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ABSTRACT Objective: To develop a Bayesian inversion framework on longitudinal chest CT scans which
can perform efficient multi-class classification of lung cancer. Methods: While the unavailability of large
number of training medical images impedes the performance of lung cancer classifiers, the purpose built deep
networks have not performed well in multi-class classification. The presented framework employs particle
filtering approach to address the non-linear behaviour of radiomic features towards benign and cancerous
(stages I, II, III, IV) nodules and performs efficient multi-class classification (benign, early stage cancer,
advanced stage cancer) in terms of posterior probability function. A joint likelihood function incorporating
diagnostic radiomic features is formulated which can compute likelihood of cancer and its pathological stage.
The proposed research study also investigates and validates diagnostic features to discriminate accurately
between early stage (I, II) and advanced stage (III, IV) cancer. Results: The proposed stochastic framework
achieved 86% accuracy on the benchmark database which is better than the other prominent cancer detection
methods. Conclusion: The presented classification framework can aid radiologists in accurate interpretation
of lung CT images at an early stage and can lead to timely medical treatment of cancer patients.

INDEX TERMS Bayesian inversion, cancer stage estimation, nodule classification, particle filter, radiomic
features.

I. INTRODUCTION
Image analysis techniques have successfully provided per-
sonalized prognosis and treatment plans for cancer patients
with a greater accuracy in the recent years. There are sev-
eral studies available that show the importance of imaging
features for treatment, monitoring and outcome prediction in
lung cancer as well as other cancer types [1], [2]. Besides
prognosis, the quantitative imaging features also known as
radiomic features have been extracted from the medical
images to be further used in clinical research for lung cancer
diagnosis [3], [4]. Most of the prominent radiomics based
classificationmethods for lung cancer have incorporated neu-
ral networks and deep learning approaches [5]–[13]. A multi-
view convolutional network is proposed in [9] for binary
(benign and malignant) and ternary classification (binary,
primary malignant and metastatic malignant). The proposed
model achieved error rate of 5.41% for binary classification

and 13.91% for ternary classification respectively. Another
multi-view knowledge-based collaborative (MV-KBC) deep
model classified nodules on limited chest CT data in [11].
The prediction error computed in terms of Root Mean Square
Error (RMSE) of the model is 0.62. Authors in [12] inves-
tigated the usefulness of a deep convolutional neural net-
work (DCNN) for benign, primary lung cancer andmetastatic
cancer classification. The best averaged accuracy of 68%was
achieved with transfer learning for image size of 224.

Another common approach adopted to address classifica-
tion problem is the application of machine learning classi-
fiers. A structural co-occurrence matrix (SCM) based method
was proposed by [13]. The proposed technique did not only
classify the nodules as benign or malignant but also classi-
fied the malignant nodules into 5 prescribed levels with an
accuracy of 74.5%. Yu et al. in [5] presented a study to detect
pathological stages I, II, III and IV respectively in non-small
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TABLE 1. List of notations.

cell lung cancer (NSCLC) using Random Forest algorithm.
Out of the bag (OOB) error was computed to measure clas-
sification accuracy of the Random Forest algorithm whereas
the predicted cancer stages of test data sets achieved ROCs
between 0.6 to 1.

However, there is a dearth of scientific approaches to diag-
nose the benign or cancerous nature of a lung nodule along
with its pathological stage in case of malignancy. Further-
more, the insufficient size of training data sets required for
neural networks training is a challenge for accurate cancer
stage detection of the tumor. Keeping in view the aforemen-
tioned challenges, there is an emerging need to investigate
new sophisticated solutions for the detection of malignancy
status in lung nodules. A useful approach towards joint esti-
mation of tumor malignancy and its stage can involve track-
ing of tumor characteristics using temporal analysis of CT
images [14], [15]. Such an approach also offers good poten-
tial to address the problem of smaller data sets in medical
imaging.

