise have been

appreciated.

The ex utero development of zebrafish provides an opportunity

for manipulating the developmental levels of nutrients. Much

success has been achieved in yeast using large libraries of

compounds coupled with known deletion mutants to define the

roles of many of the yeast proteins in cellular biology and

metabolism [29,30]. One major advantage of yeast is the ability to

absolutely control the levels of different nutrients and pharmaco-

logic compounds and to screen large numbers at a time; however,

yeast lack the complexity necessary to extend such findings to

multi-cellular organisms and ultimately to understand human

biology for the treatment of disease. Our work shows that the

zebrafish model system can fill the niche in extending the

principles of the chemical genetic screen to a vertebrate organism.

Zebrafish retain the advantage of environmental exposure control

while only slightly reducing the ability to screen large numbers.

They also provide a system with more complex phenotypes to be

examined which can then be brought back to the study of the

underlying cell biology of a multi-cellular organism, particularly as

the genome sequence and rapid mapping techniques improve.

Nutrient-Sensitive Hypomorphic Allele
The first mutant which was isolated from our screen was a

hypomorphic allele of atp7a. Animals bearing this allele have a

normal pigmentation and notochord phenotype at 48 hpf but are

sensitive to mild copper deficiency thus indicating that transporter

function was impaired. This mutation reduced the protein levels to

below the detection limits of our immunoblot demonstrating that

only a fraction of wild-type protein expression is necessary to

maintain a near-normal phenotype. This is consistent with our

previous observations where very minor changes in Atp7a protein

levels resulted in significant rescue of the calamity phenotype [31].

Also, the increase in severity of the calvu69 allele upon incubation

with neocuproine demonstrates that even in this model of severe

Menkes disease, there is still residual protein function without

detectable expression [6,31]. Interestingly, when the gw71 protein

was overexpressed in cell culture fibroblasts it was fully capable of

loading copper into the secretory pathway as evidenced by the

robust tyrosinase activity; yet, at the same time there was a clear

sensitivity of this mutant transporter to copper levels.

This mutant allele is not the first hypomorphic allele of atp7a. A less

severe form of Menkes disease, Occipital Horn Syndrome, is also

caused by mutations in atp7a. Children with this disease have many

clinical problems similar to Menkes disease; however, as this

syndrome is not fatal in early life other abnormalities can be

appreciated including skeletal defects such as deforming hyperostosis

and kyphoscoliosis [32]. In this context the gw71 mutant provides

several important advances. First, within the screen itself it provides

proof-of-concept that the screen design will result in the identification

of critical proteins involved in copper transport and metabolism.

Second, the gw71 allele is both viable and fertile which itself provides

distinct advantages. Third, this allele demonstrates that only a

fraction of wild-type levels of Atp7a protein are required for near-

normal pigmentation and notochord formation, a result suggested by

previous experiments [31]. Fourth, this mutant expands the hierarchy

of copper metabolism previously described [6]. The differential effect

on retinal pigment epithelial melanin versus the body pigmentation

seen under a variety of genetic and environmental manipulations

(Compare Figures 1D, 3B, and 3D) demonstrates an increased

sensitivity of the RPE to derangements of copper metabolism. Fifth,

the gw71 mutant displays an incompletely penetrant developmental

hyperostosis phenotype which is easily detected. The proximal

etiology of these defects is unknown. It may be related to lysyl oxidase

activity which is important for zebrafish notochord development and

is sensitive to nutritional copper status [12]. The increase in

penetrance with copper chelation suggests that the variability may

be due to nutritional differences. The lack of rescue observed with

copper supplementation could be due to an inability of this ion to be

translocated by the mutant Atp7a protein to the proper compart-

ment. Alternatively, lack of rescue with copper could point to residual

genetic heterogeneity leading to phenotypic differences. Whichever is

the case, this aspect of the mutant phenotype may provide a model to

further our understanding of this poorly understood defect. The

viability of this mutant would allow a modifier screen to find

mutations responsible for different aspects of the copper deficient

phenotype as well as to detect any genetic variability leading to the

incomplete penetrance observed in the mutant.

Intersection of Two Ion-Transporting Pathways
Our second mutant contains an inactivating mutation in the

vacuolar (H+) ATPase subunit, Atp6v0d1. While abolition of this

protein results in loss of proton transport into the secretory

pathway, the embryo is capable of developing relatively normally

to about 48 hpf when defects become visibly apparent. This lag is

most likely due to the persistence of maternal protein and mRNA.

At this time point the changes in melanin pigmentation patterns

signal the visible presence of defects in proton transport. Grossly

the melanocytes become punctate which, upon ultrastructure

analysis, is shown to be a loss of mature melanosomes and a

rounding of the cell body with vacuolization. The observed

relationship between lack of melanosome formation and cellular

morphology is not understood but may suggest a toxic effect of

inappropriate melanization in the multi-vesicular bodies seen with

electron microscopy or may be due to a particular sensitivity of

melanocytes to loss of proton transport. As it has been shown that

the vacuolar ATPase is important for vesicular trafficking and

endocytosis [21,22], the distinct disruption of planar morphology

in cto melanocytes may also be due to defects in these processes.

The sensitivity to copper deficiency of the remaining melanin

implicates proton transport in the homeostasis of copper

metabolism. That the notochord is equally sensitive to reduced

copper demonstrates that the defect is not limited to the

melanocyte, but rather that there is a universal decrease in the

ability of copper to adequately reach secretory cuproenzymes.

Since the effect on copper metabolism in cto mutants is only

revealed in the context of sub-threshold copper nutrition, without

a screen of this nature, this inter-relationship of two ion transport

pathways in the vertebrate organism would never have been

appreciated.