In this research article, a Bayesian inversion method is pro-
posed which employs longitudinal radiomics data extracted
from CT scans of lung nodules to detect cancer and its
pathological stage. The presented system adopts particle fil-
tering approach to compute the posterior Probability Density
Function (PDF) of cancer occurrence and cancer pathological
stage respectively. For PDF estimation, a joint likelihood
function incorporating diagnostic radiomic features is devel-
oped which can diagnose malignant nodules and the patho-
logical cancer stage. The cancer stage is determined as early
stage cancer (stage I & stage II) or advanced stage cancer
(stage III & stage IV) respectively. Furthermore, radiomic
features which can discriminate between cancer stages are
also investigated and evaluated.

The presented Bayesian inversion method was validated on
a total of 200 nodules with 130 malignant and 70 benign nod-
ules. There were 109 malignant and 63 benign nodules which
were successfully diagnosed showing better performance of
the proposed framework than the other prominent methods in
literature.

In the following sections, research problem is formu-
lated and proposed stochastic frame work is described. Next,

FIGURE 1. Work flow of the Bayesian inversion method implemented in
proposed system for multi-class classification of lung nodules.

implementation of the presented model is discussed. Then,
results and discussion are presented followed by a conclu-
sion. The notations used in this research work are listed
in Table 1 for reader’s understanding.

II. PROBLEM FORMULATION
A number of radiomic features depicting shape and gray
level intensities of lung nodule have shown diagnostic power
towards lung, colon and head and neck cancer [16]. The aim
of the presented research is to utilize such radiomics features
measurements from periodic chest screening images in a
stochastic framework to detect lung cancer. The sequential
evaluation of nodules’ malignancy status given the radiomics
data from periodic screening images is an inverse problem
and can be solved using Bayesian inversion approach [17].
There are several methods available to solve the aforesaid
problem but a recursive Bayesian filter based on sequential
Monte Carlo method is proposed since it uses nonlinear
models [18]. The need of nonlinear modeling arises due to the
nonlinear behavior of measured radiomics features and the
associated likelihood function for lung cancer diagnosis [16].

The proposed Bayesian inversion framework requires a
likelihood function for PDF estimation. Since multi-class
classification using a single mathematical model has not
been a preferred approach due to the complex relationship
between benign and cancerous (multiple stages) nodules [19],
[20], an intuitive approach has been adopted to combine two
mathematical likelihood equations into one for PDF estima-
tion. The proposed system for cancer prediction is shown
in Fig. 1. In practice, an inverse problem can be represented
by two models namely state transition model and measure-
mentmodel [21] and is shown in Fig. 2with states represented
by u and measurements by z. A description of these two
models and their application in Bayesian inversion method
for malignancy estimation is given in the following section.

III. DIAGNOSTIC STOCHASTIC FRAMEWORK
A. STOCHASTIC STATE-SPACE MODELS
To start with, a state vectorU={u1,u2,u3,u4, . . . . ., uk−1, uk}
is defined where each element uk is a diagnostic score
between 0 and 1 that represents the benign/malignancy state
of a lung tumor at a screening interval k . A state transition
model represents the evolution of state uk with respect to time
instants and can be expressed as [22]:

uk = xk−1(uk−1, vk−1) (1)
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FIGURE 2. Illustration of proposed inverse problem with hidden states
and their observed measurements.

Here xk (.) is a non-linear and time varying function that
models the state transition process and vk is process noise
respectively.

The q number of diagnostic radiomic feature measure-
ments of a lung nodule in a CT image at each screen-
ing interval k are assumed to be z1k , z2k , . . . , zqk and
are represented by a measurement vector Z such that
Z={z11, z21, . . . ., zq1, z21, z22, . . . zq2,. . . , z1k , z2k , . . . , zqk}.
The measurement function relates the features measurements
to the true malignancy states of a lung tumor and can be
expressed as:

zk = yk (uk , nk ) (2)

Here yk (.) is a time varying and independent function that
represents measurement model and nk is the measurement
noise. Since, there has been a lack of discussion on the
linearity of radiomics based state transition and measurement
functions in the literature, a more generalized approach is
adopted to perform the Bayesian inversion estimation which
is offered by particle filter to estimate the posterior probabil-
ity of malignancy and pathological cancer stage respectively
in lung nodules.

B. PARTICLE FILTERING
A particle filter is an algorithm which represents the desired
posterior PDF of an unknown state as weighted samples, also
known as particles. Using a large number of samples (par-
ticles), the estimated PDF is approximated to the true PDF.
In particle filtering approach to dynamic state estimation of
a lung nodule, the posterior PDF of the unknown malignancy
state uk is constructed based on the set of received feature
measurements Zk .

Given the likelihood p(Zk |uk ) of measured diagnostic fea-
tures Zk at time k , the posterior density p(uk |Zk ) of unknown
state uk for the set of received features Zk can be computed
using Bayes’ Theorem [23] as follows:

p(uk | Zk ) =
p(Zk | uk )p(uk | Zk−1)

p(zk | Zk−1)
(3)

Here the normalizing constant p(zk | Zk−1) is given by:

p(zk | Zk−1) =
∫
p(zk | Uk )p(Uk | Zk−1)duk (4)

The normalization constant depends upon the likelihood
function p(Zk |uk ), defined by the measurement model in

Eq. (2). Recursively, the filter predicts and updates to esti-
mate the sequential unknown malignancy states of nodules.
In summary, the proposed particle filter expresses the PDF
p(uk |Zk ) of a nodule’s unknown state at screening interval k as
a set of weighted samples. The total number of samples drawn
from an importance density are assumed Ns. We represent
a sample point as uik and its associated weight as wik where
i = {1, 2, . . . .,Ns}. A randomly measured weighted sample
at any screening interval can be represented as a set {uik ,w

i
k}.

Using the principle of importance sampling, the weights are
normalized such that

∑
wik = 1. Then, the posterior density

at a screening time k can be approximated as:

p(uk | Zk ) =
Ns∑
i=1

wikδ(uk − u
i
k ) (5)

The samples can be drawn from the importance density
q(Z ik |Uk ) and the weights can be assigned using the following
association:

wik ∝
p(Z ik | Uk )

q(Z ik | Uk )
(6)

If the samples at screening time k − 1 are available consti-
tuting to probability p(z1:k−1 | u1:k−1), then p(z1:k | u1:k ) is
approximated with a new set of samples once the observation
zk is known at the nodule screening time k .

The prior or state transition probability p(uk |uk−1) of
malignancy in a nodule is modeled using exponential distri-
bution because the progression rate of lung cancer follows
exponential distribution [24]. Since the transition density
depends upon the malignancy states of cancer uk−1 and uk
at any consecutive times k − 1 and k respectively, it can be
represented as follows:

p(uk | uk−1) = e−
|uk−uk−1|

α

α (7)

where α is a scalar value that controls the variability in the
predicted state value.

IV. IMPLEMENTATION OF PARTICLE FILTER
The test datasets which are given as input to the proposed
model comprises of longitudinal radiomics data of patients’
CT images acquired from National Lung Screening Trial
(NLST) [25].

A. NLST DATASETS
NLST is a randomized multi-site trial which enrolled
53,454 people with high cancer risk to assess the impact of
using low dose CT screening in mortality reduction from
lung cancer. In NLST project, low dose CT screenings of
the enrolled people were performed for three consecutive
years which are termed as T0, T1 and T2 respectively. For
the implementation of proposed filter, longitudinal data of
participants who had cancer detected after the third year (T2)
of screening were included. This ensured availability of CT
data for all the three years in order to apply the prediction
model. A total of 130 cases with positive screening at either

4300208 VOLUME 9, 2021



H. Shakir et al.: Radiomics Based Bayesian Inversion Method for Prediction of Cancer and Pathological Stage

year T0 or T1 followed by screen detected cancer at year
T2 were acquired. Another 70 CT data sets with benign
nodules detected at year T2 and with positive screening at
either year T0 or T1 were accessed from the database.

The detected nodules from all the 3 consecutive CT screen-
ings of each patient were segmented and 105 3-D features
were computed. This resulted in a set of 3 longitudinal
radiomic readings for each patient. In order to tackle the
constraint of fewer data points, single data point was interpo-
lated using cubic-spline method [17] between data obtained
from year T0 and year T1, and between year T1 and year
T2 respectively. The total number of screening intervals after
interpolation were 5(K = 5) within a duration of 3 years.
Starting with an initial CT scan, there are 4 sample points fol-
lowing and each point represents a half-yearly CT screening
data of the patient which was fed into the proposed system
for PDF estimation.