There are two models which could explain the defect in

cuproenzyme function when proton transport is compromised.

The first is that an acidic pH is important for copper incorporation

into the nascent cuproproteins within the secretory pathway. The

second model is that a proton gradient is required for copper

transport, to balance the charge transfer across the vesicular

membrane. These models are not mutually exclusive and a

combination of the two could result in the final phenotype.

The data presented in this paper demonstrate the power of the

zebrafish model system to examine gene-nutrient interactions as

well as to delineate basic cell biologic pathways. Continuing with

this methodology will provide more insight into the biology of

copper metabolism in a vertebrate organism. It is easy to see how

screens in zebrafish similar to the one we describe have the
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potential to investigate the genetics of not only copper or folate

metabolism, but also that this approach could be easily extended

to an array of other nutrients.

Materials and Methods

Zebrafish Maintenance
Zebrafish were maintained in the Washington University

Department of Pediatrics zebrafish facility according to institu-

tional guidelines supervised by the Division of Comparative

Medicine.

Mutagenesis, Screen, and Mapping
The specific alterations of these well-characterized techniques

are available in Text S1.

Immunoblot
Mutant 48 hpf embryos were identified phenotypically. Twenty

to thirty embryos were manually dechorionated and de-yolked,

lysed in 75 mL RIPA buffer containing 10 mL/mL Protease

Inhibitor Cocktail III (Calbiochem). Unlysed material was

removed by centrifugation at 10006 g for 5 minutes. For Atp7a,

50–100 mg of lysate in Laemmli buffer with 10% b-mercaptoeth-

anol, heating for 5 min at 65uC (not fully reducing conditions) was

loaded on a 6% SDS-polyacrylamide gel. The protein was

transferred to nitrocellulose and blotted for Atp7a using a custom

polyclonal antibody raised against a C-terminal peptide [31]. For

Atp6v0d1, 30–40 mg lysate in Laemmli buffer with 10% b-ME

heated to 70uC for 5 minutes was loaded on a 12% SDS-

polyacrylamide gel. The transferred protein was blotted for

Atp6v0d1 using a mouse polyclonal raised to human recombinant

protein at 1:1000 dilution (Abnova Corp). Other antibodies: Actin

(Sigma) 1:5000, b-catenin (BD Biosciences) 1:1000.

Me344 Cell Culture
The Menkes patient fibroblast cell line Me344 (gift of Mick

Petris) was maintained in 10% FBS/DMEM with Pen/Strep/

Glut. Transfections were carried out on coverslips using

Lipofectamine 2000 (Invitrogen) at a ratio of Lipo2k:DNA of 2.5

for 3 hours in Optimem (Invitrogen). The media was then

replaced with 1% FBS/DMEM/PSG. Neocuproine was added

in DMSO to the indicated concentration and the cells incubated

overnight.

L-DOPA Staining
Performed as previously described [33].

Alcian Blue/Alizarin Red Stain
Twenty-one dpf juvenile zebrafish were fixed overnight in 4%

PFA in PBS and stained as previously described [34].

Transplantation
Approximately 50–100 cells were extracted from wild-type (AB)

embryos at the 1000 cell stage and placed in mutant embryos of

the same age using a micromanipulator syringe and glass needle as

described previously [35].

Morpholino Injection
The atp7a splice morpholino e7 (TGACAACATTAACATT-

CATACCCTG) [31] was injected at a dose of 965 pg/embryo at

the 1 cell stage in 10% phenol red. At 48 hpf the injected embryos

were scored for pigmentation and genotyped.

Cytochrome C Oxidase Activity Assay
A crude mitochondrial fraction was prepared from groups of 45

embryos at 52 hpf by homogenizing in 250 mM sucrose, 10 mM

Tris pH 7.4 with a loose-fitting glass-glass tissue homogenizer. The

homogenate was spun at 7006g for 10 minutes. The supernatant

from this spin was centrifuged at 23,0006g for 20 min to form a

pellet containing mitochondria and large vesicles. The pellet was

resuspended in 150 mL of sucrose buffer with protease inhibitors

and n-dodecyl-3-D-maltoside was added to 1 mM and incubated

for 10 minutes at 25uC. Cytochrome c oxidase activity was

monitored by measuring the decrease in absorption of ferrocyto-

chrome c at 550 nm using the protocol described for the Cytocox

assay kit (Sigma, USA).

Transmission Electron Microscopy
Performed as described previously [12].

Supporting Information

Figure S1 (A) Sequencing of the atp7a cDNA in calgw71 mutant

embryos reveals a single non-synonymous nucleotide change

T3182G which causes a non-conservative amino acid substitution

T1061S. (B) Transfection of tyrosinase only into Me344 cells does

not result in any appreciable tyrosinase activity. (C) Transfection

of atp7a only into Me344 cells also does not result in L-DOPA

oxidase activity. This activity is specific to tyrosinase expression.

(D) Alignment of a small region of atp7a containing the mutation in

gw71 (arrowhead) and the highly conserved glutamate (asterisk)

observed to be important for ATP binding/hydrolysis. This

glutamate is fully conserved from fungus to humans.

Found at: doi:10.1371/journal.pgen.1000261.s001 (5.94 MB TIF)

Figure S2 Sequencing of the cDNA of atp6v0d1 which lies near

the cto locus in revealed a single nucleotide change that creates an

early stop codon.

Found at: doi:10.1371/journal.pgen.1000261.s002 (0.43 MB TIF)

Text S1 Supplemental methods.

Found at: doi:10.1371/journal.pgen.1000261.s003 (0.03 MB

DOC)
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