B. LIKELIHOOD FUNCTION FOR CANCER AND CANCER
STAGE DETECTION
For PDF estimation using particle filter, a likelihood function
has to be developed. In the literature reviewed, authors in [16]
formulated a likelihood function for cancer detection (benign
or malign) incorporating two highly diagnostic radiomic fea-
tures namely Surface volume ratio and Sum entropy values
of a nodule and is given as:

p1(Zk |uk )=a+ b(z1k )+ c(z21k )+d(z
3
1k )+ e(z

4
1k )+ fln(z2k )

(8)

Here z1k represents the Surface volume ratio and z2k
denotes the Sum entropy value of nodule at k th quarter. The
value of p1(Zk |uk ) is below 0.51 for benign state and equal or
above 0.51 for malignancy in the nodule. The coefficients of
Eq. (8) assume the following values [16]:

a = 0.7478; b = 2.2268; c = −5.5856;

d = 3.6318; e = −0.73065; f = 1.2814E − 02

As reported in a research study [26], a single multi-class
likelihood function is prone to large errors hence cancer
detection and cancer stage detection have to be performed
using two distinct mathematical functions.

Malignancy with cancer pathological stage I or II was
collectively termed as early stage cancer whereas stage III
and IV cancer was termed as advanced stage cancer [27].
The training cohort comprised of 73 nodules with early
stage cancer and 127 nodules with advanced stage cancer
from Lung1 [28] database. A pre-processing step of features
extraction and features reliability test [16] was applied to the
training data sets which resulted in 51 stable and reliable
features reported in Table SI (Supplementary material). Fur-
thermore, the redundant features were removed and highly
diagnostic features were selected using Least absolute shrink-
age and selection operator (LASSO) [10], a method of regres-
sion analysis. LASSO technique performs L1 regularization
of the features via penalized estimation function to achieve a

FIGURE 3. LASSO plot of coefficients fit.

reduced set of diagnostic features which were validated using
5-fold cross validation. Fig. 3 shows the LASSO coefficients
of predictors on y-axis and the L1 norm (the penalization
parameter also known as lambda) of coefficients on x-axis
for a regression fit. The top x-axis of the plot represents
degree of freedom denoted by df and it shows the non-zero
coefficients of predictors. Following 7 diagnostic features
were obtained after the application of LASSO technique
(lambda = 0.0282 with minimum MSE) on pre-processed
features:

1) Sphericity
2) Dependence Variance (DV)
3) Large Dependence High Gray Level Emphasis

(LDHGLE)
4) Cluster Prominence (CP)
5) Large Area Low Gray Level Emphasis (LALGLE)
6) Small Area Emphasis (SAE)
7) Strength

The LASSO coefficients of the aforementioned diagnostic
features are reported in Table SII. Their diagnostic power
ranking was computed usingmean scores of 3 supervised fea-
ture ranking approaches namely feature based Neighborhood
Component Analysis (fNCA), ReliefF network and Infinite
Latent Feature Selection (ILFS) respectively [29]. Out of
these 7 coefficients, five most discriminating features were
used to formulate the likelihood function for early stage or
advanced stage cancer detection as follows:

p2(Zk | uk )

= 1.2− 1.1348(z3k )− 7.4597e−07(z4k )

+3.0780e−08(z5k )+ 0.3917(z6k )− 0.00361(z7k ) (9)

Here p2(Zk |uk ) indicates likelihood of cancer stage as early
stage or advanced stage cancer. It produces a value between
0.51 and below 0.70 for early stage cancer and assumes a
value between 0.70 and 0.90 for the detection of advanced
stage cancer. The features z3k , z4k , z5k , z6k and z7k repre-
sent Sphericity, LDHGLE, Cluster Prominence, Small Area
Emphasis and Strength respectively for k th CT screening.
The coefficients z4k , z5k of features LDHGLE and Cluster
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FIGURE 4. Hierarchical clustering of selected radiomic features as a
heatmap.

Prominence respectively are very small and can be excluded.
The proposed likelihood function was validated on 47 nod-
ules with early stage cancer and 143 nodules with advanced
stage cancer. The function detected 40 nodules with early
stage cancer and 125 nodules with advance stage cancer
following the designated score ranges. Overall, the proposed
function achieved an accuracy of 86.84% (CI:81.19% to
91.30%), specificity of 85.11% (CI:71.69% to 93.80%) and
sensitivity of 87.41% (CI:80.84% to 92.37%) respectively
with an AUCROC of 84.61%. The ROC plot of the nodule
pathological stage classification using the presented likeli-
hood function is shown in Fig. S1. The correlation of these
top 5 diagnostic features (LASSO method) with two cancer
groups (early stage and advanced stage) is further demon-
strated using hierarchical clustering in a heatmap in Fig. 4.
The numerical values of plotted radiomic features are stan-
dardized with mean 0 and standard deviation 1. The features
are represented on x-axis and their hierarchical clustering
is represented on y-axis. Two distinct clusters were formed
showing strong association of CP and LDHGLE with the
defined cancer groups. However, the heatmap could not fully
capture the association of other features with two cancer
stages besides CP and LDHGLE.

Finally, in order to integrate cancer and its stage detec-
tion equations into one likelihood function, highly diagnos-
tic features namely Surface volume ratio (SVR) and Sum
entropy (SE) were chosen as the selection criterion [16].
It was observed through an empirical study carried out on the
training data that values of SVR (z1k ) and SE (z2k ) are always
above threshold values Ta and Tb respectively for malignant
nodules and therefore can be used to estimate likelihood of
early and advanced stage cancer fromEq. (9). On the contrary,
the values of z1k and z2k below the threshold Ta and Tb
respectively indicate that nodule is benign/non-malignant and
its likelihood can be computed using Eq. (8) Using the above
mentioned criterion and Eq. (8) and Eq. (9), the proposed

FIGURE 5. Work flow of the radiomics based Bayesian inversion method
for multi-class classification of lung nodules.

likelihood function for multi-class classification is given as
follows:

p(Zk | uk ) =


p2(Zk | uk ), if z1k < Ta AND z2k < Tb
OR
p1(Zk | uk ), if z1k ≥ Ta AND z2k ≥ Tb

(10)

C. ALGORITHM
The sequence of steps carried out for the proposed diagnostic
framework implementation is demonstrated in Fig. 5 and is
summarized as follows:

1) To start, Ns samples are generated from the prior/state
transition PDF in Eq. (7) for the first time screening of
a lung nodule. The value of Ns is equal to 4000.

2) Next, the features are computed using the measurement
function for the known malignancy state from Step 1.
For this, an M th order polynomial is proposed as a
measurement function as follows:

zqk =
M∑
m=0

pmumk (11)

Here zqk represents qth diagnostic radiomic feature
at k th chest screening. The coefficients pm of poly-
nomial were determined from a training database of
known states and the corresponding diagnostic feature
measurements. As discussed, two features (SVR(z1k ),
SE(z2k )) were required to estimate benign /malignant
state of a nodule [16] and their measurement functions
were formulated as:

z1k =
M∑
m=0

p1mumk (12)

z2k =
M∑
m=0

p2mumk (13)
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FIGURE 6. Confusion matrix of cancer detection and stage detection
using (a) M = 2 and (b) M = 3.

The coefficients p1m and p2m were computed for z1k
and z2k respectively. Similarly, measurement functions
of cancer stage estimation were also developed.

3) Using the features computed in Step 2 and the test
radiomics features, two likelihood PDFs were esti-
mated from Eq. (10). The closeness of the two like-
lihood values obtained determines the sample weight.
Large difference refers to small weight assignment and
vice versa. Subsequently, the weights were updated
using association in Eq.(6).

4) The problem of degeneracy with particles is addressed
by performing resampling [30]. After resampling,
the posterior PDF of malignancy occurrence was esti-
mated using samples and their associated weights.

5) The PDF estimation process outlined above was
repeated for all the cancer screening times from 1 up
till K .

6) The expectation of state computed from the PDF esti-
mates at k was represented as posterior mean esti-
mate (PME) as follows:

uPMEk = E[uk | Zk ] =
∫
ukp(uk | Zk )duk (14)

7) If the error in single point PDF estimates in two con-
secutive iterations was within a preset threshold ξ , each
iteration was denoted by N and the estimated malig-
nancy state of a nodule (K screening times) evaluated
atN was uN1:K , then the convergence criterion was given
by: ∑K

k=1(uk (N + 1)− uk (N ))2

K
≤ ξ (15)

V. DATA SETS SUMMARY
The proposed particle filtering approach was validated using
200 low dose CT data sets collected from NLST database.
From these, there are 130 longitudinal datasets suffering from
cancer stage I, II, III or IV respectively at the third year (T3)
of screening. Other 70 datasets include patients’ longitudinal
CT data diagnosed with benign nodules at the third year (T3)
of screening. The dimensions of the acquired images were
512 x 512 pixels. A summary of the test nodules is reported
in Table SIII.

VI. RESULTS
The 3-D segmentation of nodules in lung CT volumes was
carried out using Grow Cut algorithm after the verification

FIGURE 7. Estimated diagnostic scores of test nodules versus their
malignancy status for M = 3 and M = 2.

from a senior radiologist. Pyradomics [4] was used for the
extraction of 3-D radiomic feature extraction. The diagnosis
results of the filter were evaluated by setting the value of M
as 2 and 3 respectively in measurement functions, described
in subsection IV-C, Step 2.

With the order of measurement equations set to 2 (M = 2),
the particle filter diagnosed 65 out of 70 benign tumors
successfully. In malignant cases, the proposed framework
diagnosed 51 out of 70 nodules having early stage cancer
and 37 out of 60 nodules with advanced stage cancer cor-
rectly. For a comparison, the performance of the proposed
framework was assessed using measurement equations of
order 3 (M = 3). A total of 63 out of 70 benign tumors were
successfully detected whereas in malignant cases, there were
60 out of 70 nodules with early stage cancer and 49 out
of 60 nodules with advanced cancer stage which were cor-
rectly diagnosed. Increasing the order M to 4 did not show
any significant improvement in the detection results and are
excluded in the discussion.

The described diagnostic performance of the filter is
expressed in terms of precision and recall for 95% confidence
interval along with confusion matrix in Fig. 6. The recall val-
ues determine the sensitivity of classification model and pre-
cision values compute the positive predictive value of model.
The average precision of the filter decreased from 92.86%
to 90.0% for benign nodule classification but increased from
72.857% to 85.714% and 61.667% to 86.667% respectively
for early and advanced stage cancer estimation whenM value
was incremented from 2 to 3. The recall metric improved sig-
nificantly for both benign as well as early stage classification
with M = 3. The overall accuracy of the filter is 86%.

The estimated diagnostic scores of benign as well as malig-
nant test nodules at final CT screening (k = 5) which is
the 4th half yearly reading are plotted against each nodule
count for M = 2 & 3 in Fig. 7. Through visual inspection,
an overall improvement in the state estimation of malignant
lung nodules can be seen using measurement functions of
order 3 in PF. To summarize, the diagnostic scores using
M = 2 showed a tendency to shift towards the lower diag-
nostic ranges causing a spill over in the adjacent classification
group. For example, 5 more nodules with early stage cancer
obtained a score below 0.51 with M = 2, hence were
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FIGURE 8. Diagnostic radiomic features and likelihood scores of two
sample nodules having cancer stage I B and stage III A.

diagnosed as benign nodules. Similar trend was observed in
nodules with advanced stage cancer where 9more nodules got
diagnosed having early stage cancer stage due to low scores
for M = 2. The above discussed trend in state estimation is
illustrated by plotting the state evolution (diagnostic scores)
of 1 benign, 1 malignant (cancer stage IB) and 1 malignant
(cancer stage IIIA) against the half-yearly CT screenings
in Fig. S2. Furthermore, the ROC curves demonstrating the
performance of proposed filter for classification of benign,
early stage and advanced stage cancer are shown in Fig. S3.
The AUCs achieved for benign nodule, early stage cancer
and advanced stage cancer detection are 0.8962, 0.8849 and
0.8691 respectively. Computed values of diagnostic features
and likelihood scores for stage I B(early stage) and stage III
A(advanced stage) cancer are shown in Fig. 8.

VII. DISCUSSION
The binary classification performance of proposedmodel into
benign and malignant nodules is compared with two other
significant models tested onNLST database in Table SIV. The
research work in [31] investigated the performance of differ-
ent classifiers to predict malignancy in screen detected cancer
at first year (T0) and second year (T1) of Lung screening trial.
A total of 208 nodules were detected among which 104 were
diagnosed with cancer. An accuracy (ACC) of 80%, speci-
ficity (SPS) of 91% and AUC = 0.83 were obtained. Authors
in [6] analyzed deep learning algorithm generated heat-maps
to predict the malignancy in nodules. The presented explain-
able AI approach to detect malignancy achieved a weighted
accuracy of 85%. In comparison, the proposed PF achieved
an accuracy of 92.0%, sensitivity of 87.50% and specificity
of 94.5% respectively showing excellent performance of the
filter in binary classification.

Since no multi-class classification techniques have been
reported on NLST datasets in the literature, multi-class

TABLE 2. Comparison of multi-class classification performance using
SVM, Random Forest, KNN and PF.

classification was performed using SVM with Radial Basis
Function (RBF) kernel, Random Forest and K nearest
neighbors KNN) classifiers for a comparative performance
analysis. The data sets were chosen from third year (T2)
screening with 180 datasets used for training and the remain-
ing 20 datasets were chosen for the testing of classifiers.
The number of benign and malignant nodules in the exper-
iments were same as used in the proposed filter and reported
in Table SIII. The classifier was trained and tested 10 times
with 10-fold cross validation. The evaluation metric included
averages (for 10 iterations) of precision, recall, accuracy and
Mathew’s Correlation Coefficient (MCC) and is reported in
Table 2. Classification of nodules as benign, with early stage
cancer and advanced stage cancer using SVM,KNN and Ran-
dom Forest classifiers achieved average precision of 79.08%,
77.20% and 82.79%, recall of 79.09%, 78.25% and 83.23%
and an accuracy of 79%, 78% and 83% respectively. In com-
parison, the proposed particle filter resulted in an average pre-
cision of 85.79%, recall of 86.11% and an accuracy of 86%
respectively. Furthermore, MCC [32] was computed which
achieved values of 71.12%, 70.51%, 76.44% and 80.08% for
SVM, KNN, Random Forest and PF respectively. Evidently,
the achieved multi-class diagnosis results using diagnostic
radiomic features and particle filter are better when compared
with the trained SVM, KNN and Random Forest classifier
on low dose datasets. The proposed filter has classified 86%
of the nodules correctly with fewer input longitudinal data
points proving particle filter a good choice for multi-class
classification. However, the classification results could be
improved with the availability of more chest CT data but is
non-attainable due to health hazards attached with multiple
CT screenings of a patient. Moreover, a limitation faced to
implement the proposed approach is poor management of
medical images database currently at many hospitals.

With propermanagement of patients’ longitudinal CT data,
this research work can be extended to cancer prognostics.
Besides current status, the future malignancy status of a nod-
ule can also be estimated using PF approach which re-iterates
its efficacy.

VIII. CONCLUSION
An accurate and efficient radiomics based Bayesian inversion
framework is proposed to detect cancer and its pathological
stage as early or advanced stage. This contribution is supe-
rior to other prominent cancer detection algorithms whose
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performances are dependent on large data sets training, a lim-
itation in medical imaging. Moreover, the published con-
temporary methods do not provide a complete picture of
malignancy and its stage using a single research approach
as presented in this research work. Furthermore, highly dis-
criminative features towards cancer stages were also iden-
tified. The high accuracy of the presented method shows
that the proposed model can be used by clinicians in cancer
diagnostics.
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